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Several unusual dynamical instabilities are found in switching charge-density-wave (CDW) con-
duction. In samples driven by a dc current, large-amplitude 1/f noise and intermittency occur in
regions of negative differential resistance. In samples driven by combined dc and low-frequency ac
electric fields, we report the first observation of “ac switching noise.” The power spectrum of ac
switching noise is broadband and has amplitude as much as 10 dB larger than the broadband noise
associated with dc sliding CDW conduction. In samples driven by combined dc and high-frequency
ac electric fields, a period-doubling route to chaos and related instabilities are observed when the
CDW is mode locked. All instabilities are consistent with the phase-slip picture of switching CDW
conduction. Mode locking and associated instabilities in switching CDW’s are analyzed in terms of
the sine circle map, the logistic map, and the theory of noisy precursors.

I. INTRODUCTION

In typical crystals, charge-density waves (CDW?’s) de-
pin smoothly as the electric field is increased above a
threshold field.! Successful models of such “nonswitch-
ing” CDW conduction treat the amplitude of the CDW
as rigid and assign degrees of freedom only to the phase
of the CDW. However, some CDW’s “switch” abruptly
and hysteretically from a low-conductivity pinned state
to a high-conductivity depinned state. To successfully
model switching CDW conduction, it is necessary to in-
clude degrees of freedom for both the amplitude and the
phase of the CDW.? Switching CDW crystals are thus a
unique system in which to study the amplitude dynamics
of CDW’s. Recent advances in the theory of nonlinear
dynamical systems are essential to understanding the
highly nonlinear dynamics of switching CDW’s.

This paper is the third in a series of experimental®?
and theoretical* studies on the dynamics of switching
crystals of NbSe;. (Each paper contains enough back-
ground information on switching CDW’s to be read in-
dependently.) The first paper in this series’ describes the
response of switching crystals of NbSe; to dc electric
fields. Switching crystals are distinguished from
nonswitching crystals by the presence of bulk discon-
tinuities in CDW current® and by large amounts of CDW
polarization below the switching threshold. A CDW ve-
locity discontinuity implies a local, periodic collapse of
the CDW amplitude at a phase-slip center. It is suggest-
ed that switching CDW’s are pinned by a sparse distribu-
tion of ‘““ultrastrong” impurity pinning centers in addition
to the usual weak impurities found in nonswitching crys-
tals.

The second paper in this series’ investigates the
response of switching samples of NbSe; to small-
amplitude ac electric fields. Like the ac conductivity of
pinned nonswitching CDW’s, the ac conductivity of

38

pinned switching CDW’s is overdamped. However, in
contrast to the ac conductivity of depinned nonswitching
CDW’s, the ac conductivity of depinned switching
CDW'’s is underdamped.® The underdamped nature of
the sliding state of switching CDW conduction implies a
motion-dependent inertia. It is argued that such pseu-
doinertia arises naturally in a phase-slip model of switch-
ing CDW conduction.

This paper shall explore a series of electronic instabili-
ties that occur only in switching CDW’s. The first insta-
bilities occur for dc current-driven switching CDW’s and
are associated with a region of negative differential resis-
tance (NDR).” Large-amplitude 1/f noise and intermit-
tency are observed and attributed to the CDW hopping
between many metastable sliding states. The second set
of instabilities, occupying the major part of this paper,
occur in the presence of strong combined ac and dc elec-
tric fields.

The response of nonswitching CDW’s to combined ac
and dc electric fields has in recent years been the subject
of many experimental® !> and theoretical'*!® investiga-
tions. The external ac electric field interferes with an
internal frequency generated by a CDW as it slides
through a periodic impurity pinning potential. When the
internal frequency locks to the external frequency (mode
locking), CDW transport becomes highly coherent and
fluctuations are “frozen out.”!! The number of degrees
of freedom active in CDW transport is reduced during
mode locking.

The response of switching CDW’s to combined ac and
dc electric fields is more complex. For driving frequen-
cies less than 1 MHz, we report the first observation of a
characteristic power spectrum which we call “ac switch-
ing noise.” The power spectrum of ac switching noise
consists of a broadband component which is superim-
posed on sharp peaks at the drive frequency and its har-
monics. The broadband component decreases monotoni-
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cally as a function of increasing frequency and is as much
as 10 dB larger than the broadband noise associated with
sliding CDW conduction in the same sample. ac switch-
ing noise occurs when a sample is driven at low frequency
repeatedly through the switch in the I-V curve. No com-
parable instability is observed in nonswitching samples.
ac switching noise is attributed to the unpredictability of
the depinning process in switching samples.

