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Formalism of the Kronig-Penney model for superlattices of variable basis
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A formalism of the Kronig-Penney model based on the transfer-matrix technique and the
envelope-function approximation has been developed for superlattices. It can be used in handling
superlattices composed of complicated bases, is easier to use than the conventional Kronig-Penney
model in matching boundary conditions, and is more accurate because the effective mass and band
coupling are included. The minibands of superlattices having different superlattice bases are ana-

lyzed by this new method.

I. INTRODUCTION

Superlattices are alternating ultrathin epitaxial layers,
in which a one-dimensional potential is superimposed on
the crystal potential of the background crystal. ' The
one-dimensional potential is formed by the band offset of
the heterolayers in a compositional superlattice, or by
periodically growing the n- and p-doped semiconductor
layers, separated by intrinsic layers in the doped superlat-
tice or n-i-p-i. While the real crystal potential has the
same period as the lattice points, the period of the super-
lattice potential is the same as the alternating layers. For
convenience, one period of the alternating layers will be
called the basis of the superlattice. In the bulk semicon-
ductor, different bases or primitive cells will result in
different crystal potentials, thus different energy bands.
Analogously, one may expect that the minibands in the
superlattice will change as the superlattice basis changes.
In the past since its inception in 1969, the superlattice
basis has always been simple barrier-well structure for
simplicity of analysis. With modification of the basis, in-
teresting effects are expected in the miniband transport
and optical transitions.

The Kronig-Penney model has been applied to calcu-
late the minibands in a superlat tice with some
modifications of the boundary conditions. ' Those
boundary conditions are derived from the envelope func-
tion approximations. The wave equations and boundary

conditions of three commonly used models are listed in
Table I for later discussion. Among them, the effective-
mass model takes into account the effective-mass
difference in the barrier and the well regions. The two-
band model includes the coupling of the conduction band
and light-hole band. While the three-band model in-
cludes further the coupling of the split-off band. Since in
the k.p theory the heavy-hole band is decoupled with the
other three bands, the three-band model is the most ac-
curate of the three in treating all the four-band interac-
tions. The modifications give simple final forms and need
no more computation effort than the conventional
Kronig-Penney model does. However, both the classical
Kronig-Penney model and the modified ones have the
fundamental limitations. First, the formalism of the
Kronig-Penney model is tedious and needs to simplify the
determinant of a 4 X 4 matrix. Secondly, it can only be
used for a single square-well basis, but cannot be used for
complicated bases, for example, bases with multiple lay-
ers, band-bending, or an arbitrary shape of the well by
adjusting the alloy composition. With an increasing in-

terest in applications of the novel superlattice or quan-
tum well structures, ' an accurate but simple model is
necessary for theoretical predictions and explanation of
experimental results.

A new formalism of the Kronig-Penney model, which
uses the transfer matrix technique within the envelope-
function framework is developed for general bases, and it

TABLE I. %'ave equations and the boundary conditions for each of the envelope-function approxi-
mations. Those functions under the column of boundary conditions are continuous throughout the su-
perlattice layers, and are used for I I and I, in Eq. (1).

Model Wave equation

Boundary conditions

r, , r,

EAective mass

Two band (E —V, )g(z)+ ', P'g(z)' '=—0-
P

P(z ),
(z)'

m*

5(z ), g(z )'1

Three band (E —V, )Q(z)+ ,
'P'—2 1

E —V E—V
P 0

P(z)' '=0 P(z), + g(z)'2 1

E —
Vp E—V0
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reduces to the earlier classical and modified Kronig-
Penney models for simple structures in a simpler and
more systematical way as far as the matching of bound-

ary condition is concerned. Isolated quantum wells of an
arbitrary potential profile can be calculated using the
transfer matrix method as a special case of the superlat-
tice, namely, with a very thick barrier between the bases.
In Secs. II and III, we describe the new Kronig-Penney
models, beginning with a general theory, following by im-

plement of envelope-function approximations, in which
different potential profiles are taken into account. Finally
a comparison of the three different commonly used mod-
els is made. In Secs. IV and V, the new treatise is applied
to a few superlattice structures having various superlat-
tice bases, which are important in fundamental quantum
physics and device applications.

