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The influence of electrical contacts on the magnetotransport in the quantized Hall regime is mea-

sured and calculated for various geometries in GaAs-A1„6a& As heterostructures. The observed

effects are interpreted in terms of a local resistivity tensor without taking into account the possible

existence of macroscopic quantum states or localization. We approximate the experimental

geometries by a network of simple rectangles with (or without) contacts. W'e show that this simple

approach leads to a good picture of the physics behind the potential distribution. To test our ap-

proach, we measure the voltages on two multiply connected Hall bars. In special geometries with

large contacts we measure a two-terminal resistance that is smaller than the Hall resistivity. Both
observations can be reproduced in our calculations. Furthermore the effects of large Hall contacts
in a normal Hall bar geometry are calculated and it is shown that the measured Hall resistance can

be smaller than the true Hall resistance, with their difference proportional to the magnetoresistance.

The dip which is often observed at the strong-field side of Hall plateaus can also be explained by the
influence of (large) contacts. This shows that many of the experimental observations can be de-

scribed successfully, extending our interpretation in terms of a (inhomogeneous) local resistivity ten-

sor to real samples with metal contacts.

I. INTRODUCTION

The influence of contacts and other geometrical effects
in the quantized Hall regime has been studied experimen-
tally by many authors, e.g. , Fang and Stiles, ' Syphers and
Stiles, and van der Wel et al. The results of these stud-
ies have been compared with theories by, e.g., Al'tshuler
and Trunov, Niu and Thouless, Neudecker and
Hoffmann, and Rikken et al. mainly at the magnetic
fields where the Hall plateaus occur. No theory for the
quantized Hall effect has, however, led to a simple algo-
rithm from which the observable resistances can be ob-
tained for all magnetic field strengths. Our model for the
quantized Hall effect in inhomogeneous samples,

' as-

suming the existence of a local resistivity tensor, does
offer the opportunity to calculate these resistances. The
model has so far been developed for a simple Hall bar
geometry, and calculations have been restricted to the
still simpler case of an infinitely long Hall bar geometry
without contacts and with inhomogeneity over the width
only.

In this paper, we will subject our approach to more
stringent tests. We perform calculations for special
geometries and compare them with experimental results
for these geometries. The ultimate test for our descrip-
tion of the magnetotransport in the quantized Hall re-
gime in terms of a local resistivity tensor would require
the solution of Kirchhoff's equations in two dimensions
for an inhomogeneous resistivity tensor, but this leads to

serious numerical difficulties. Instead, we will extend our
local resistivity description in two steps.

First, we will study geometries where the finite size of
the contacts is unimportant. We divide a complex
geometry into quasi-one-dimensional sections that are
connected according to Kirchhoff's laws to calculate the
current distribution. The magnetotransport within these
sections is described by a Hall resistance and a (homo-
geneous) magnetoresistance per square. These resistances
are obtained either from our measurements or from our
model for the quantized Hall effect. We will compare
this description with experiments for two parallel Hall
bars that are multiply connected (Sec. II). The influence
of the contacts is only taken into account by the Hall
voltages that are built up (due to the short circuiting of
the metal) when a current flows between a metal (contact)
and a semiconductor.

Second, we will study the influence of the finite size of
contacts on measurable voltages. The current concentra-
tion in a pointlike corner of a contact is an approxima-
tion that disregards the penetration of part of the current
over the length of a contact. In Sec. III we discuss this
additional effect and solve Kirchhoff's equations for the
case of a stripe of semiconductor (with homogeneous
resistivity tensor) parallel to a metal contact. We will pay
attention to the effects of a finite contact resistance and of
inhomogeneities in the two-dimensional electron system.

Section IV deals with experiments on GaAs-
Al Ga& „As heterostructures in special geometries with
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large contacts, carried out to test the combination of the
approaches in Secs. II and III. For our calculations we
describe the geometry of a sample by a network of simple
rectangles (with an uniform resistivity), some of them
with metal contacts along them. Because interesting
effects occur at weaker magnetic field strengths, where we
do not have an accurate resistivity tensor for our model,
we used the measured Hall resistance and magnetoresis-
tance (per square) as input in our calculations of the po-
tential distribution. We will show that, and explain why,
the two-terminal resistance in certain geometries with
large contacts can be smaller (or larger) than the Hall
resistivity. Furthermore, we will discuss the influence of
large Hall contacts on magnetotransport measurements
in a standard Hall bar geometry.

