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In an attempt to establish an equivalent of the Frohlich interaction in superlattices, we are led to
a critical examination of the dielectric continuum model by comparing with a parallel microscopic
model. The reason that the usually quoted confined bulklike phonon modes derived from the dielec-
tric continuum model are completely at variance with the results calculated from the microscopic
model is explained. Simple rules for obtaining the proper bulklike modes are then set up, which
lead to analytical expressions for the modes, which are found to agree closely with numerical results
calculated from the microscopic model in the limit of zero dispersion for the bulk LO and TO pho-
nons. They directly furnish expressions for the interaction with charged particles, which can be
considered the equivalent to the Frohlich interaction in superlattices. Phonon dispersion has the
effect of mixing the interface modes into the bulklike modes with nearby frequencies. The small
number of bulklike modes so affected are no longer confined to one material. The potentials of
these modes apparently cannot be described by simple analytical expressions.

I. INTRODUCTION

In recent years, there have been many investigations on
electronic properties of quasi-two-dimensional (2D) sys-
tems (ionic slabs, quantum wells, and superlattices), '

which depend essentially on the polar interaction be-
tween electrons and optical phonons. In these works, the
usual Frohlich interaction for bulk materials was used.
In fact, of course, the optic vibration modes in slabs,
quantum wells, and superlattices are markedly different
from the modes in bulk materials. ' The situation calls
for an appropriate formulation of the polar interaction in
such systems.

This might seem to be a problem already solved, for
the usual Frohlich interaction was derived straightfor-
wardly by treating the lattice dynamics on the basis of
the dielectric continuum model, '" and such treatments
of optic-phonon modes in quasi-2D systems have been in

existence for many years. ' ' ' Riddoch and Ridley'
had in fact already made calculations of electron scatter-
ing in quantum wells on the basis of optic modes derived
by Fuchs and Kliewer on the dielectric continuum mod-
el.

However, there were indications that the node struc-
ture of the usually quoted bulklike modes derived from
the dielectric continuum model disagreed with results
calculated from microscopic models. ' Strictly speaking,
the dielectric continuum model is a macroscopic model
which corresponds to the long-wavelength limit of the
optic vibrations. Its application to systems containing
sharp discontinuities like the superlattices is certainly
stretching it beyond its legitimate limit. With the pur-
pose of critically examining the continuum model as ap-

plied to superlattices, we have devised a simple micro-
scopic model which can be considered a close microscop-
ic counterpart of the dielectric continuum model. On the
basis of results calculated from this microscopic tnodel,
we have already in an earlier paper briefly reported on
certain points of doubt relating to the bulklike modes de-
rived from the dielectric continuum model. '

In the following we shall present more fully the

discrepancy between the bulklike modes as usually de-

rived from the dielectric continuum model and the modes

calculated from our microscopic model. This discrepan-

cy is a manifestation of an arbitrariness in the solutions

originating from certain basic limitations of the dielectric
continuum model. Actually, the model in itself cannot
lead to unambiguous solutions for the bulklike modes. It
will be shown how simple rules can be set up, leading to
analytical expressions for the bulklike modes, which

show close agreement with numerical results calculated
from the microscopic model. The potential associated
with the bulklike modes thus obtained and the interface
modes derived directly from the dielectric continuum
model can be considered as providing the analogue of the
Frohlich interaction in superlattices.

In superlattices, the finite dispersion of the bulk LO
and TO phonons has certain specific effects, which find
no parallel in bulk materials. Thus in the presence of
such phonon dispersion, a partial mixing of the interface
modes into bulklike modes occurs. In the last section,
such effects of phonon dispersion will be discussed.

II. MICROSCOPIC MODEL

For the purpose of investigating specifically the limita-
tion of the dielectric continuum model owing to its mac-
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roscopic nature, we have introduced a simple microscop-
ic model, which closely parallels the dielectric continuum
model. ' An important feature of the model is that it
takes proper account of the long-range Coulomb interac-
tion and yet permits easy solution. Basically, we simulate
the optic vibrations between the oppositely charged lat-
tice particles by a simple-cubic lattice of charged oscilla-
tors. In modeling a superlattice constituted of two ma-
terials A and B, we assume that they differ only in a
change in their restoring force constant. As shown in our
earlier paper, this difference can be treated as a "pertur-
bation" (not implying it being small), with the eigen-
modes of the simple A lattice used as the basic vectors to
express the dynamical matrix of the superlattice.