For driving frequencies greater than 5 MHz, the
phase-slip centers®® created during switching CDW con-
duction appear to synchronize and a qualitatively
different regime occurs. The switching CDW mode-locks
to the radio-frequency field, and on each mode-locked
step a period-doubling route to chaos'® or related insta-
bility is observed. No comparable instabilities are ob-
served in nonswitching CDW’s. The period-doubling
route to chaos is viewed as the frustrated response of a
pseudoinertial switching CDW which is strongly en-
trained by the radio frequency electric field.

The period-doubling route to chaos is characteristic of
systems with few active degrees of freedom.!” Thus it is
reasonable to compare experimental results for mode-
locked switching CDW’s with the behavior of low-
dimensional nonlinear dynamical systems (nonlinear
mathematical models with few degrees of freedom). The
structure of mode locking and associated instabilities in
switching CDW’s are in qualitative and quantitative
agreement with the predictions of the one-dimensional
sine circle map.'®*!® The period-doubling route to chaos
in switching CDW’s is consistent with the predictions of
the logistic map with added noise.?’ Other instabilities
are consistent with the theory of “noisy precursors” of
dynamical instabilities.??> The agreement between the
mode-locking behavior of switching CDW’s and the be-
havior of low-dimensional nonlinear dynamical systems
indicates that, as in nonswitching CDW’s, the mode-
locked state in switching CDW’s involves few active de-
grees of freedom.

The remainder of the paper is organized as follows.
Section II describes experimental techniques. Section III
describes experimental results. Section IV analyzes the
experimental results in terms of the modern theory of
nonlinear dynamical systems and the phase-slip model of
switching. The paper concludes in Sec. V and future
directions for this work are discussed.

II. EXPERIMENTAL TECHNIQUES

Four different samples of undoped NbSe; were used in
this study. The samples are numbered 1-4. The samples
were grown by direct reaction of the elements. Samples
1, 3, and 4 were virgin samples which switched without
any treatment. Switching was induced in sample 2 by
etching in hot, concentrated sulfuric acid.?

Samples were mounted in a standard two-probe
configuration with silver paint contacts. Samples 1 and 4
were driven in a constant-current configuration. Samples
2 and 3 were driven in a constant-voltage configuration.
In the constant-voltage configuration, dc and rf voltage
supplies were buffered with a high-speed voltage follower
with a bandwidth of 350 MHz and an output impedance
of less than 1 Q. The response of the switching CDW’s
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was determined in current-driven cases by measuring the
voltage across the sample, and in voltage-driven cases by
measuring the voltage across a small resistor (resistance
less than 10% of the sample resistance) in series with the
sample. For (voltage-driven) differential conductance
measurements, a small, low-frequency ( =200 Hz) modu-
lation was added to the dc and rf voltages, and was
detected with a lock-in amplifier. Power spectra for fre-
quencies less than 25 kHz were measured with a
Hewlett-Packard HP-3582A [fast Fourier transform
(FFT)] spectrum analyzer. Power spectra for frequencies
greater than 0.5 MHz were measured with a HP-8558B
(sweeping filter) spectrum analyzer.

III. EXPERIMENTAL RESULTS

A. Negative differential resistance and intermittency

This section describes electronic instabilities that are
observed exclusively in current-driven experiments on
switching samples of NbSe;. The phenomena are most
dramatic near 40 K, a temperature somewhat higher than
that at which hysteretic switching is fully developed.>?’
At this temperature, when a sample is biased just above
threshold, a region of NDR is observed in the dc
response. Frequency-domain analysis of the response
near the NDR region shows anomalously large 1/f noise
as well as violent intermittent behavior.’

