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In this paper, we study in detail the electron collective excitations of HgTe/CdTe superlattices
with a simple model superlattice, taking into account the overlap of wave functions at the interfaces
for interface states. The linear-response theory has been used with success to calculate the density

response of the superlattice to an external perturbation, including many-body effects and

electron-heavy-hole coupling in a reasonable way for intrasubband modes. Some attractive
features are found compared with those in type-I and -II superlattices, such as localized modulated

three-dimensional optical and acoustical plasmons, and so on. Moreover, the coupling of interface
states with heavy-hole-like subbands is discussed. Also, a comparison of the collective excitation

spectra between the quasi-two-dimensional and purely two-dimensional charge interfaces, along

with a discussion on their relevance to experiment, is presented.

I. INTRODUCTION

Superlattices are a new kind of material generally made
of multiple alternating layers of two (or more) different
binary or pseudobinary compounds. There are two types
of superlattices (known as type-I and -II superlattices)
whose properties have been extensively studied in the last
few years. ' The structures of the subbands and cyclo-
tron resonance have been investigated by both far-
infrared-absorption spectroscopy and resonant-light-
scattering technique. " Theoretically, one aspect of the
physics of these kinds of superlattitces that is of most
dramatic interest to us is the electron collective-
excitation spectrum of a periodic array of equally spaced
charge layers.

Recently, great attention has been paid to the type-III
superlattices typified by the HgTe/CdTe system, '

which consists of both a semimetal and semiconductor.
The computations of the band structure of HgTe/CdTe
superlattices given by PWM, ' linear combination of
atomic orbitals (LCAO), ' ' and envelope-function-
approximation (EFA) (Refs. 14 and 19) methods agree
well and show that they can be either semiconducting or
zero-band-gap semiconductors. Moreover, the electron-
like, heavy-hole-like, and light-hole-like states are
confined very well in HgTe and CdTe layers' ' ' and
the interface states are localized near the interfaces. ' '
It is proved that the thickness of materials HgTe and
CdTe will decide the width of the band gap and sub-
bands, respectively. Although superlattice (SL) states in-
clude electronlike, light-hole-like, heavy-hole-like, and in-
terface states, in comparison with the situations in type-I
and -II superlattices, we still consider that the interface
states play the most important role in HgTe/CdTe super-
lattices. It is evident that the width of band gap strongly
depends on the hybridization of interface states with the
heavy-hole-like subbands' and contributes a great deal to
the properties of HgTe/CdTe superlattices in optical ab-
sorption, transport, and collective excitation. Besides,
the zero-band-gap band structure and the quasi-interface

states are consequences of matching up of bulk states be-
longing to the conduction band in HgTe and the light-
hole valence band in CdTe. This matching up is only
favorable when the bulk states to be connected are made
of atomic orbitals of the same symmetry type and the
effective masses on either side of the interface have the
opposite sign. To our knowledge no theoretical investiga-
tion of plasmons in HgTe/CdTe superlattice has yet been
reported.

In this paper we study the collective-excitation spec-
trum of such superlattices in the simple model, mainly
concentrating on the effects of interface states. We as-
sume the layers of HgTe and CdTe have the same thick-
ness d/2, and d is small enough so that superlattice will
behave exactly like a semiconductor and the self-
consistent-field (SCF) method ' will be applicable.
Furthermore, we consider the motion of electrons in the
X-F plane to be completely free because the EFA method
well describes the band structure of HgTe/CdTe superlat-
tices, ' and that only interface states overlap between ad-
jacent layers. It is expected that the assumption of
infinitely thin layers and zero width of localization at in-
terfaces will be reasonably good for low electron densities
in HgTe/CdTe superlattices with not too small layer
thickness. The approximation of a perfect confinement in
the well is usually not very good for the energy levels, but
not so bad for the wave function. ' In view of the attrac-
tive characteristics in HgTe/CdTe superlattices, it is in-
teresting to calculate the collective-excitation spectrum
of it.