In Sec. V we compare two nearly identical geometries
where the current must choose between two parts of the
sample. In the first sample this choice is made in the
metal contacts, whereas in the second geometry the
choice is made in the two-dimensional electron system it-
self. The difference in behavior can be explained qualita-
tively by solving Kirchhoff's equations, again taking into
account the Hall voltages at the metal-semiconductor in-
terfaces.

Our use of a local resistivity tensor is worth mention-
ing, because some theories describe the quantized Hall
effect in terms of macroscopic quantum states that extend
over a sample. Other theories are based on localized
states that exclude certain regions in a sample from parti-
cipation in the current transport. Our results will show
that, in spite of these nonlocal effects, a local description
of the resistivity can be useful.

For all the calculations in this paper it is important to
realize that in our local description the current distribu-
tion within the two-dimensional electron system is (in a
good approximation) determined by the local magne-
toresistivity only. For small currents, the distribution of
the Hall voltage over the sample has no influence on the
current distribution within the semiconductor when the
Hall resistivity shows no appreciable variations.

These geometry-dependent experiments can only lead
to meaningful results in samples of excellent quality. The
material has to be fairly homogeneous and the electrical
contacts must be Ohmic with low resistances. It is worth
noting here that the same experiments in worse materials
can possibly lead to quite different results. All our exper-
iments were done in high-quality samples with good con-
tacts and expected symmetries were checked by changing
the direction of the magnetic field or the current to see
whether the observed effects are due to the intended
geometrical effects, inhomogeneity, or uninteresting im-
perfections of the samples.

II. DIVIDING COMPLICATED GEOMETRIES
IN SIMPLE SECTIONS

We extend the description of a Hall bar in terms of an
infinite one-dimensional stripe without contacts to a
more realistic one. The geometry of a standard Hall bar
geometry with two pairs of Hall contacts is given in the
upper part of Fig. 1. We consider the two-dimensional

geometry

divided in sections
k%%%N%%%M

&%%M &%%M

FIG. 1. Standard Hall bar geometry with two pairs of Hall
contacts. The corners where (most of) the current enters the
metal contacts, due to the magnetic field, are denoted by the
numbered arrows in the Hall bar. To simplify the calculations
we split this geometry in seven semiconductor sections and six-
metal contacts which are connected (dotted lines) according to
Kirchhoft's laws, as sketched below.

electron system as a proper connection of seven one-
dimensional parts, as schematically given at the bottom
of the same figure, in which we describe the electrical
transport by their Hall resistance and their magnetoresis-
tance per square. Where semiconductor sections are con-
nected we obey Kirchhoff's laws by requiring current
conservation and equal potentials. Note that for small
currents only p„„determines the current distribution,
making the Hall effect unimportant at the interface be-
tween two semiconductor sections which have equal p
The Hall voltages that are generated at the boundary be-
tween a metal contact and the two-dimensional electron
system (in the corners where the arrows denote the
currents) are taken into account, neglecting the effects of
the finite sizes of the contacts.

We calculate the magnetotransport starting from the
magnetoresistance per square R z =R and the Hall
resistance R& =R . In the figure we have indicated in
which corner of the contacts most of the current flows
due to the magnetic field and the definitions of the
currents. The symbols Nz with their superscripts denote
the number of squares of a section of the sample, with the
superscript referring to the section. The number of
squares is the ratio of the length (parallel to the current)
over the width (perpendicular to the current) of a rec-
tangular section. As an example, we consider how V3 2 is
obtained. Between contact 2 and contact 3 we have a
Hall voltage, —IzR~, generated by the current between
contact 2 and the semiconductor and a Hall voltage,—I5R~, generated by the current passing through con-
tact 5. The magnetoresistance causes a voltage drop

I&X GRz in Sec. G (—I&+I3+I4)Ã DR~ in Sec. D,
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INSULATOR

SEMICONDUCTOR

y=O
where J„=O follows from the continuity of E„(~, —w).
Note that e is typically larger than the semiconductor
width w in the quantized Hall regime, because p (pzy.
The current I flowing in the positive x direction through
the semiconductor is given by

0I= J„dy=aJ&e "~ sin(w/a) . (9)