The inset to Fig. 1 shows a direct current-voltage (I-V)
plot for a single NbSe; crystal at 7=40 K. The position
of the first deviation from Ohmic response, i.e., the
threshold current I, is identified with an arrow. Begin-
ning at I-, somewhat above I, smoothly increasing the
current I results in a smooth decrease in the sample volt-
age. The differential resistance dV /dI is negative in this
region. Increasing I further into the nonlinear region re-
sults in the differential resistance becoming positive once
again. We note the presence of a “step” in the NDR re-
gion, in which dV/dI is close to zero over a limited
current range.
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FIG. 1. Power spectrum of the voltage across sample 1 for
frequencies less than 20 MHz. The sample was current biased
in the negative differential resistance (NDR) region. Inset: I-V
curve for sample 1. I marks the first deviation from Ohmic be-
havior. Somewhat above I, the region of NDR is visible. A
*step”” on which dV /dI =0 occurs in the NDR region.
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Simultaneously with the dc I-V characteristics, the ac
voltage response was measured with a spectrum analyzer.
The narrow-band and broadband noise generic to CDW
conduction starts immediately at /. Just before the
NDR region, however, a sudden onset of high-level
broadband noise occurs, as illustrated in Fig. 1. The
power response of the noise signal in Fig. 1 obeys a 1/f
distribution. At 1 MHz the absolute power level of the
noise is approximately 4 orders of magnitude larger than
the conventional broadband noise, and approximately 2
orders of magnitude larger than the narrow-band noise,
observed immediately before the NDR region. Hence the
1/f noise totally dominates the noise usually associated
with CDW conduction, which is not observable in Fig. 1.
Although the onset of high-level broadband noise corre-
sponds to the beginning of the NDR region, the noise
persists even after the current has exceeded the NDR re-
gion. However, beyond the NDR region the frequency
spectrum becomes distorted and no longer follows a 1/f¢
behavior.

A second remarkable feature of the spectral response
in the NDR region is that of temporal instability. In ad-
dition to the large-amplitude 1/f noise, power spectra
with sharp frequency structure of even larger amplitude
appear intermittently. The duration of the additional fre-
quency structure is typically 0.1-0.5 s, and it appears
with a frequency ranging from several hertz to approxi-
mately 0.1 Hz. The intermittent structure appears only
for bias currents in the NDR region. It occurs predom-
inantly on the step dV /dI =0 observed within this re-
gion. Figure 2 shows the intermittent voltage response in
the detection frequency range 0-25 kHz, with the sample
current biased to the step in the NDR region shown in
the inset to Fig. 1. Figures 2(a)-2(f) are power spectra
derived from fast Fourier transforms of time series
recorded sequentially and approximately 1 s apart in real
time. All other experimental conditions for the plots are
identical. The intermittent structure dominates the pre-
viously discussed 1/f noise: the vertical scale in Fig. 3 is
such that the 1/f noise discussed previously is largely
suppressed. The same dominance of the intermittent
structure to the 1/f noise was observed in the detection
frequency range 1-10 MHz.

The features of NDR and instability described above
are temperature dependent. Intermittency and 1/f noise
were only observed within a few degrees of 40 K. As
temperature was raised above 40 K the NDR region be-
came progressively broader, and above approximately 47
K only a smooth decrease in the always-positive
differential resistance was observed with increasing
current above I;. As temperature was lowered between
40 and 30 K, the NDR region narrowed and moved
closer to I;. As temperature was lowered below 30 K a
gradual transition of the NDR behavior into hysteretic
switching was observed (see Ref. 2 for details of the tem-
perature dependence of switching).

B. Combined ac and dc electric fields

This section describes the response of switching
CDW'’s to combined ac and dc electric fields. Unless oth-
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FIG. 2. Power spectra of the voltage across sample 1 for fre-
quencies less than 20 kHz. These power spectra are derived
from time series recorded sequentially approximately 1 s apart.
For all spectra, sample 1 was held at identical experimental con-
ditions on the dV /dI =0 step in the I-V curve.

erwise noted, experiments were performed in a voltage-
driven configuration. Section IIIB1 describes the ac
switching noise which occurs for drive frequencies less
than 1 MHz. ac switching noise is attributed to an
avalanche depinning process. For rf driving frequencies
between 1 and 5 MHz, a crossover takes place to a quali-
tatively different regime of switching CDW dynamics.
Section III B2 describes the high-frequency regime in
which the dynamics are dominated by mode locking and
associated period-doubling instabilities. The dynamics in
the high-frequency regime are attributed to the phase-slip
process.