The vibrational modes of the simple A lattice normal-
ized to the region of N XX )& X sites can be written in the
form

u(1~k, j)= N exp[ik x(l)]e(k,j) (j =1,2, 3),

where ro (k„j) are the squared frequencies of the A

modes and A~o represents the additional restoring force
constant for the 8 oscillators expressed as a shift of the
squared oscillator frequency.

The input for calculation with the microscopic model
consists of the frequencies ro (k,j) and polarization vec-
tor e(k, j) for the A modes and hcoo. In the following
model calculations, we shall assume the A modes for all
wave vectors to resolve into one longitudinal mode and a
pair of degenerate transverse modes and their frequency
dispersions are parabolic.

For a given superlattice wave number k, one obtains
from the dynamical matrix (5) 6m vibrational modes,
which will be labeled by an index i =1,2, . . . , 6m. They
are linear superpositions of the 3 X 2m coupled A modes

u(1~k, i)= g a, J( ki)[N exp[ik, x(1)]e(k„j)I .
S,J

(6)

where 1 labels the lattice sites located at x(l), k is the
wave-number vector of the mode, and j labels the three
modes for a given k polarized, respectively, along e(k, j).
The superlattice only couples together A modes with
wave vectors connected by the reciprocal-lattice vectors
of the superlattice. For the sake of simplicity, we shall
see our ABAB. . . superlattice as formed by m layers of
A oscillators followed by m layers of B oscillators in a
periodic sequence along z axis. Thus the A modes that
are coupled will have wave vectors given by

As our ultimate aim is to obtain an electron-phonon in-
teraction analogous to the Frohlich interaction, which is
just the potential function of an electron in the electro-
static field associated with the phonon modes, we shall
want the electrostatic potential associated with the nor-
mal coordinates of the vibrational modes. When the
linear coefficients a, (k, i) are so chosen that the modes as
given by (6) are orthonormal,

k, =k+(sn /ma)z,

where

s = —m, —(m —1), . . . , 0, . . . , (m —1) .

(2)

(3)

Corresponding normal coordinates (complex) Q(k, i) can
be introduced by the following general expansion of the
oscillator displacements in terms of the normalized
modes (6):"

—m/2ma &k, &n. /2ma . (4)

k in (2) is now a wave-number vector appropriate to the
superlattice with k, restricted to the minizone

&M u(l) = Q Q(k, i )u(1~k, i),
k, i

(8)

The dynamical matrix coupling these modes can be readi-

ly worked out, namely,

(k, ,j'~0~k„j ) =5„5"[co (k„j)+0.5bcoo]

2
sin(s —s')rl. /2 ~~o

sin(s —s')n/2m 2m.

where M is the inertial mass of the oscillators. The elec-
trostatic potential produced by the oscillator dipoles can
be generally expressed as

V(x) = —q g u(l) [1/
~

x —x(l)
~ ] .

C}

X e(k, ,j').e(k„j)(1—5„), (S)
where q is the oscillator charge. Substituting (8), one ob-
tains

exp i k, . x(1)—x

The expression in the inner parentheses is a periodic function in the simple lattice, whereas for our purpose, we desire
to derive a microscopically averaged potential so as to be comparable with the dielectric continuum results and also to
be compatible with the idea of a Frohlich-type interaction. Thus we express the periodic function as a Fourier expan-
sion and retain only the constant term which is given by"

(4'/i k,
i

)/vo,

where vo is the volume of a single lattice cell. Then the potential given by (9) becomes

(10)
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V(x)= —4nqN vo 'M ' g Q(k, i) pa, (k, i)exp(ik, x)/~k, ~

k, i

As the transverse A modes do not contribute to the po-
tential, we have left out the polarization index j and the
coefficient a refers to the longitudinal k mode.