II. GENERAL THEORY

The transfer matrix technique was employed by Vassell
et al. for calculating the transmission coeScient of reso-
nant tunneling structures. ' It is briefly reviewed here.
Assuming that there are n layers in a tunneling structure
with an active length L, the final wave function I (z =L }
and the initial wave function I (z =0) have the relation

I (z=L)=SI (z=0),
where

is a 2X1 matrix, with I,(z) representing the envelope
function and I 2(z ) the derivative of I i(z ) times a
coeScient such that I'2(z) is continuous throughout the
active layer. I 2(z) depends on the kind of models used
and are listed in Table I under the column of boundary
conditions. The 2X2 transfer matrix S is given by
S=S„S„, . S, . Each of its multiplicand S s is the
transfer matrix of the i th single layer, and
S, =[r'" (z=L, ), I' ' (z=L;)], where I'"(z),I' '(z)
are two particular solutions of I with initial boundary
conditions I'" (z=O)=(') and I' ' (z=O)=(, ), respec-
tively. The thickness of the ith layer is given by L;.

When applying to superlattices, the transfer matrix S
should be for one period of the superlattice layers or the
superlattice basis, and is obtained by multiplying the
transfer matrices of each single layer in the basis. If d is
the period of the superlattice or the length of the basis,
one has

cosqd =
—,
' (S„+S&2 } . (4)

The superlattice wave functions are the eigenfunctions
in Eq. (3). The ratio of I, and I 2 at an arbitrary point zo
1s

(zo) Si2
I z(zo) A Sii

The wave function at z& can be constructed from an ini-

tial point zo by

r(z =z, ) =S(z, ,z, )r(z =z, )

=S(zl,zo)

S&2
—S11

X const,

where S,i,Si2 are the elements of S(d+zo, zo) and

S(z„zo) is the transfer matrix from zo to zi. Although
there are two wave functions for A, =e —', their absolute
values, i.e., the square root of probability densities, are
equal.

In the derivations below GaAs/Al„Ga, ,As will be
taken as an example. All the energy levels are referenced
to the valence-band maximum in GaAs.

III. IMPLANTATION OF THE
ENVELOPE-FUNCTION APPROXIMATIONS

A. One-band efFective-mass
Kronig-Penney model

For the efFective-mass model, the wave equation of the
conduction-band envelope function from Table I can be
reduced to

g"(z)+k P(z)=0,
where k =(2m'/fi )(E V, ), and all the not—ations are
defined in Table II. For a constant potential, V, is a con-
stant. If I is chosen tobe

The above statements illustrate the well-known Bloch
theory since from Eq. (3}I,(z+d }=e+—' "I;(z).

Expanding the 2 X 2 determinant det(S A—I ) =0 from
Eq. (3), the superlattice dispersion relation can be ob-
tained. The summation of the two roots of A, is

S&&+S22=e'q +e ' "=2cosqd,

and the dispersion relation becomes

I (z+d )=SI (z) and I (z+nd )=S"I (z) .

The eigenvalues of S are obtained by solving

r(z+d ) =sr(z) =err(z) .

(2)

(3)
then the transfer matrix after solving the two particular
solutions I' "(z ) and I ' '(z ) becomes

As n ~+ co, the limit of S should exist, and this implies
iA.

~

=1 for an oscillatory wave solution. Considering also
translational symmetry, acceptable values of A, are
A, =e —'~", which define the superlattice wave vector q.

coskz

k
sinkzm*

m*
sinkz

coskz
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TABLE II. Notations and band parameters. The 0.6:0.4 rule is used for the band offset in the con-
duction and the valence bands. A1Q 3GaQ 7As is used for the barrier, and Alp 1Gap 9As is used for the
second barrier in a step-well basis.