1. ac switching noise

A characteristic power spectrum which we call “ac
switching noise” occurs when dc electric fields are com-
bined with low-frequency ( <1 MHz) ac electric fields to
drive a sample repeatedly through the switch in the dc
I-V curve. (The ac and dc electric fields must satisfy the
condition V, . — V4. <Vc<V, +V4.) The power spec-
trum defined as ac switching noise consists of a broad-
band component superimposed on sharp peaks which ap-
pear at the driving frequency and its harmonics. The
broadband component decreases monotonically as a func-
tion of increasing frequency. At a given frequency, the
noise power of the ac switching noise is as much as 10 dB
larger than the noise power of the conventional broad-
band noise associated with dc sliding CDW conduction in
the same sample. The transition from the quiet state to



the noisy state is abrupt. There are no precursors such as
the period-doubling cascade that occurs at higher fre-
quencies in switching NbSe;. ac switching noise is seen
for driving frequencies as low as 100 Hz. ac switching
noise disappears above the switching onset temperature.
Details of the power spectrum of the ac switching noise
are shown in Figs. 3 and 4.

Figure 3 compares on a log-log plot the power spectra
of the ac switching noise (top trace) and the conventional
broadband noise (bottom trace) in the frequency range 25
Hz-25 kHz. The traces are not offset. The top trace was
recorded for V4. =V, V,.,=0.37V(, and f=0.5 MHz.
The noise power in the top trace decreases with increas-
ing frequency. These data are not well fitted by a power
law. For frequencies between 25 and 250 Hz, the noise
power decreases as roughly 1/£%¢, while between 2.5 and
25 kHz, the noise power decreases more steeply, roughly
as 1/f. The bottom trace was recorded under identical
conditions as the top trace, except that V,. was set to O
and V. was increased 10% to 1.1V. The ac switching
noise in this frequency range is on the average 5 dB larger
than the conventional broadband noise for this set of pa-
rameters.

Figure 4 compares on a log-linear plot the ac switching
noise and the conventional broadband noise between 0.5
and 2 MHz, frequencies comparable to the rf drive fre-
quency. The experimental conditions are identical to
those for the power spectra in Fig. 3. The magnitude of
the noise in the rf driven state is roughly 10 dB higher
than conventional broadband noise in this frequency
range for this set of parameters.

2. Mode locking in switching CDW'’s

This section describes mode locking and associated in-
stabilities which occur for driving frequencies greater
than 1 MHz. Section III B2 a describes the structure of
mode locking. Section III B2b describes the instabilities
that occur during mode locking at temperatures well
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FIG. 3. Power spectrum of the current response in sample 2
for frequencies 25 Hz to 25 kHz: ac switching noise (circles)
which is an average of 5 dB larger than the conventional broad-
band noise (squares). ac switching noise occurs when a sample
is driven repeatedly through the switch in the dc 7-V curve by
combined dc and low-frequency ac electric fields.
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FIG. 4. Power spectrum of the current response in sample 2
for frequencies 0.5-2 MHz: ac switching noise (upper trace)
and conventional broadband noise (lower trace). The experi-
mental conditions are identical to those of Fig. 3. The large
peaks in the upper trace at 0.5, 1, and 1.5 MHz are at the rf
drive frequency and its first and second harmonics. The width
of the peaks is instrumental.

III B2 ¢ describes the location of the instabilities in pa-
rameter space. Section IIIB2d describes the evolution
of the instabilities and of the structure of mode locking as
the temperature rises above the switching transition.

a. The structure of mode locking. The structure of
mode locking in switching samples is radically different
from that of nonswitching samples. In CDW systems
driven by combined rf and dc electric fields, mode locking
occurs when the “washboard” frequency (generated as
the CDW slides through the periodic impurity pinning
potential) is a rational multiple of the rf frequency.®” "’
When a CDW is mode locked, the I-V curve shows a
step, and the dV /dI curve shows a peak. The structure
of mode locking in nonswitching CDW’s is illustrated in
Ref. 12. For low rf driving amplitudes, the mode-locked
steps in nonswitching CDW'’s are relatively narrow. As
the rf amplitude is increased, the width of the mode-
locked regions first increases, and then decreases. For
any value of rf amplitude, mode-locked peaks in the
graph of dV /dI versus I are separated by wide regions in
which the CDW is unlocked and dV /dI is low.