III. THE DIELECTRIC CONTINUUM MODEL

E= —VV(x) . (21)

Owing to isotropy and translational symmetry in the
transverse direction the solutions can be characterized by
a transverse wave number kii and the potential function
written as

The dielectric continuum model is fully embodied in
the following pair of phenornenological equations: V(x) =exp(ikiiy)4(z) . (22)

w =b&iw+b&2E,

P=b21w+b22E (b,2=b21),
(12)

where the overdots denote double time derivative and w
is the optical displacement between the oppositely
charged ions weighted by the square root of their reduced
mass divided by the volume per unit ion pair. From (12)
in conjunction with the equations of electrostatics, one
obtains in bulk materials either irrotational solutions,
which may be taken as longitudinal waves with frequency
NLo given by

~LO b1 1 +4~b12b21 l( 1+4~b22 ) & (13)

or solenoidal solutions which can be taken as transverse
waves with frequency coTo given by

2~To= —b„. (14)

When we deal with only electrical quantities, the model
can be more simply characterized by the dielectric func-
tion, which is obtained from (12) by eliminating w [as-
suming vibrational motion to be proportional to
exp(idiot)] and can be expressed in terms of coLo and coTo
as follows:

6(co)=e'~(co coLQ)/(co cl)TQ) (15)

e„ is the dielectric constant due to purely electronic po-
larizability [i.e., w =0 in (12)] given by

e„=1+4+b22

A superlattice constituted of two materials A and B
will be characterized by their respective dielectric func-
tions

B4
2 (23)

which has general solutions of the form

4 = A exp(k iiz)+ 8 exp( —k1z) . (24)

Since D vanishes in A layers on both sides of a B layer,
continuity of the perpendicular component D, requires
that in a B layer F., must vanish on both boundaries. It is
readily seen that thus a potential function of the form
(24) must vanish identically in the layer:

V(x)=0 (8 layer) . (25)

The solutions obtained from the model are divided into
bulklike modes and interface modes. The bulklike modes
are modes strictly confined to layers of either material
and vibrating with the corresponding bulk frequencies
~Lo(A) and coTo(A) or ~Lo(8) and coTo(8). We shall be
primarily concerned with the LO bulklike modes, which
are alone relevant to polar interaction with charged parti-
cles. The interface modes will be taken up later.

We shall next indicate how the usually quoted LO
bulklike modes are derived and then render them in a
form directly comparable with the interaction potential
calculated from the microscopic model.

Consider the modes vibrating with the LO frequency
coLo(A). For such modes, in medium A, the dielectric
function and hence the displacement D vanish. Thereby
Eq. (20) is automatically satisfied, without any further re-
strictions on the potential function (22). The situation is
otherwise in 8 layers. With frequency coLo( A ), the
dielectric function hatt(cu) is nonzero, and the Eq. (20) re-
quires that V E=O. It follows that in the B layers

and

e„(co)=e'„( A )[co —coLQ( A )]/[co —~To( A )]

E21 ( co ) =E co ( 8)[co tg» Lo( 8 ) ]/[ u M To(8 ) ]

(17) Finally, owing to this, continuity of the transverse electric
field across the A-B interfaces require that the potential
function in A layer must satisfy the boundary condition
that

Solutions are to be sought from the equations of electro-
statics,

E» = — V(x)
a

By

VIE=0 (19)
= —ikii V(x) =0 (26)

and

V D=O,

The usually quoted LO bulklike solutions are written
down in accordance with this condition as sinusoidal

(20) standing waves with nodes at the boundaries: '' ' '
in conjunction with the dielectric functions. Equation
(19) just requires that the electric field E be derivable
from an electrostatic potential V(x)

cos(nmz/d), n =1,3, 5, . . .
4„(&)= '

sin(nmz/d), n =2,4, 6, . . . (27)
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V(x) =4„(z)exp[ik~~y +ik, (2ld)], (28)

where d is the thickness of the confining layer and z has
its origin at midpoint of the layer.