The paper is organized as follows. In Sec. II the SCF
treatment of collective excitation of a superlattice is de-
scribed. In Sec. III we consider the intrasubband modes
of interface states with zero width and finite width of lo-
calization, and the coupled intrasubband modes of inter-
face and heavy-hole-like states with infinitely thin layer
thickness and zero width of localization are studied. We
conclude in Sec. IV, presenting some possible future im-
provements of our theory and some attractive features
compared with those in type-I and -II superlattices.
Also, the difference between the perfect two-dimen-
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sional system and the real system is discussed in this sec-
tion.

An external perturbing potential of the form

V'"'(r, z, t ) = V'"'(q, co,z)exp[i (cot —q.r) ] (7)
II. SCF TREATMENT OF COLLECTIVE

EXCITATION IN Hg Te/CdTe SUPERLATTICES

E(s) (k )=E (s) +g2k 2/2m (s)
nj nj J (2)

Here the single-particle wave function PI,'„(r,z) will

take the explicit forms

for j even
P'„'(z —jd /2) =

p (3)

for j even

0 for j odd, (4)

g(„'(z jd/2)=—g'„"'i, for j both even and odd,

0 for j even

for J odd,
where the layers are labeled by an integer j; even-
numbered layers will be taken to be HgTe layers, while
odd-numbered layers are CdTe layers.

We now proceed to discuss the linear response of a su-

perlattice to an external potential for zero magnetic field.

In our approximation mentioned in Sec. I, the single-

particle wave function in this model of superlattice can be
written as

PI;„ i(r, z ) =exp(ik r )1((„"(z jd —/2) /+ 3
Here k is a two-dimensional wave vector describing the
planar motion in the X-Y plane and A is the two-
dimensional area of each layer (needed for normalization
of the plane wave), j and n are the layer index and the
subband index, respectively; the labels s =1,2, 3,4 refer to
the electronlike, heavy-hole-like, interface, and light-
hole-like states, respectively. We choose the SL states to
be strictly two dimensional with no overlap between adja-
cent layers with the exception of the interface states.
This approximation is made mainly for the sake of con-
venience, allowing us to do most of our calculation
analytically. We expect it to be reasonable for low elec-
tron densities in HgTe/CdTe superlattices with not too
small layer thickness. The noninteracting single-particle
energy is given by (with m,

'" as the mass for planar
motion}

will lead to an induced electron density, which in turn in-
duces perturbed Hartree and exchange-correlation poten-
tials. Thus

V —Vext+ VH+ Vxc

is also of the form (7). We use the SCF scheme of Ehren-
reich and Cohen to calculate the induced electron density

5n(q, to, z)= g g H(„'„''.), (q, a))
s ss, s n, n,

X ( n, j,s
~
V(q, ~)~n', j',s')

X g'„','.(z j'd /—2 )g(„'i)(z —jd /2 ),

where the irreducible polarization under the random-
phase approximation (RPA) can be expressed as

fo(E(l '(k+q)}—fo(E„"'(k}}
,a

~
E(s )(k+q) E(s)(k)

where fo is the Fermi distribution function. Although
the RPA is a high-density approximation, it has been
used with success in the problem of semiconductor super-
lattices. We let the exchange-correlation potential V
be zero throughout this paper for convenience. By using
the ansatz due to the translational symmetry of the sys-
tem, that is,

exp(ik, jd/2)(n, s
~ Vo~p, s'}

for j even

exp[ik, (j—1)d /2] ( n, s
~ V, ~p, s')

for j odd,

we write down straightforwardly a series of basic self-
consistent equations under the self-sustaining condition
V'"'=0 and the electric quantum limit without repeating
the computation similar to Refs. 4 and 5,