FIG. 6. Details of a metal-semiconductor interface. The x
and y directions are given on the right. The metal-
semiconductor interface is an equipotential line. A nonzero p„,
inside the semiconductor makes the current across the equipo-
tential lines and flow into the metal. The arrows indicate the
directions of the current flow for the magnetic field in the posi-
tive z direction. Ro

=I0 exp —No
RH

Ro=I0 1 —No
RH

. (10)

For the homogeneous case we can replace the com-
ponents of the local resistivity tensor by the measurable
resistances: p„,~R and P„~RH. By combining (8)
and (9), introducing a reduced unit of length N~=x/w
(the number of squares) and denoting aJc sin( w /a ) =Ia
we finally obtain

RoI (Nz ) =In exp Nz ar—ctan
RH

(y (—w) and an insulator (y)0). We denote physical
quantities in the metal by a superscript m to distinguish
them from quantities in the semiconductor without su-
perscripts. Inside the metal we take p,„=O and pzy 0,
which is a reasonable approximation as we will show
later. In this ideal metal no potential differences can ex-
ist, leading to E, =0 at the metal-semiconductor inter-
face. The Hall angle OH=arctan(p„ /p„, ) is the angle
between the electric field and the current. For p„„&0the
current crosses equipotential lines. Thus part of the
current flowing along the metal contact leaves the two-
dimensional electron system and penetrates into the met-
al (for one direction of the magnetic field).

We describe this penetration for the simple case of a
homogeneous sample with p independent of the spatial
coordinates. Kirchhoff's laws reduce to

BJ„BJ
divJ= + =0

Bx By

and

A current flowing in a homogeneous two-dimensional
electron system along a metal contact will indeed partial-
ly flow into the contact when the magnetoresistivity in
the semiconductor is finite; the current in the two-
dimensional electron system will decrease exponentially
with distance, when passing the contact. Our treatment
so far contains two simpIifying assumptions. We have
dealt with an ideal metal and a homogeneous semicon-
ductor. We will first discuss the influence of these as-
sumptions before we study such effects in experiments
with large contacts in Sec. IV.

We assumed an ideal metal for the contacts; p„„=O
and p =0. Although p~~ &p„y due to the higher elec-
tron density in the metal, the resistivity per square in the
metal p„can be larger than p,„,especially for magnetic
fields that result in integer filling factor in the semicon-
ductor. We will give the results for a metal contact be-
tween y = —w and y = —2w in Fig. 6. We can find a
solution of (6) in the metal that is comparable to (7).
Continuity of E„(x,—w) leads in this case to

BJ
(curlE), =p„„

BJ,
By

=0
~ (6)

J„(x,—w)
Pxy Pxx J ( )

+
y 7

J„(x,—w)
m + m

P jl xPxx Jm(
y 7

Of course, J (x,O)=0 at the upper boundary y =0. A
stationary current distribution for x~ ~ leads, in com-
bination with the translation symmetry of the geometry
in the x direction, to J ( ao, y) =0. This results in

Since divJ=O implies that J is continuous over the
metal-semiconductor interface, the length a is the same
in metal and semiconductor. From J ( oo, —w) =0 we see
that p J„=p J . This leads to

J„(x,y) =J~e " cos(y/a)+ J„ p„—p„cot(w/a) =p„~+p„„cot(w/a) . (12)

and

J (x,y)=JDe sin(y/a) .

The continuity of E, (x, —w) at the metal-semiconductor
interface determines the length a, because E =p„J
+p~y Jy 0 res ul ts in

R I0I (N& ) = exp Nrj arctan-
Ro+Ro RH —RH

Roio Ro+ = I() 1 —N~ . (13)
Ro+Ro Ra —Ra

For the case that, at x =0, no current flows in the x
direction inside the metal and I =I0 we Anally obtain

Ro+Ro

J (x, —w)

J (x, —w)
=p„—p cot(w/a)=0, Comparison of (10) and (13) clearly shows that the

influence of a good metal is negligible already at
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moderate magnetic field strengths. Even at an integer
filling factor the resistance of the metal is not important
for a current flowing along a contact.

The effects of a current leaving a two-dimensional elec-
tron system in the corner of a (current carrying) metal
contact were studied for the two-terminal resistance near
the integer filling factor by Rikken et al. and found to
be at the ppm level. Thus the assumption of an ideal
metal will not severely disturb our results.