In the dielectric continuum model, such modes are sep-
arately confined to layers of one material, without any
mutual coupling. However, for convenience of compar-
ison with the microscopic model, we shall formally intro-
duce a k, wave number, which relates the phases of the
vibrations in different layers, so that the separate
confined vibrations are organized into modes extending
throughout the whole superlattice, with potential func-
tions given by

w(x)= g Q(k, n)w(x~k, n) .
k, n

(35)

In accordance with Eq. (30), we can obtain the associated
electric field by multiplying (35) with

4—mb, z/(I+4mb») ——[4'(coLQ IMro)/e„]' (36)

From this field, with the explicit expression (33} for
w(x ~k, n) substituted, one readily obtains the correspond-
ing potential function

V(x) — (N3/2U )
—1[4~(~2 ~2 )/e ]1/2

X yQ(k, n)[r„-'"e„(z)
where l =0, 1, . . . , L —1 labels the successive super-
periods and L is the total number of such periods, thus

k, n

X exp[ik ~~y
+ ik, (2ld )] ] . (37)

L(2m)=N . (29)

w = —( I +4m b» )E/(4~b, z ), (30)

showing that w is simply proportional to the electric
field. With the potential functions of the vibration modes
as given by (28), the corresponding optic displacement
can thus be expressed as follows:

w(x~k, n) =C{—V V(x) }

Both to facilitate comparison with the microscopic
model and to render the results essentially in the form of
an electron-phonon interaction analogous to the Frohlich
interaction, we shall want to introduce the corresponding
normal coordinates and derive the potential function as-
sociated with the normal coordinates. For this purpose,
we shall need the optic displacement w(x) of the vibra-
tion modes and normalize it.

For the LO bulklike modes, we have everywhere D =0,
or P= —E/4a; the latter substituted in the second phe-
nomenological Eq. (12) gives

IV. THE VANISHING-PHONON-DISPERSION LIMIT
AND ANALOG OF FROHLICH INTERACTION

In this section, we shall make calculations with the mi-
croscopic model, using parameters representing practical-
ly zero dispersion for the bulk LO and TO phonons, so as
to keep the model as close as possible to the dielectric
continuum model. We shall compare the mode potential
calculated from (33) and (11), respectively, for the dielec-
tric continuum model and the microscopic model. When
the parameters of the two models are properly correlated,
we find that the prefactors in these formulas are in fact
equal. In the following comparison, this common prefac-
tor will be left out, so actually compared are the
coeScients of the Q coordinates included in brackets in
(37) and (11),namely

I„' 4„(z)exp[ik~~y +ik, (2ld)]

(continuum model), (38)

=C(0, —ik„e„,—ae„/az)

x exp[ik ~~y
+ ik, (2ld)], (31)

and

g a, ( k i)exp( ik, x ) /
~
k,

~
( microscopic model ) (39)

where

x exp[ik~~y + ik, (2ld)], (33)

where C is a constant depending on normalization. Im-
posing the orthonormal condition

fw"(x~k', n') w(x~k, n)dx=5„„5„„,

the normalization constant C is readily determined and
one obtains the normalized optic displacement in the fol-
lowing form:

w(x~k, n)=N V 'I„' (0, ik~~~4„,
—a@„/—az)

(both have the dimension of k ' and will be given in
units of d/rr}. The mode potentials in the continuum
model are clearly independent of k„apart from a con-
stant phase factor (within a superperiod). The same is
found to be true with the potentials calculated from the
microscopic model in the limit of zero dispersion.

In Fig. 1 are compared the mode potentials calculated
from the two models for a typical case (k~~ ——0.5m/d).
Here as well as in the following, all calculations with the
microscopic model represented in the figures are made
for superlattice with m =14. The only other relevant ma-
terial parameter in the calculation with the microscopic
model is

k~~N'„z +
II az

dz . (34)

The corresponding normal coordinates Q(k, n} are in-
troduced by expanding general optic displacements in
terms of the normalized mode displacements (33}:

( coLo —coro ) /Acro

which hardly affects the result so long as it is appreciably
smaller than 1 so that the LO-TO gaps of the two materi-
als are well separated.

On first sight, the results from the two models seem to
show a measure of agreement. But closer inspection
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FIG. 1. Comparison of potentials of LO-confined bulklike
modes [Eq. (2), dashed lines] with potentials calculated from mi-

croscopic model (solid lines) for kii ——0.5n /d. [The material pa-
rameter (coLQ coTQ)/Ect)0=0 18]. .

shows radical differences. Thus the potential curves cal-
culated from the microscopic model approach zero slopes
at the interfaces located at z =+d/2, whereas the poten-
tial curves calculated from the continuum model have
maximum slopes at the interfaces. In other words, the
electric field has nodes at the interfaces according to the
microscopic model, whereas the continuum model leads
to maximum electric field at the interfaces. This
difference is shown more conspicuously in Fig. 2, where
the electric fields along the z axis are compared.