Notations

mp

mp
m *(z)
EGQ

EG(z )

E
V, (z)
v,
'(

)

V, (z)

p2

p2

Free electron mass
The effective mass of GaAs
The effective mass at z, m*=0.067(1 —x)+0.15x for Al, Gal „As
Energy band gap of GaAs
Energy band gap of Al Ga, „As, EG=1.519—5.405X10 'T'/T+204+1. 247x
Conduction-band envelope function
The electron energy when transverse wave vectors are zeros, i.e., k, =k~=0
The conduction-band minimum at z referred to the valence-band maximum of GaAs
The light-hole band maximum at z referred to the valence-band maximum of GaAs
The slit-off band maximum at z referred to the valence-band maximum of GaAs
3' 1 1

EGp for two-band model
4 mo~ mp

1 EGo(EGQ+ ~)
for three-band model

2 mp mo Ego+2 /36
The split-off band maximum to the light-hole band maximum in GaAs; 6=0.35

If k ~0, the energy E is above the barrier V„and physi-
cally it is an oscillatory wave solution. While for k &0,
it is an evanescent wave solution. Equation (9) is still val-
id if one substitutes k =i ~ and uses the equalities,
cosiaz=coshaz and siniaz=isinhaz. Using Eq. (4), one
may easily verify that for the superlattice with a simple
basis consisting of A and 8 layers, with layer thicknesses
L„and Ls, respectively, the dispersion relation is

p(g)
' 1/3

g(g)'
(12)

where m' is the average value through the interesting
layer. The transfer matrix is found to be

S&] =7r[B (go)A. (g) A (go)B (g)]
cosg ( L„+Ls ) =cosk g L g coskg Ls

1 1P+ —sink „L„sinks La, (10)

2eF
S,2=a

—1/3

[B;(go)A;(g)

where

k„mg
k~ ~„'

' 1/2
2m'

(E—V,„)$2

2eF
S2) = —m.

$2 42

' 1/3

—A;(go)B;(g)],

[B ($0)A (g)

—A (go)B (g)],
S22 = —m[B, (go) A,'(g) —A, (go)B,'(g)],

(13)

and
' 1/2

2m'
(E—V,~ )

$2

with
' 1/3

2m *eF z+
g2 eF

and Eq. (8) is also changed to

For a tilted potential, as in the case of applied field,
V, (z ) = V, —eFz, Eq. (7) can be changed to

where go=((z=0) and A; and B; are two linearly in-
dependent Airy functions, ' which are solutions of Eq.
(11).

In reality, the potential profile within one rnonolayer
(one layer of As atoms and one layer of Ga/Al atoms) is
linear due to the discreteness in crystal growth. Thus an
arbitrary potential profile in the basis can be approximat-
ed by a piece-wise linear potential. For this case, the
basis is divided into several layers. Each one has either a
constant or tilted potential. The smallest possible
division is the length of the monolayer. The procedure
follows that first the transfer matrix in each divided layer
is found, then the total transfer matrix is given by rnulti-

plying all these transfer matrixes. Finally the dispersion
relation is obtained by Eq. (4).
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B. Two-band and three-band

Kronig-Penney models

The transfer matrices for two-band and three-band
models can be obtained similarly as in Sec. III A. For a
constant potential profile, the wave equation has the same
form as Eq. (7), and we have for the two-band (2b) and
the three-band (3b) models, respectively, the following
two results:

and

E —V
P

2 1

E —V E —VP 0

(17)

and

3(E—V, )(E—V )
k

s P
2b 2P

(14) The transfer matrices are

coskz
E —V

sinkz
3(E—V, )

k3b- p2 E—V E—V
+

P 0

I"s can be chosen as

(15)

and

S2b k
sinkz

P

coskz
(18)

S3b

coskz

2 1+ k sinkzE —V E —V
P 0

sinkz

2 1

E —V E —V
P 0

coskz
(19)

One may again verify that the dispersion relations for the superlattice with a simple basis consisting of layers A and 8
are the same as Eq. (10) with the replacement of P,

kA E—VB
~~b=

k EB PA

(20)