The second simplification in our calculations is the as-
sumption that the local resistivity tensor is independent
of the spatial coordinates. This assumption is in apparent
contradiction with our model for the quantized Hall
effect. In the quasi-one-dimensional approximation, we
assumed that p changes over the width (y direction) only.
In this case no simple solution exists, but taking p„ in-

dependent of y (variations in the electron density are
small) and taking p,„(y), we obtain an exponential behav-
ior again. This is due to the fact that the current leaving
the semiconductor stripe is in that case proportional to
the current passing through the stripe.

For a two-dimensional inhomogeneity we may have
corrections to the exponential behavior, but with random
inhomogeneities there is no reason why the (qualitative)
behavior would be significantly different. We describe
the magnetotransport by an effective resistivity tensor
that is a proper average over the inhomogeneous local
resistivity tensor when a sample contains no large-scale
inhomogeneities like gradients or large regions with
different mean electron densities. This is the way in
which we will look at the calculations in Secs. IV and V.

IV. INTERPRETATION OF EXPERIMENTS
WITH LARGE CONTACTS

We have performed experiments on GaAs-
Al Ga, As heterostructures with special geometries to
test the combination of approaches described in Secs. II
and III. A disputable assumption is the use of a homo-
geneous description that enables us to define Ro and to
use the number of squares to describe geometries. We
will describe our geometries as a series connection of rec-
tangles without contacts and rectangles with contacts, de-
scribed according to Sec. III. These simplifications make
it easier to get insight into the physics of two-dimensional
current transport in the neighborhood of a metal contact.

We will first describe the results obtained with the
"open square" geometry as sketched in Fig. 7. The mag-
netic field is perpendicular to the sample and the current
Io=1 pA is flowing from contact 1 to contact 3. The
voltages measured between contacts 4 and 2 as well as be-
tween 2 and 7 are shown in Fig. 8(a) for one direction of
the magnetic field. Both curves show the expected behav-
ior for a magnetoresistance measurement. The main
difference is in the amplitude of the two signals. The
voltage measured between 7 and 2 is nearly three times
larger above 0.3 T. It is clear that in a symmetric
geometry this can only occur due to the presence of the
magnetic field. Reversion of the direction of the magnet-
ic field leads to the expected interchange in behavior of
the two voltages, V4 2 and V2 7 Reversion of the direc-
tion of the current through the sample only changes the

F11111111111IIIIzi F/1118111118lllllii

4 /'/'X/AA 5 7

F11111111111111111111IIIII111111111111/II/ii

FIG. 7. The "open square" geometry used in experiments to
measure the influence of metal contacts on the potential distri-
bution. The current Io is flowing from contact 1 to 3. The
direction of the current flow, for one direction of the magnetic
field, is indicated by the arrows. The current I& enters contact 2

over its length and leaves it in its right corner.

signs of the voltages, showing that our observations are
not due to unintentional asymmetries in the geometry of
the sample.

We describe the sample by a series connection of three
sections; two sections of semiconductors (lengths 2N~ )

2

connected by one section of semiconductors parallel to a
metal (length N~ ). We obtain the following equations:

l

V4, 2
No R

0 2
(14)

=RH[1 —exp( Nz R~/RH)]+N~ —R~
0 I 2

=(N~ +N~ )R~

The first contribution in the right-hand side of (15) is due
to the current Ii =Io I(Nz ) that en—ters contact 2 over

its full length and leaves that contact in the right corner.
For RH &IV Ro, we see that V42 and V2 7 both exhibit

a magnetoresistance type of behavior. From the
geometry used in the experiments we determined
N' =(600 pm)/(100 pm) =6 and N' =(300 pm)/(100

l 2

pm)=3 and find a factor (N~ +Nz )/N' =3 between
l 2 2

both voltages, in accordance with our observations.
The resistivity tensor, used in our model for the quan-

tized Hall effect, is only applicable, for stronger magnetic
fields, making detailed comparison with experiments in
weaker magnetic fields (8 &1 T), where the exponential
dependence is important, impossible. For comparison of
our calculations with the experiments we use the mea-
sured magnetoresistance per square R o = V4 z /(3I, 3 )
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FIG. 8. (a) Measured and (b) calculated voltages between two
contacts of the open square geometry sketched in Fig. 7. The
current is ID=1 pA between contacts 1 and 3. The calculations
use measured RH and R~.