Figure 2 reveals yet another basic difference. It is
clearly observable from the figure that the sequence of
the confined modes n =1,2, 3, . . . from the continuum
model contains, respectively, —,', 1,—'„.. . wavelengths,
whereas the corresponding sequence of modes from the
microscopic model contains 1,—,', . . . wavelengths. This
difference actually bears out a very significant point.
Namely, judging by the usual sequence of standing waves
limited to a confined length, one might say that the mi-
croscopic model appears to have lost its half-wavelength
mode. This is in fact how it should be. As pointed in our
earlier paper, ' when the wave vector k changes from
strictly along the z axis to other directions, the half-
wavelength mode (referred to as "zero-node mode" in our
earlier paper) changes its confined character and becomes
an interface mode. In other words, for the case illustrat-
ed in Figs. 1 and 2, namely k

it

——0. 5m. /d, the half-
wavelength mode derived from the continuum model ac-
tually should not be there.

I

-0.5-1.0 0 0.5
zaxis(d )

FIG. 2. Similar comparisons of electric fields along z axis as
in Fig. 1.

The discontinuous drop of the electric field from its
maximum to zero at the interfaces, which follows directly
from the continuum-model solutions (27), is clearly un-
realistic. To arrive at such results with the continuum
model is not altogether surprising when we consider the
following two basic limitations of the model.

(1) Owing to the neglect of phonon dispersion, all LO-
confined modes are completely degenerate and any of
their linear combinations can be taken as modes of the
system. In this sense, the sinusoidal modes (27) are arbi-
trarily postulated.

(2) As a continuutn model, it permits all wavelengths
including infinitely short wavelengths.

Considering these limitations, the apparent ordering of
the sinusoidal solutions in accordance with decreasing
wavelengths in (27) is largely illusory, for these modes
contain discontinuities in the field E and optical displace-
ments w at the interfaces; this means that despite their
simple appearance, actually these modes involve contents
of infinitely short waves. Such a situation can arise clear-
ly because in the continuum model such short waves are
not only allowed, but also conceived as realizable with
the same frequencies as the long-wavelength modes.

The above-mentioned arbitrariness is inherent in the
continuum model ~ The dielectric continuum model by it-
self apparently cannot provide a useful criterion for
determining the realistic bulklike modes. However, we
have found that following certain clues indicated by the
modes calculated from the microscopic model, we obtain
simple analytical expressions for the bulklike modes
showing close agreement with results calculated from the
microscopic model. These clues are as follows.

(1) As clearly seen in Figs. 1 and 2, not only the poten-
tial functions calculated from the microscopic model but
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also their derivatives tend to zero at the interfaces. This
is of course how it should be, for only thus the modes
confined to 3 layers can connect smoothly to 8 layers
where both the potential and field vanish identically.

(2) Clearly a single sinusoidal solution like the usually
quoted solution given in (27) cannot meet the require-
ment of both vanishing potential and field at the inter-
faces. A close look at the potential curves calculated
from the microscopic model in Fig. 1. indicates that the
requirement is met by certain simple composite functions.
Namely, the symmetric modes are composed of a cosine
function plus a constant and the antisymmetric modes
are composed of a sine function plus in a simple linear
term.

Following these clues, we write down for the sym-
metric modes

05-

0

-0
1.0-

0„.

~ 0.5-
Z.'

o
CL

—0.5.=.

2.0
fl=2

v4

4„(z)=cos[nmz/(m +1)a]—( —1)", n =2,4, . . .

(40) 1.0-

z =+(m +1)a/2 . (41)

where we have taken account of the fact that the poten-
tial and its derivative calculated from the microscopic
model vanish close to

0
—1.0 —0.5 0 0.5

z axis (d )

1.0

The antisymmetric mode will have the following form:

4„(z)=sin[)u, „nz/(m + 1)a]+C„z/(m + 1)a, (42)

where p„and C„are constants to be determined by the
condition that 4„and its derivative both vanish at the lo-
cations (41), namely,

FIG. 3. Comparison of potentials of the reformulated LO-
confined bulklike modes [Eqs. (40) and (42), dashed lines] with
potentials calculated form microscopic model (solid lines), for
k

ii

——0. 1m /d.

sin(p„m /2) = —C„/2,

cos(p„n. /2) = —C„ /p„n. ,

which requires that

(43)

(44) 05- n=5

tan(p„m. /2) =)u,„~/2 .