2 1
)lI3b= +

kB E—V A E —
V0A

2 1

E —
VPB E —

VoB
(21)

It is noted that for the two-band or three-band model a
simple analytic solution cannot be obtained for the tilted
potential case since all the bands are coupled and the po-
tentials in the wave equations are no longer linear.

kinks observed in the current-voltage curves in some res-
onant tunneling structures with Al fraction larger than
0.45. To include this effect in our model, we adopt the
boundary conditions used by Liu in treating the single
barrier tunneling. ' In our notation, these boundary con-
ditions read

C. Coupling of the I -X
intervalley transfer

The above treatise is only for momenta near the I
point. Recently, there is increasing interest in the I -X
coupling in [001] grown resonant tunneling struc-
tures. ' ' The conduction-band minimum near the X
point in Al„Ga& As becomes lower than the I point
minimum when x ~ 0.45. Intervalley transfer from the I
minimum to the X minimum may count for the small and

r, (z)

I 2z), o+

I,(z )

0
+

$2

0
Xi(z )

X2(z ), o-
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X, (z)

X2(z ), o+

Xi(z)
X2(x )

where

X)

o o

2A

$2
r,(x), ,— (22) ~). )5 '

'1J

().)

X=
X,

is a 2X1 wave-function matrix for the X minimum,
analogous to l in Eq. (l). The coupling coefficient a hav-
ing a typical value 0.1 eV A characterizes the intervalley
transfer potential as discussed in Ref. 19. If Sr and Sx
are denoted for the uncoupled transfer matrices for the I
and X minima, respectively, and the notations

0.()5

100

Well width (&)
150 200

0
Srx Sxr

$2

0

0

().2

are used, then the 4X 1 wave function (z) after advancing
one single layer L, has the relation

I Sr
X z+I. , Sxr

Srx r
Sx

(23)

where the transfer matrix S(z+L„z) becomes a 4X4
matrix. The allowed minibands occur at the energies
where the eigenvalues of S(z+d, z) have absolute values
equal to one. Our calculation for A1As/GaAs superlat-
tices shows that for a 0. 1, the miniband structures are
similar to the uncoupled ones. The coupling comes into
play when a)&0. 1 and when there is large overlap be-
tween the uncoupled I and X minibands. The effect of
strong coupling is to diminish the original uncoupled
minibands because electrons lose energy in transferring
between the I and X minima via the overlapped mini-
bands.

0.15

8+I

(). I

JD

().()5 '

0 2

50 100
l

Well width (A)

150

D. Comparison

The miniband energies versus well thickness are shown
in Figs. 1(a)—1(c) for these three models, respectively.
The barrier width is fixed to be 31 A (or 11 monolayers).
The band parameters we used are again listed in Table II.
The general trend for all the three models is that the
miniband energies decrease as the width of the well in-
creases. Also the lower the miniband energies are, the
smaller their bandwidths become due to higher barriers.
The two-band and three-band models give the same result
in predicting the rninibands for the A1GaAs system while
the effective-mass model predicts too high the energy
when the wel1 is wide.

In contrast, the miniband versus barrier width of a
constant well width of 130 A is shown in Fig. 2. It indi-
cates that the miniband location is a strong function of
the well width while the miniband bandwidth is a strong
function of the barrier width in this case. The minibands
become discrete energy levels as the barrier become very

0.15 '

().1

0.05 '

000 100

Well width (A)

150

FIG. 1. The miniband energies vs well width by (a) effective-
mass model, (b) two-band model, and (c) three-band model at 77
K. The barrier width is fixed to 31 A, corresponding to 11
monolayers. Shaded areas indicate the allowed minibands. The
miniband energies fall when the well width increases. The ener-
gies of the two band or three band are lower than those of the
effective-mass model. The differences of the two-band and
three-band models are very small.
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FIG. 2. The rniniband energies vs barrier width by effective-
mass model at 77 K. The well width is Axed to 130 A, corre-
sponding to 46 monolayers. The miniband width decreases
when the barrier width increases while the center of the mini-
band is basically unchanged. As the barrier becomes very thick,
the minibands of the superlattice approach discrete energy lev-
els of isolated quantum wells.