gn(3,"[(~+S a+S C}(m,3~V ~03)+(S' 8+S' C)(m, 3~V, ~0, 3}
3

X g&".'[v."„(',', ', )+s v.'"„(',', , )+s, v„'."(, ;...)](, ~v, ~p, ;&i=1 m

4
"0'[S' V' „(s',s;i, i)+S'+ V„' (i,i;s', s)](m, i [ V) [O, i )

i =3 m

i )J
()"[V „(s',s;J,i)+S V'„(s',sj,i)+S+ V„' (j,i;s', s)](m, i

~ Vo~p j)
i j=1,2, 3 m

+ g&' 0 '[S' V' „(s',s;3,4)+S'+ V„' (3,4;s', s)](m, 4~ V) ~0, 3} + (m~p) (12)
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and

(n, s~ V, ~0,s') = g II', '[( A+S B+S+C)(m, 3~ V, ~0, 3)+(S' B+S'+C)(m, 3~ V0~0, 3}]
4

+ g gX"'[VH„(s',s;i,i)+S V'H(s', s;i,i)+S V„' (i,i;s,s')](m, i
~ V, ~0,i )

l =3 m

3

+ g gX'0'[S' V'„(s',s;i, i }+S'+V„' (i,i;s', s)](m, i
~ VO~O, i)

i=1 m

i)j
+ g gX'i}1'[S' V'„(s',sj,i)+S'+V„' (j,i;s', s)](m, i

~ V0~0 j)
ij )1,2, 3 m

+ g X'4'3'[ VH„(s', s;3,4)+S V' „(s',s;3,4)+S+ V„' (3,4;s', s )](m, 41Vi 10, 3) +(m~O), (13)

with the symbols given by

V 0„*'(s',s;p', p)=(2ne /e, q) f dz fdz'e q~' '~lit'„'(z)lbo' '(z)g''(z'Wd/2)g'~'(z')5(p'p, 33),
V' &'„—'(s's, p'p ) =(2me /e, q )f dz f dz' e ~' ' 'tp'„"(z )1ito"(z )QI}P'(z'+ d/2)tp'~'(z')5(p'p, 33),

V 0„(s's,p'p}=(2~e /e, q) f dz f dz'e q' "P'„'I(z)go"'(z)&0 '(z')P'~'(z'),

V'H&„(s's, p'p)=(2ne /e, q) f dz f dz'e ' "p'„'(z)po' (z)QI '(z')p'~'(z'),

(14)

(15)

(16)

(17)

and

A = V ' '(s's, 33)+ V '+'(s's, 33),
B= V' 0„'(s's, 33)+ V' 0'„'(s's, 33),
C= V„' 0 '(33,s's)+ V„' 0+'(33,s's),

~P'„,'(z —jd/2)~ =5(z jd l2) . — (20)

By using the well-known long wavelength form for the
polarizability of a two-dimensional electron gas (2D EG),

(3] 2
11(3,3)(q ) (21)

( )

where X 0=11 0+IIO and II „ is given in Eq. (10).
"(m~0)" stands for all the terms in either Eqs. (12) or
(13) which are obtained under the interchange of the in-

dices m and 0 of the terms already presented.
Moreover, we have introduced in Eqs. (12) and (13) the

symbols S+ and S+ defined by

kikzd
e qeS+= 2 lk d

1 —e qe

Eqs. (12) and (13) yield

[1—(n' 'q /m' 'co )(2me /e, q)a(q, k, )]

=[(2me /e q) (n' 'q /m' 'co ) b (q k )],
with

a (q, k, ) =S(q, k, )[1+cosh(qd /2) ]—sinh(qd /2),

b(q, k, ) =S'(q, k, )[1+cosh(qd /2)],

(22)

(23)