and Hall resistance RH = V~ 4/I», respectively. The re-

sults of these calculations are shown in Fig. 8(b) and show
convincing agreement with experimental results. In the
calculations it is obvious that the voltages V27 and V4z
interchange in behavior for the other polarity of the mag-
netic field. In weaker magnetic fields we expect to see the
influence of the exponential factor in (15), resulting in a
lower value for Vz 7. In Fig. 8 the expected decrease of
Vp 7 is clearly visible below 0.3 T, whereas V4 2 is nearly
constant. The physical picture for this smaller resistance
in weaker magnetic fields is that all current will enter
contact 2 (low resistance) at the left-hand side and leave it
at the right-hand side, thus avoiding the magnetoresis-
tance in the semiconductor parallel to the metal contact.

Another geometry that gives peculiar results is the
"open Corbino" geometry shown in the inset of Fig. 9.
This is essentially a normal Corbino geometry with a
small sector of the electron system cut out to prevent cir-
culating currents. By conformal mapping it can be

14

12—
measured

,O

shown that this geometry is comparable with a short Hall
bar geometry as described by Beer. ' The two-terminal
resistance between the inner (radius 200 p, m) and the
outer (radius 700 pm) contacts is given in the same figure.
At the magnetic field strengths where the magnetoresis-
tance is zero we observe the quantized Hall effect. For
comparison we give the Hall resistance measured in a
Hall bar geometry of the same material. Between the pla-
teaus the two-termina1 resistance is smaller than the Hall
resistance and their difference is proportional to the mag-
netoresistance. This behavior is very different from the
observations in a long Hall bar geometry, where the two-
terrninal resistance is the sum of Hall resistance and mag-
netoresistance. ' The important difference between the
long Hall bar and the open Corbino (or the short Hall
bar) is that in the last case the current flows along a metal
contact over a large distance, where part of the current
leaves the semiconductor when p,„&0. This leads to a
negative contribution to the two-terminal resistance R;,
because the Hall voltage that is built up in the corner of
the contacts is generated by a smaller current according
to (10),

R„=RH exp( No, Ra/RH )+N—a, Rv

=RH+(N~ N~ )R~ . — (16)

Here Xz is the length over which the current fiows
1

parallel to a contact and Xz is the remaining length of
2

the current path.
We finish this paragraph by a calculation of the effects

of large Hall contacts on the standard magnetotransport
measurements, using the geometry given in Fig. 10. This
is a standard Hall bar geometry with two large Hall con-
tacts. The direction of the current flow for one direction

I

B(T)
FIG. 9. Two-terminal resistance R„between the two con-

tacts of the "open Corbino" geometry sketched in the inset. For
comparison we give the Hall resistance R& as measured in a
Hall bar geometry made of the same material. The two-
terminal resistance is smaller than the Hall resistance, due to
the large contacts.
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col culoted
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FIG. 10. Hall bar geometry with two large Hall contacts in
the middle. The direction of the current flow for one direction
of the magnetic field is indicated by arrows. The total current
flowing from left to right is Io. The current passing through
contact 3 is I, and that passing through contact 7 is I&.
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of the magnetic field is indicated by arrows in the Hall
bar to show what contributions we can expect. The
current entering contact 3 in the left corner is called I,
and that leaving contact 7 in the right corner is called I2.
The resistances R3 7 Rp 3 and R34 are given by

FIG. 11. Calculated Hall and magnetoresistance for the Hall
bar geometry with two large Ha11 contacts, as given in Fig. 10.
The Ha11 voltage between 3 and 7 is smaller than the true Hall
voltage between 2 and 8 owing to the effects of the large con-
tacts. The calculations start with measured RH and R~.

RH(IO I,)—
R37=

0

=RH exp( N~ R~/R—H)=RH NRp, — (17)

intended to be used for high-precision measurements on
the quantized Hall effect should have small Hall contacts,
or it must have long and narrow side arms where hardly
any currents flows, as sketched for our standard Hall bar
geometries in Fig. 2.