FIG. 3. Comparison of the minibands of the same parabolic
well. The dotted lines indicate edges of the minibands for
n-i-p-i, which has a constant effective mass, and the solid lines
are for the compositionally gradeds well whose effective mass is
changing with the barrier height. The maximum barrier height

0
is Alo 3Gao 7As. The barrier between each basis is 28 A of the
Alo 3Gao 7As, corresponding to 10 monolayers.

thick in the quantum wells limit.
The advantage of the two-band or three-band model is

that it includes the nonparabolicity of the bands while the
limitation is that the momentum matrix element P should
be a constant throughout the superlattice. We have
fitted P to the effective mass of GaAs but it is not accu-
rate for A1GaAs. The accurate determination of the
mini-bands location is limited by many factors, such as
the error in the choice of the percentage of band offset,
the inclusion of the transverse part of the energy, and the
uncertainty in determining the alloy compositions and
well-barrier thickness. By and large, the trend is the
same and there is little difference in the result for all the
three models used here. The effective-mass model is used
for the following calculations.

IV. APPLICATION TO SINGLE-WELL BASIS

A. Parabolic quantum well

Although the parabolic well is usually the building
block of the doping superlattices or n-i-p-i, the growth
of it by grading the alloy composition is also possi-
ble." ' Theoretical calculations for a parabolic well
under an applied electric field were done analytically or
numerically just recently. Using our method, the mini-
bands of a superlattice made of parabolic basis are shown
in Fig. 3. Also shown are the minibands of the n-i-p-i
structure which has a constant effective mass otherwise
the same potential in the conduction band. Our new
model is especially useful when the carrier injection needs
to be considered as in n-i-p-i structures for current con-
trolled band tunning applications.

B. Triangular well

The miniband energies in a rectangular-well superlat-
tice can be simply estimated as E„acn, where n denotes
the nth rniniband. For the applications of band-aligned
superlattices(BAS), ' sometimes it is necessary to use a
different kind of superlattices in order to provide a rnini-
band discontinuity. This dissimilar superlattice has the
miniband energy E„~n', where a &2. The parabolic
well in the previous case has a =1. Another example is
the triangular well with a &1 as shown in Fig. 4. The
bandwidth of the triangular well superlattice decays fas-
ter than the parabolic well or the rectangular well since
the barrier increases very fast. Also the ground-state
band has higher energy than the other wells due to the
narrowing toward the bottom of the well.

It should be noted that the channel of the high-
electron-mobility transistor (HEMT) is often approximat-
ed as a triangular potential well. The exact calculation of
the energy levels is possible in our treatise to include dop-
ing and the carrier accumulation effects on the potential
shape.

C. Step-well superlattice

The step-well shown in the inset of Fig. 5 also falls into
the superlattice group with a & 2. With the change of the
alloy composition and the width of the well, the step well
is more flexible than the parabolic well or triangular weil
in the BAS application. Our recent calculation also
shows that the step quantum well has large intersubband
Stark shift in that the energy levels in the small and big
wells have different dependence on the electric field. A
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0

V. APPLICATION TO MULTIPLE-LAYER BASIS

A. Two-well coupling

0. 15

bQ

0. 1

JD
C

0.05

"30 80 130 180 230 280

Well width (~)
330 380

FIG. 4. The minibands of a triangular-well superlattice. The
structure of a triangular-well superlattice is shown in the inset.
The maximum barrier height is A1Q 3GaQ 7As. The barrier be-

0
tween each basis is 2S A of the AlQ 3GaQ 7As, corresponding to
10 monolayers. The gaps between minibands are decreasing to-
ward the top of the barrier.

plot of E-k dispersion relation is shown in Fig. 5 for the
rectangular well, parabolic well, triangular well, and step
well, respectively, where the lower bands are deliberately
chosen to be aligned, thus a miniband discontinuity is
formed for the upper band. The triangular well and step
well have the most desired features.

