
PHYSICAL REVIEW B VOLUME 38, NUMBER 18 15 DECEMBER 1988-II

Parallel channel to the Boltzmann band conduction: Scattering by charged
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With use of generalized master equations, an additive correction to the mobility of nondegenerate

single-type carriers in a parabolic band scattered by charged screened random impurities is found to
the lowest order in the impurity scattering. This correction may become important at low tempera-
tures.

I. INTRODUCTION

Standard Boltzmann theory of the band conduction
gets problematic for scattering by charged impurities
once the concentration n of carriers providing screening
becomes suSciently low. The cutoff procedure by
Conwell and Weisskopf' (though successful in several
respects) remains just an artificial procedure and the
Brooks and Herring method of including screening be-
comes inoperative (due to too strong scattering on almost
unscreened Coulomb centers) when n ~0. Here, we re-
port on a new method of calculating the mobility, start-
ing from the generalized master equations (GME)." The
Ohmic current in the dc (and similarly ac) field results as
a sum of a Boltzrnann-like term and a new non-
Boltzmann contribution. Corresponding additive correc-
tion to the Boltzmann dc mobility can be made explicit
for a parabolic band and single-type nondegenerate car-
riers (electrons henceforth) screening charged random
impurities in an exponential manner to the lowest
(second) order in the impurity potential provided that the
impurities are the only relevant scattering mechanism.

II. GENERALIZED MASTER EQUATIONS
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For the current density operator having no off-diagonal
elements in representation (2b), we have from (3)
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(ag, being the creation operator of an electron with
momentum g and spin s). For every linear idempotent
D ( =D ) [(2a)—(2b)], the solution to (1) readss

I.et us designate d, 6(t) and 5p(t) the electronic dipole
moment, acting electric field, and linear (in 8) change of
the electron density matrix p(t) Assuming t. hat 6(t)~0
for t~ —~, i.e. , that p(t)~p, q, t~ —0(( (p,q

being

canonical), the linearized GME reads

trtt, ,
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Now, let us specify our Hamiltonian as

H=QE a,a, + g g (g~~g v(r —r )~g2)as, as,—[D 5p(t)] = —iDLD 5p(t)+ D6'(t)[d, p, ]q—1
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It describes band electrons (Ho) scattered by impurities
('j't(). Here g means summation over random impuri-
ties. Using (2a), we have

DLo=LOD =0, Lo( ) = —[Ho( . )], DLD =0,1

L( . .
) =irt '[H, ( . )] is the Liouville super-

operator, 0 is the electron Hamiltonian, and D is the
standard Zwanzig projector so that o.~(z) may be rewritten as
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& the Brooks and Herring value for the dc
conductivity in the limit z ~0 as long as we assume
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1 (7b) III. NON-BOLTZMANN CONDUCTIVITY CHANNEL
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Owing to a typical u dependence, ez may be easily

identified with the Boltzmann-like contribution to the

conductivity a. Approximating

This channel is given by O.NB, where NB denotes non-
Boltzmann, in (4b). It is worth mentioning that once we
neglect % in both the denominator and in p,„ in the
second term (oNB) in the first equality of (4b), crNB(z)
turns to zero. (This procedure is justified by analyticity
and absence of any divergency. ) Direct expansion of o NB
starts with positive powers of &, i.e., for randomly distri-
buted impurities, it is proportional to positive powers of
the impurity concentration c. To the second order in %
and in the dc limit z ~0, we obtain
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Here p is the chemical potential.
Let us now assume one parabolic band
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the form of the matrix element as in (9) and extend the in-
tegration in (10a) to infinity. Then
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where Ei (z)= f' „dt e'/t is the exponential integral.

For Z = 1 and numerically in cm V ' sec
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For nondegenerate electrons,
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with T in K and c in cm . In typical semiconductor sit-
uations, —,'PE„T is less or much less than unity. Conse-

quently, the second term in square brackets in (15) be-
cornes negligible. Therefore, pNH —c /T so that this
non-Boltzmann additive correction to the total mobility

{nF(e)[1—nF(E)]) =e +tot I 'B +l NB (16)

4~ne2
FT = (13)

Then (12) gives the non-Boltzn|ann additive correction to
the mobility

(ps being the Boltzmann mobility) might become impor-
tant at low T and high enough c. This fully corresponds
to general criteria of validity of the Boltzmann theory
which certainly ceases to apply under these conditions
due to very strong scattering at the least. In this context,
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one should mention that the standard Boltzmann theory
of the conduction in solids ' ' is the lowest-order theory
summing up higher orders in scattering strength (in the
final conductivity formula) only partially. The origin of
the additive correction (15) to p,„,in (16) should therefore
be sought in higher-order corrections to the Boltzmann
conduction. '

Physically, for, e.g, m '/m =0.3, n = 10'6 cm
C =10' cm, and T=100 K; pNB/p& attains values

10, due to too low values of pz resulting from the
Boltzmann treatment. This shows the significance of our
treatment. It is expected that (15) and (16) might apply
for slightly compensated samples when the conduction is
still inside the bands of extended states. For, e.g. , ex-
tremely low n (very low T) when conduction is mainly in
tails of the bands (or inside impurity bands), neither the
Boltzmann treatment nor that presented here are
sufficiently accurate.
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