R23=
RHI2 +No R oI0

Io
=RH[1 —exp( N~ R~/RH—)]

+No Ro=(Na, +No )Ro

No RoIo
R3 4= =No Ro . (19)

From these equations we learn that large contacts will
reduce the measured Hall resistance R3 7 independent of
the direction of the magnetic field, as observed by Cage
et al. " The resistance between two contacts Rz 3 divid-
ed by the number of squares between the contacts can be
large [by a factor of (1+N~ /N~ ) in this case] than the

2 1

true rnagnetoresistance per square. We have not per-
forrned experiments to test these calculations, but we
have calculated the resistances starting from measured
Ro and RH to show the effects. The results of these cal-
culations are presented in Fig. 11 for N& =1, N[-j( ' o~
We clearly see a dip at the strong-magnetic field side of
the Hall plateaus, as observed, e.g., by Cage et al. " due
to the large contacts. This dip is independent of the
direction of the magnetic field. A (partial) dependence on
the direction of the magnetic field can be explained by a
component of the current flowing in the direction of the
Hall contacts, as suggested earlier. From these calcula-
tions we can conclude that a Hall bar geometry which is

V. CURRENT DISTRIBUTION DETERMINED
IN METAL OR SEMICONDUCTOR

In this section we will study the difference in the distri-
bution of the current between two square geometries.
The "open square" geometry with short-circuited current
contacts and the "closed square" geometry are both
sketched in the insets of Fig. 12. In both cases the
current is passing between contact 1 and 2 through a
geometry with two branches over which the Hall voltage
can be measured between the contact pairs 4,5 and 6,7.
In the open square geometry the current must choose be-
tween the branches when it is in the metal, thus
influenced by the Hall voltages that are built up where
the current enters the contacts. In the closed square

geometry this choice is made in the two corners of the
semiconductor where the current flows, thus influenced
by the magnetoresistance in the semiconductor only.

The experimental results for I0=1 pA between con-
tacts 1 and 2 are given in Fig. 12. In both cases the sum
of V4 5 and V6 7 is the quantized Hall voltage as expect-
ed. The main difference is the distribution of the Hall
voltage over the two branches, which is asymmetric in
the open square geometry, whereas it is nearly symmetric
in the closed square geometry (apart from the magnetic
field strengths where the plateaus in the sum of the Hall
voltages occur). When the direction of the magnetic field

is changed in the open square geometry the asymmetric
Hall voltages are interchanged, confirming that the asym-
metry is not due to an unintentional asymmetry in the
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V1 2
=RH I ) +2%~ R I )

V, , =RH[I, exp( Np —Rp/R„)+I, ]+2Np R I, ,

(20)

geometry. When the magnetic field changes sign in the
closed square geometry the Hall voltages only change
signs, suggesting again that the effects are not caused by
the geometry but, for instance, by the inhomogeneity of
the electron density. The observations in the ring
geometry that are analyzed extensively are very compa-
rable to the closed square geometry in that sense.

The distribution of the current over the open square
geometry can be calculated by solving Kirchho6's equa-
tions for our simple approach describing the influence of
contacts by the model described in Sec. 3. The voltages
on the contacts 1 and 3 with respect to contact 2 are
given by

(RH +2Np Rp )RHIo
45 H ] RH[2 —exp( N—p R p/RH )]+4N R

(RH+2Np Rp)RHIO

RH+(Np +4Np Rp
(22)

V6 7 =RHI2

t RH [1—exp( Np R—p/RH )]+2Np R p t RHIO

RH[2 exp( —Np R—p/RH )]+4N

where I
&

flows in the left branch of the square and I2 in
the right branch. The connection of contacts 1 and 3
means that both voltages are equal, resulting in a value
for I, and I2 that enables us to calculate the two Hall
voltages
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(21) (Np +2Np )RpRHIO

RH+ (Np +4N p )R p
(23)

The asymmetry between both Hall voltages is clear from
these equations. For R~ &&RH, the voltages V4, and
V6 7 correspond to a Hall resistance and a magnetoresis-
tance, respectively.