Equation (45) gives a series of solutions for p„:

JM3 —2. 8606, p5 ——4.9 1 8, p7
——6.95

p9 8 ~ 9548 p~ &

= 10.963,

(4&)

(46)

which approach closer and closer to the odd integers n

used to label them. The corresponding C values are given
by (43):

-05-
A ~

1.0-

0.5-

~ ~

z~ 0.5
Lil

o 0
Q

Pl= 3

C3 = 1.9523, C5 ———1.983, C7 ——1.992,

C9 = 1 ~ 995 C] &

= 1 ~ 9964 (47)

—0.5-

The symmetric modes are labeled by even integers n

and the antisymmetric modes by odd integers n. The
sinusoidal functions in Eqs. (40) and (42) indicate that in
either case, n represents (approximately in the antisym-
metric case) the number of half-wavelengths contained in
the confining layer. We note that the sequence of modes
obtained from this scheme starts with n=2. In other
words, the n=1 case, i.e., the half-wavelength mode, is
automatically excluded, in agreement with the point we
have raised earlier regarding such a mode.

In Figs. 3 and 4 the potentials calculated from these re-

1.0—

-'9.0 —0.5 0 05
z axis (d )

1.0

FIG. 4. Comparison of potentials of the reformulated LO-
confined bulklike modes [Eqs. (40) and (42), dashed lines] with
potentials calculated from microscopic model (solid lines) for
k

ii

——1.Om. /d.
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formulated modes [Eqs. (40) and (42)] are compared with

potentials calculated from the microscopic model for
k~~=0. 1~/d and 1.0m/d. They are seen to agree well.

However, it is clearly observable that in comparison with

the case of
k~~~

=O. lirld (Fig. 3), the agreement is poorer
in the case of k~~

=1.0m/d (Fig. 4). In general, we find

that the agreement deteriorates with increasing k
~~

beyond k~, = 1.0~/d.
As we have emphasized earlier, the dielectric model

imposes no restrictions whatever on the form of the po-
tential function, apart from boundary conditions. The re-
formulated solutions given by (40) and (42) thus represent
perfectly legitimate solutions; moreover, we have verified
that the sequence of solutions n =2, 3, . . . do in fact satis-
fy the orthogonality condition fairly closely. Therefore,
the potential function V(x) as given by (37), together
with the reformulated 4„given by (40) and (42), can be
considered as the analogue of the Frohlich interaction in
superlattices. It is, however, limited to phonon modes
with k~~

~1.0m/d. Our experience with calculations of
electron scattering in quantum wells indicates that this
amply covers the phonon modes relevant to electron
scattering. Another limitation is the assumption of zero-
phonon dispersion. This assumption of course also un-
derlies the usual Frohlich interaction in bulk materials.
But the effect of phonon dispersion, as we shall discuss in
the next section, is apparently more specific and pro-
nounced in the case of superlattices.

The interface modes are also important for polar in-
teraction with charged particles. But we have found that
the situation with the interface modes is quite different
from the bulklike modes. The interface modes are unam-
biguously determined by the dielectric model and, as we
shall see, agree perfectly with results calculated from the
microscopic model (in the zero-dispersion limit). So we
shall not go into details about the derivation and normali-
zation of the interface modes, but directly present some
comparison with the results calculated from the micro-
scopic model in Fig. 5. As before, when the parameters
of the dipole lattice are properly correlated with the
dielectric continuum model, the same common prefactor
occurs and can be left out in the comparison. For the
comparison, for both models, the relevant material pa-
rameter is (coLo coTo)/Scop which is taken to be the
same (0.18) in both models. The interface modes have, in
general, complex amplitudes. In Fig. 5, the calculated
moduli of the potential function are represented by
crosses and dots, respectively, for the continuum model
and the microscopic model. The results calculated from
the two models are seen to agree almost perfectly, ap-
parently irrespective of the wave vector k.