(24)

qd /2 +Ikz d /2
e ~ e

+ikzd
i —e qe

It may be proved that both Eqs. (12) and (13) include the
contributions of type-I and -II superlattices, excitons in
periodic quantum wells, interface states, and the interac-
tions between interface states and the other SL states in
HgTe layers and CdTe layers. In fact, we can easily ob-
tain the collective-excitation spectra of type-I (s,s'=1)
and type-II (s,s'= l, 4) superlattices ' or excitons in mul-
tiple quantum wells (s,s'=1,2) separately. Hence the re-
sults obtained here are quite general and attractive.

sinh(qd )

cosh(qd ) —cos(k, d )

2 cos( k, d l2)sinh(qd l2)
S'(q, k, }=

cosh(qd ) —cos(k, d )

(25)

(26)

For simplicity we have also defined the mass of inter-
face states m' 'by

where n' ' denotes the two-dimensional density of inter-
face states, and the structure factors S and S' are defined
by

1/m' '=Plm" +(1 P)/m' '—(27)

III. INTRASUBBAND MODES

To obtain the intrasubband modes, we set m =n =0 in
Eqs. (12) and (13). We shall restrict our study to the case
of interface states (i.e., s =s' =3 }. For purely two-
dirnensional charge interfaces, we choose co+=[re' '(q)] [a(q, k, )+b(q, k, )], (28)

without taking into account different masses of electrons
and light holes in computation. P is the integrated prob-
ability of finding electrons in the Hg Te layer. Solving Eq.
(22), we obtain
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where

[co' '(q)] =(2ne n' '/e, m' ')q .

In the weak-coupling limit, qd » 1, Eq. (28) reduces to

~/t~(3 )

P

2. 0

co+=[co~ '(q)] cos (k,d/4),

co =[co~ '(q)] sin (k,d/4) .

(29)

(30)

The spectrum is then severed in the region qd »1 for
the reason of overlap of wave functions at the interfaces.
Each layer only partly supports its own 2D plasmon, and
the excitation in any layer will not remain localized at
that layer.

In the strong-coupling limit, qd «1, we have three
cases to consider as a result of nonanalytic property of
the structure factors at the origin of the q-k, plane in
Eqs. (25) and (26). First we consider k, =0. From Eq.
(28) we have

1.0

5 ~ 0

rticle

10.0

co =0,
(31)

(32)

FIG. 1. Collective intrasubband excitation spectrum of inter-
face states with zero-width localization.

where

(n' ') =(81re n' '/E m' 'd) .
P S

The first mode clearly exhibits the characteristic of 3D
optical plasmon, in which the oscillating charge densities
are in phase from one supercell to the next, and are out of
phase within the supercell. In the second mode, the oscil-
lating charge densities are in phase within the supercell
and also between supercells, so that they entirely cancel
each other in the whole region for k, =0, due to the local-
ization of interface states at the same interfaces, and the
gap of the spectrum between the collective and single-
particle intrasubband excitation disappears.

Next, we consider the strong-coupling limit with
k,&0. Thus Eq. (28) leads to

region is very close to co=0 under the normalization,
which is shown in all the graphs of this paper.

If we further consider the effect given by different
masses and densities of electrons and light holes, the de-
generate modes, when k, d =m, will be split analogous to
the phonon modes in a periodic 1D chain, and the
bandwidth is largely reduced (see Fig. 2).

We also present the graphs of co as a function of k, d
for different values of qd in Fig. 3. From it we can easily
see the existence of degenerate modes as k, d =m, and the
bandwidth is broadened with fixed k, as qd increases.

In order to gain an insight into the collective-excitation
spectrum of the real system with finite width of localiza-

4 cos2(k, d /4)
coo = [co' '(q ) ]2qd

1 —cos k, d

4sin (k,d/4)
co =[co~ '(q)] qd

1

2
(33)

(34) 2. 0-

( 1)
' =55

ph

so that both branches are acoustical modes, with co ~q.
The modes, corresponding to in-phase and out-of-phase
motion within the unit supercell, are softened. The band-
width has a maximum for small qd, owing to the strong
coupling.