The coupling of two quantum wells is found to have
more energy levels than the single quantum well of the
same dimensions. Large Stark shift has been found in
coupled quantum wells. ' ' Our theoretical calculation
of the minibands is shown in Fig. 6 for a superlattice
basis consisting of two rectangular wells, one of the well
widths is fixed (90 A) and the other varied. Compared to
Fig. 1(a), it is clear that in the two-well case the mini-
bands are mixed from those of its original wells. The two
horizontal bands in Fig. 6 indicate the energy levels for
the 90 A well. %hile the four falling bands are the mini-
bands of the variable well. The miniband bandwidth is
narrow in this case because the other well acts as a bar-
rier when one looks from one well.

B. Band-aligned basis

The cross points in Fig. 6 are where the minibands of
the two wells are aligned. The first cross point occurs
when the varied well width is 25 A, where its only mini-
band is aligned with the upper miniband of the 90 A well.
The aligned bands have much larger bandwidth than the
nonaligned bands which are bound states in natural, since
the nonsymmetrical well acts as a barrier for the
nonaligned minibands.

One application of the band-aligned basis is to use the
bound state to miniband transition which has a
significant effect in improving the dark current for the
photo detectors. ' The major advancement in using in-

tersubband transition for 8-12 pm detection is the reduc-
tion of dark current. ' If thicker barriers are used, the

0.20-

0. 15-

K

P0.10-
R
C

LLI

0.05-

Rectangul ar we I I

Step wel I

Triangular wel I

Parabolic well

0. 2
'

0.15 '

CQ

O. 1

0.00
0.0 0.2

I I

0.4 0.6
Wave vector

0.8 I.O

0.05 '

FIG. 5. Comparison of the F.-k dispersion relation for the
rectangular well, parabolic well, triangular well, and the step
well. The structures are shown in the inset. The barrier and

4 0
well widths used in the calculation are 40 A, 62 A, for the rec-
tangular well; 40 A, 74 A (the second barrier), 34 A for the step
well; 14 A, 246 A for the triangular well; and 28 A, 116 A for
the parabolic well, respectively. We assume AlQ3GaQ&As for
the barrier and AlQ lGaQ 9As for the second barrier of the step
well. The lower minibands are deliberately chosen to be
aligned. The upper minibands of the triangular well and the
step well are the lowest.

0+ 50 100 150

Width of the varied well (A)

FIG. 6. The minibands of a superlattice with the basis con-
0

sisting of two coupled wells. One of the well is fixed to be 90 A,
and the other is changed as a parameter. The two barriers in

0
the basis are fixed to be 31 A. It superimposes the minibands
originated from each well. As the bands cross over, band align-
ment occurs, but are soon split off.
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photocurrent will decrease due to the same reason of a
low dark current. The employment of band-aligned basis
will reduce the dark current because of the bound-state
nature of the lower nonaligned band while the conduc-
tivity is large in the upper aligned band.

Another application of the band-aligned basis is the
tunning of the mobility or the effective-mass ratio of the
upper to the lower miniband. The effective mass m, of
the miniband is related to the miniband bandwidth 8 by
m, =2' /Bd, where d is the length of the basis. This re-
lation is easily obtained by taking the second derivative of
the miniband dispersion relation E=Eo+ —,'8 cosqd.
Thus for a band-aligned basis, the effective-mass ratio of
an aligned band to the bound state is significantly
different from the conventional structures. For the
rectangular-well superlattice the bandwidth ratio for the
second band to the ground band is on the orders of 5 —10,
but for the case of band-aligned basis, it can be more than
10 . To reduce this bandwidth ratio, one may choose to
align to the lower band instead of the upper band. An ex-
ample is shown in Figs. 7(a) and 7(b) for the band align-
ment in the upper and the lower bands, respectively. The
bandwidth ratio is about unity in the latter.