V. EFFECT OF FINITE DISPERSION

k„=0.1
g ~XII)t', %&XX)tx X"~~&xe(aXy
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FIG. 5. Comparison of potentials (modulus) of interface
modes as calculated from the continuum model (crosses) and
from the microscopic model (dots). The relevant parameter
( ~Lo ~To ) /~coo + 0 1 8

LO

290

g 280

C:

D

with the bulklike modes with nearby frequencies.
The interface modes calculated from the continuum

model have frequencies within the coLO
—~To gap of ei-

ther one of the materials. Figure 6 maps out the disper-
sion of the interface modes within the co„z—~To gap of
one material. The frequency is given as a function of the
transverse wave number k~~ for a number of k, values. It
is seen that for a given wave vector (O, kii, k, ), generally
there are two modes with frequencies above and below
the horizontal line representing the common frequency of
the modes with k, =0. The figure shows that with in-

creasing k, and decreasing k~~, the upper mode will go up
in frequency towards coro and interact more strongly
with the LO bulklike modes. This is shown quantitative-
ly by the results listed in Table I, which are calculated

The vibration modes derived from the dielectric-
continuum model are sharply divided into strictly
confined bulklike modes and extended interface modes.
Calculations with the microscopic model show that this
is only true in the limit of zero dispersion for the bulk TO
and LO phonons. When finite phonon dispersion is taken
into account, the interface modes are partia11y mixed

270

TO

0
I

05 1.0
k Transverse wave vector ( ~Id )

FIG. 6. Dispersion of the interface modes (continuum mod-
el).
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TABLE I. Intermixing between bulklike and interface modes. For each wave number specified on

the left, the figures in the first row are the mode frequencies, expressed in cm ', and the figures in the

second row express the percentage of admixture of the interface mode.

Wave number
(in m/d)

kI) k, n —2

Mode frequency and

percentage of admixture of interface mode
n —3 n=4 n=5 Interface mode

1.0

0.5

0.3

0.1

0.3

0.5

0.1

0.3

0.5

0.1

0.3

0.5

0.1

0.3

0.5

290.17
0.03

290.17
0.01

290.17
0.00

290.18
0.02

290.18
0.00

290.17
0.00

290.15
0.01

290.15
0.00

290.15
0.00

290.13
0.00

290.13
0.18

290.13
0.00

289.14
0.20

289.15
0.31

289.15
0.36

289.22
0.21

289.23
0.51

289.24
0.07

289.24
0.30

289.28
1.64

289.31
3.06

289.31
3.13

288.89
26.23

288.95
18.57

287.60
0.23

287.59
0.07

287.59
0.00

287.57
0.13

287.57
0.07

287.56
0.00

287.54
0.08

287.54
0.14

287.53
0.00

287.52
0.28

287.51
0.00

287.52
0.00

285.73
1.12

285.74
1.76

285.75
2.04

285.79
1.32

285.88
4.26

285.94
6.70

285.83
2.38

286.31
30.99

284.98
35.61

285.18
27.83

285.50
3.50

285.51
4.16

276.81
42.42

277.16
51.77

277.42
64.95

278.72
62.00

282.07
59.20

282.66
67.83

281.62
54.96

284.52
58.16

286.78
54.30

286.92
63.52

290.02
65.60

290.25
73.92

from the microscopic model, assuming parabolic phonon
dispersions with the bandwidths of GaAs.

The table lists the first four LO bulklike modes and the
upper interface mode calculated for a series of wave num-
bers. For each wave number specified on the left, the
figures in the first row are the mode frequencies, ex-
pressed in wave-number units. The figures in the second
row for each wave number express the percentage of ad-
mixture of the interface mode. This percentage is calcu-
lated from the square of the projection of the normalized
mode vector on the normalized mode vector of the inter-
face mode calculated in the zero-phonon-dispersion limit.
We notice that going down the table along increasing k,
and decreasing k

~~,
the interface mode goes up in frequen-

cy. In the upper half of the table, the interface mode
remains some way below the bulklike modes listed, and
we see that only the lowest of the latter has an apprecia-
ble admixture of the interface mode. In the last few rows,
the interface mode gets right into the frequency range of
the bulklike modes listed and one finds that the closest
antisymmetric bulklike mode is strongly perturbed with
very considerable admixture of the interface mode. The
number n specifying the bulklike modes follows the con-
vention of the preceding section; the even modes are seen
to be very little aft'ected by the interface mode o~ing to
symmetry reasons.