Finally, we consider the strong-coupling limit with
k, d =(2n + 1)m.. In this case, Eq. (28) takes the form

1 ~ 0

ticle

~+=co =[co~ '(q)] qd/2; (35)

the modes are degenerate 3D acoustical plasmons. Here
the spectrum in the region qd ((1 shows some analogy to
that derived by Tselis and Quinn, and the results above
are shown in Fig. 1. Here the single-particle continuum

0 5. 0 10.0

FIG. 2. Collective intrasubband excitation spectrum of inter-
face states in perfect 2D interfaces with different masses and
densities of electrons and light holes.
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tion at interfaces, the symmetrical ground state can be
written as'"

kd /4
D=

[d +2sinh( kd /2) /k ]
' (37)

De kd/4(e kz+e —kde —kz) 3d /4 & z & d /4
q(3)(& )

—. De
—kd/4( kz+ —kz) d /4 « d /4 (36)

De kd /4( e
—kz+ e

—kde kz) d /4 & z & 3d /4

with the normalization factor

~+= [co~( '(q )]2[(S+S')B+(A —B)],
with

(38)

Here we set kHgT, =kcdT, =k in the calculation for sim-
plicity. The substitution of Eq. (36) reduces Eqs. (12) and
(13) to the form

4( 2 +e kd /2
) 2qA=

[d+2sinh(kd /2)/k] q
—4k

sinh(kd/2) + sinh(kd) + d + 1 [d+2 .
h(kd/2)/k]

k 4k 4

e
—(2k +q)d/4 —(2k —q)d/4e

—qd /4e
2k +q 2k —

q

sinh(2k+q )d /4 sinh(2k —
q )d /4 2 sinh(qd /4)

2k+q 2k —
q q

(39)

4(2+e ""/
) sinh(2k+q )d /4 sinh(2k —

q )d /4 2 sinh(qd /4)
[d+2sinh(kd/2)/k]2 2k+q 2k —

q q

'2

(40)

N2 C02

In the weak-coupling limit, Eq. (38) reduces to

( 2 + —kd /2
)[Il ( 3 ) ]2

[1+2sinh(kd /2) /kd ]

4sinh(kd/2) + sinh(kd) 3
kd 2kd 2

(41)

so that they are localized bulklike optical plasmons in
which each layer supports a common modulated 30
plasmon, and that is quite different from those in Eqs.
(29) and (30) (see Fig. 4).

In the strong-coupling limit we have two cases to
study. When k, =0, from Eq. (38) we have

a3/g(3)
P

3.0

qua=20. 0~o ~~~ I~qg 5 5

-qd=0. 5

co+ = [co' '(q )] [4a/qd+(P+ad /4+4y/d )q],
= [co~("(q ) ] (P+ad /4)q,

with the parameters

2+ e
—kd/2

(42)

(43)

(44)

2.0
2.0-

KI3= 7.742

1.0
1.0

ic le

kzd0 I

1.0 2. 0 3.0

FIG. 3. Collective intrasubband excitation spectra of inter-
face states in purely 2D interfaces as a function of k, d for
different values of qd.

0 10.0 20. 0

FIG. 4. Collective intrasubband excitation spectrum of inter-
face states with finite width of localization at interfaces.
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—40.d

[1+2sinh(kd /2)/kd ]

1 sinh(kd /2)+ cosh(kd/2) —cosh(kd )/4
24 4kd

2. 0

~d=77. 42
———---~d=0. 774

sinh(kd /2) —sinh(kd )/8
k d

(45)

y
cxd 2

[1+2sinh( kd /2 ) /kd ]

sinh( kd /2) cosh( kd /2)1

48 8kd

1.0

+ sinh(kd /2)
k d

(46)
ic le

10.0 20.0
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'
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has the solutions

i,&0. Thus Eq. (38)
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( 3 I p
2ad cos ( k, d /4 )