0.2

0, 15 '

00

0. 1

90k 90k

005 '

0.00 40 60 80

Width of the varied barrier (A)

FIG. 8. The demonstration of perturbation of two degenerate
minibands in the superlattice. The basis consists of two identi-
cal wells with width 90 A, one fixed barrier with a 31 A width
and the other barrier with varied width as a parameter. The
original miniband has split into two because of the perturbation.

C. Perturbation of degenerate states
in quantum wells

The crosspoints in Fig. 6 reveal that the bands only
align in one point; beyond that point of the well width the

(a) Alignment in the upper band

aligned bands will split into two. The same energy tends
to repel one from the other.

For further investigations, the two coupled well basis is
again used as an example. This time the two wells are
identical, with one variable barrier width. As shown in
Fig. 8 the original states of either of the wells have two
minibands, the lower one is 31—39 meV and the upper
one is 119—151 meV. The variable barrier perturbs the
degenerate states and each of the minibands will split into
two.

1 1 4—1 67meV PEA YXXXXXEZZXXXA Nli 58
34meV

31A 90A 31A25A

0 3

(b) Alignment in the lower band

71 —92meV v/DJ. '~//~//~D// /JYJ.'vJY/Jil

0.15 '

bQ

CP
C
47

O. l
'

C

1 93—21 OmeV ~lxiz~r~~~ «uurvrir aaua 0.05

31A 42A 31A 31A 45A
0+ 50 100 150

Width of the varied well (A)

FIG. 7. Structures of band-aligned bases; alignment can be
done either (a) in the upper band or (b) in the lower band. In
(a), the widths of the two coupled wells are 90 A, 25 A, respec-

0
tively. The barrier width is 31 A. In (b), the basis consisting of
a step well and a rectangular well. The alloy compositions and
the layer widths are 0.3, 0.1, 0, 0.3, and 0 and 31 A, 42 A, 31 A,
31 A, and 45 A, respectively. The bandwidth in the lower band
is about equal to that in the upper band.

FIG. 9. The rniniband structures of a basis with three cou-
pled wells. Two of the wells are identical and fixed, with the
other changed. The fixed wells have a width of 90 A. All the

0
barriers are fixed to be 31 A. The band structures result from
superpositions of all the minibands originated from the single
well basis, with the repulsion effect taken into consideration.
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D. Multiple well coupling

Physically, the miniband structures of a multiple layer
basis can be treated as a mixture or superposition of the
states originated from the single-well basis, with the per-
turbation taken into account if the energy levels are too
close to each other. The wave functions are oscillatory in
its own original well and decaying in all the other wells
and barriers. In the case of three-well coupling, we
choose two identical wells and one varied well as shown
in Fig. 9. Each of the original minibands of the identical
wells split into two bands because the varied well is a per-
turbation for the degenerate minibands, otherwise all the
bands retain their original shapes.

VI. CONCLUSION

In the first part of the paper, a new formalism of the
Kronig-Penney model has been developed which incorpo-
rates the transfer matrix technique and the envelope-
function approximations. This new approach has several
advantages over the other methods. First, its formalism
by transfer matrix is much easier and more systematic
than the conventional Kronig-Penney model as far as the
boundary condition matching is concerned. Second, it
can calculate for complicated multiple layer bases and ar-
bitrary potential profiles result from change of alloy com-
position, doping or carrier accumulation. Third, it is ac-
curate and without excessive computation cost since the

effective-mass difference, nonparabolicity and band cou-
pling of the bulk bands are included by the envelope
function in a natural way.

In the second part of the paper, our new approach is

applied to some specific superlattice bases. The finite

parabolic well case is solved in a simpler and more accu-
rate way. The triangular well and step well which belong
to the superlattices with E„~n', a &2, which are useful

in the BAS applications can also be easily worked out.
The minibands of a superlattice with the basis consisting
of multiple layers can be considered as a superposition of
all the minibands originated from their simple single-well

basis, with the repulsion effect taken into account. The
method offered to us explains readily the coupling of
wells in the basis for tunning the energy levels. The split-
ting of minibands, the band-aligned basis, the overlapping
of the wave functions originated from different wells, and
the effective-mass tunning in superlattices are among the
examples.
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