In Figs. 7 and 8 are shown two examples of the LO

1.0—

„10
U

~ ~

z0.5-

O
CL

2.0—

1.0

0
—1.0 -0.5 0 0.5

z axis(d )
FIG. 7. LO bulklike modes calculated from microscopic

model with finite phonon dispersions {solid lines) compared
with reformulated modes [Eqs. (40} and (42)] for continuum
model (dashed lines), for k~~

——k, =0.5~/d.
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0.5—

0

—0,5

0—0.5

0
I—z -0.5

0.5
CL

0.
0.5

p = 7

1.0

-1.0 —0.5 0 05
z axis (d )

t,o

FIG. 8. LO bulklike modes calculated from microscopic
model with finite phonon dispersion (solid lines) compared with
the reformulated modes [Eqs. (40) and (42)] for the continuum
model (dashed lines), for k

~~

=0.3n./d and k, =0.5m/d.

bulklike modes calculated from the microscopic model
with phonon dispersion taken into account (with LO and
TO bandwidths taken from GaAs). Represented in this
figure are the calculated mode potentials as compared
with the reformulated modes of the preceding section
drawn in dashed lines. In the case of kii=0. 5n/d and

k, =0.5n. /d represented in Fig. 7, the interface mode fre-
quency is still some way below the bulklike modes illus-
trated, and only the n =5 mode shows conspicuous depar-
ture from the simple reformulated modes, clearly owing
to the admixture of the interface mode (see Table I). In
the case represented in Fig. 8, the interface mode comes
between the odd modes n =3 and n =5, and we see that
the n =5 mode is very strongly modified. The n =3 and
n =7 modes, although only admixed with -3—4 % of the
interface mode (see Table I), also show very appreciable
modification, especially in the n=7 case. The reason is
that the interface modes involve longer-wavelength com-
ponents and are hence associated with stronger Coulomb
potentials. So the presence of a small percentage of the
interface modes may cause significant change in the mode

potential, especially in the case of the higher-order
modes, which are associated with proportionally lower
mode potentials. The n =7 case is a typical example.

VI. CQNCLUSIQNS

In an attempt to establish an equivalent of the Frohlich
interaction in superlattices, we have been led to a critical
examination of the dielectric continuum model by com-
paring with a closely parallel microscopic model. So long
as the microscopic model also ignores the dispersion of
the bulk LO and TO phonons (as in the continuutn mod-
el), we find that the interface modes calculated from both
models agree completely. But the usually quoted bulklike
modes, supposedly derived from the dielectric continuum
model, are found to be completely at variance with the
modes calculated from the microscopic model. This
discrepancy is due to certain arbitrariness and limitation
inherent in the continuum model and realistic bulklike
modes clearly cannot be determined from the model by
itself. We have shown how, following certain clues pro-
vided by the modes calculated from the microscopic
model, we obtain simple analytical expressions for the LO
bulklike modes which agree closely with the modes calcu-
lated from the microscopic model ignoring bulk phonon
dispersion.

Throughout the paper we have been careful to work
with the electrostatic potential associated with properly
normalized modes. In this way, in obtaining the above
LO bulklike modes, we have in effect obtained an analo-
gue of the Frohlich interaction in superlattices.

Although bulk phonon dispersion is likewise ignored in
the usual bulk Frohlich interaction, the effect of phonon
dispersion is more specific and pronounced in the case of
superlattices. The effect of finite phonon dispersion is
found to be mainly through the partial intermixing of the
interface modes into bulklike modes with nearby frequen-
cies. Apart from the small number of bulklike modes
neighboring on the interface modes, the bulklike mode
potentials as derived above remain essentially unper-
turbed. But in the case of the bulklike modes interacting
with the interface modes, even with an admixture of a
few percent of the interface modes, the mode potentials
can show significant modifications, and the modes are not
longer strictly confined to layers of one material.
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