]
1 —cos(k, d )

2 (3) 2
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1 —cos(k, d )

(47)

(48)
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ore interested in the
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0 h
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co] —0,
co& 3= I[co~ '(q)] S(q, k, )+2[co~ '(q)] a(q, k, )I/2

(50)

with

+( —[[co' '(q)] S(q, k, )+2[co' '(q)] a(q, k, )I —8[co' '(q)] [co~ '(q)] Ia(q, k, )S(q, k, )
—2[e(q, k, )] ])' /2,

(51)

e(q, k, ) =S(q, k, )cosh(qd /4) —sinh(qd /4)

and a (q, k, ), S(q, k, ) defined above.
For k, d =(2n + 1)n, Eqs. (12) and (13) have the solutions

co]=[co' '(q)] a(q, k, ),
co& 3= [[co& '(q)] S(q, k, )+2[co~ '(q)] a(q, k, )]/2

+(I[co' '(q)] S(q, k, )+2[co' '(q)] a(q, k, )I —8[co& '(q)] [co& '(q)] Ia(q, k, )S(q, k, )
—2[e(q, k, ] j)' /2 .

(52)

(53)

(54)

In the region qd )&1, the collective-excitation spectrum
of interface states is still sharply severed. The excitation
in the layer cannot be localized at that layer. However,
each HgTe layer can fully support its own 2D plasmon
for heavy-hole-like subbands (see Fig. 7).

In the strong-coupling limit we have one optical mode
(k,d =0) and two split acoustical modes (k, d =m. ) for in-
terface states due to the interaction with heavy-hole-like
states. It is noted that the optical mode of heavy-hole-
like states completely vanishes in the region qd (&1, and
the gap of the spectrum between the collective and
single-particle intrasubband excitation for interface
states, we think, will remain for the case with finite width
of localization. The features in strong-coupling region
are fascinating and are quite different from those in type-
I and -II superlattices, as sketched in Fig. 8.

(2 )

( n(3 ))

IV. CONCLUSIONS AND DISCUSSION

In this paper we have presented a survey of the elec-
tronic collective excitation in type-III superlattice includ-
ing the interaction between the interface states and
heavy-hole-like subbands. A rich spectrum of excitations
is found, such as, localized modulated 3D optical and
acoustical plasmons, etc.

We have shown that the intrasubband modes display
the evident crossover behavior from 2D to 3D in the
whole region as the width of localization increases.

In our work we have not considered the penetrating
effect between the adjacent quantum wells, the exchange-
correlation potential, and the overlap between the inter-
face states and the other SL states; in that case we should
use the Bloch sum of tight-binding functions instead of
the sum of plane waves. For systems in which the layers
are thin, such overlap is important. When the layer
thickness is large enough, on the other hand, Hg Te/CdTe
superlattices will behave exactly like a semimetal, and the
SCF method used here cannot be applicable. In general,

2.0

1.0
1.0

~~
2 wv Type —[ SL(d= aj

~.- .~

p

Type —f SL(d= 2 a j

Qp

Ti pe —I SL(8=2a)

A X I

0 5.0

rticl e

L,
10.0

0.5

5.0

ingle —pa rt 1 c 1 e
region

9.0

FIG. 7. Coupled collective intrasubband excitation spectra of
interface and heavy-hole-like states with infinitely thin layer
thickness and zero-width localization.

FIG. 8 Collective intrasubband excitation spectra of type-I
and -II superlattices in purely 2D charge layers with same
masses and densities of electrons and holes.
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if we fully count in the contributions of all the SL states
in calculation, we will get six spectra for intrasubband ex-
citations, although some of them will be submerged, it is
possible to finish the calculations of the spectra by per-
forming a numerical analysis. It would be interesting and
important to include the effects of the surface plasmons
in a semi-infinite semiconductor superlattice on the linear
response of the system. Work in these respects is in pro-
gress.
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