Experimentally determined R and RH have been used
(see Sec. IV for the arguments). The calculated voltages
are given in Fig. 13. We clearly see the characteristic
difference between the two, but the quantitative similarity
with Fig. 12(a) is not complete. This is probably due to
the simplifications in our calculations; we started from a
homogeneous resistivity tensor and approximated the
sample by a network of rectangles. When the resistivity
has systematic inhomogeneities we cannot use the num-
ber of squares, but we should solve the complete two-
dimensional problem for the distribution of the resistivity
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FIG. 12. Measured Hall voltages on two geometries for a
current fiowing between contact 1 and 2. We have (a) the "open
square" geometry with contact 1 and 3 short-circuited and (b)
the "closed square" geometry. Both geometries are given in the
insets of the figures.

I

3
(T)

FIG. 13. Calculated Hall voltages for the "open square"
geometry as given in an inset of Fig. 12(a). The asymmetry be-
tween both Hall voltages that is observed in experiments, Fig.
12(a), results from these calculations. The calculations start
with measured R» and R
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(24)

where I, flows in the left branch of the square and I2 in

the right branch. This leads to I, =I2 and gives

V4 5
—V6 7

—
—,
' RHIo (25)

This is a totally symmetric solution. The observed volt-
ages are less symmetric, especially at magnetic field

strengths where the plateaus of the quantized Hall effect
occur. This can be explained by a slight inhomogeneity
of the electron density over the sample. The effects are
comparable to the ones observed in the ring-shaped
geometry.

VI. CONCLUDING REMARKS

In this paper we have studied the influence of the sam-

ple geometry and the metal contacts on the measured
voltages in the quantized Hall regime. We have not con-
centrated on the exact potential distribution within one
sample, but on the voltages that can be measured on the
contacts at the boundaries of the (sometimes multiply
connected) samples. To interpret our experiments we
have performed calculations using a homogeneous
description that can be thought to originate from an ade-
quate averaging over the inhomogeneous local resistivity
tensor. This is meaningful when the sample has no
large-scale inhomogeneities like gradients, or large re-
gions with different mean electron densities. For this
reason we used GaAs-Al Ga& „As heterostructures of
good homogeneity and used symmetry considerations to
verify that the measured effects are not due to deviations
from the intended geometries. Our homogeneous
description leads to questionable results for the
geometries where the current distribution over parts of
the sample is determined by the magnetoresistivity only.
Experiments and calculations for a ring-shaped geometry,
taking into account the measured inhomogeneity of the
sample, are described earlier. '

The influence of large contacts on the measured volt-

over the sample.
For the closed square geometry we calculate the volt-

age V, ~ along both sides from

V& z=RH[I, +I& exp( N—z R~/RH)1+2%& R&I&

=RH[I& exp( —Xz Rz/RH)+I&]+2' R&Iz,

ages, even in the normal Hall bar geometry, can be very
important for high-precision experiments at nonzero tem-
perature. The measured Hall voltage can be smaller than
the true Hall voltage. The dip in Hall resistance often
observed at the high-magnetic field side of a Hall plateau
can also be explained by the influence of the contacts.
The measured two-terminal resistance can be much
smaller than the Hall resistivity in geometries with large
current contacts.

All our experimental results on special geometry sam-
ples can be explained by simply describing the sample by
appropriately connected homogeneous rectangular semi-
conductor sections, some of them with metal contacts
and each of them with its own local resistivity tensor.
The current is distributed over these sections in accor-
dance with Kirchhoff's laws. The Hall voltages are built
up in the corners of current-carrying contacts. The
effects at metal-semiconductor interfaces are taken into
account. With the use of our model for the quantized
Hall effect we have calculated the voltages that can be
measured on the contacts of two multiply connected Hall
bars. The calculations are in good agreement with the
experiments. Even in the complicated geometries with
large contacts we calculate voltages by splitting the
geometry in simple parts, some of them with contacts,
and describing the current transport in each part by a
resistance per square and by a Hall resistance. The good
agreement with experiments lends further support to the
usefulness of a description of the quantized Hall effect as
an effect that originates from a local resistivity tensor.
We do not take into account the existence of macroscopic
quantum states or localization in this local resistivity ten-
sor. The only quantum mechanics we use is the quantiza-
tion of the density of states in a magnetic field, leading to
vanishing magnetoresistivity in regions with an integer
the filling factor. In inhomogeneous samples this resis-

tivity has a spatial dependence that determines the distri-
bution of the current over the sample. This spatial distri-
bution (in real samples in combination with localization)
makes that the Hall plateaus are quantized at the well-

known values.
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