Figure 5 shows a series of I-V curves for a switching
CDW sample with a clean, strong switch. As the ac am-
plitude is increased, steps appear in the I-V curve. On
each step, the slope of the curve is approximately equal to
the slope of the I-V curve below the switching threshold,
indicating that the CDW phase velocity is locked to the
frequency of the ac drive and the CDW is on a Shapiro
step. For instance, the decreasing dc bias curve for
V=21 mV shows that the CDW is always mode locked
in the region from about 15 to 30 mV of dc bias. When
the dc bias reaches the end of a Shapiro step, the system
jumps to the next step. The jump is hysteretic—it occurs
at different values of the dc bias for sweeps of increasing
or decreasing dc bias. For a range of values of rf and dc
bias, there are no values of dc bias for which the CDW is
not locked. This is even more clear in the lower traces of
Fig. 6, in which the (voltage-driven) differential conduc-
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FIG. 5. I-V curves for sample 3 in the switching regime. A
rf field induces broad, hysteretic Shapiro steps.
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FIG. 6. Differential conductance for sample 2 in the switch-
ing regime. Arrows parallel to the differential conductance
curves indicate the directions of the voltage sweeps. For low rf
electric fields, the differential conductance is always close to the
V4. =0 value, indicating that most of the sample is mode locked
for all values of V.. Sharp spikes indicate transitions from one
mode-locked region to the next. For high rf electric fields,
mode-locked regions of low differential conductance are
separated by unlocked regions of high differential conductance.
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tance is plotted for a different sample in a similar region
of parameter space. Mode-locked regions correspond to
peaks in differential resistance and hence to troughs in
differential conductance. In Fig. 6, sharp spikes in the
differential-conductance curves mark the boundaries be-
tween Shapiro steps. However, except for the spikes, the
differential conductance for moderate dc bias values
above the switching threshold field is always close to the
differential conductance for a pinned CDW indicating
that the system is always at least partially mode locked.?*

The upper traces of Fig. 6 show that the mode-locked
steps take up a smaller fraction of parameter space as rf
amplitude or dc bias are increased sufficiently. The
Shapiro steps (regions of low differential conductance) are
clearly separated by regions in which the CDW is not
mode locked and the differential conductance is higher.
The structure of mode locking in Fig. 6 at high values of
rf amplitude is reminiscent of that seen in nonswitching
CDW’s at higher temperatures, in which Shapiro steps
are always separated by unlocked states. The similarity
with higher-temperature data is not a heating effect since
the average differential conductance is independent of dc
bias for all but the highest rf amplitudes.

b. Instabilities in mode locking for switching CDW’s.
In mode-locked nonswitching CDW’s, velocity fluctua-
tions with frequency much less than the rf frequency are
frozen out during mode locking.!! The broadband noise
level at frequencies between harmonics of the rf frequen-
cy differs little in mode-locked and unlocked cases.'® In
mode-locked switching CDW'’s, the power spectrum of
the CDW velocity for a constant dc bias may show
unusual structure between harmonics of the rf frequency.
In (i) of Sec. III B2b, we describe a sequence of power
spectra which occur as dc bias is swept along »:1 mode-
locked steps. This sequence is interpreted as a period-
doubling route to chaos. The sequence is nearly periodic
in dc bias. In (ii) of Sec. IIIB2b we describe other se-
quences of power spectra, which are also nearly periodic
in dc bias. The latter sequences are explained in Sec. IV
in terms of the theory of noisy precursors. In (iii) of Sec.
IIIB2b we describe power spectra characteristic of sim-
ple mixing between the rf frequency and the narrow-band
noise.

(i) Period-doubling route to chaos. The sequence of
power spectra identified as a period-doubling route to
chaos is shown in Fig. 7(a). The temperature, rf frequen-
cy, and rf amplitude are identical in all these spectra.
Only the dc bias was changed within a single Shapiro
step. The first spectrum shows only the fundamental of
the rf drive frequency f, and harmonics due to the non-
linearity of the system. In the second spectrum, peaks
appear at f /2 and its odd harmonics, indicating the first
period-doubling bifurcation in the period-doubling cas-
cade. The third spectrum shows a generally elevated
noise level with additional peaks at f /4 and its odd har-
monics. In the final spectrum broad peaks centered at
f/2 and odd harmonics are 20 dB above the original
noise baseline. We identify the latter spectrum as chaos.

In Fig. 7(b) the dc bias dependence of the power spec-
trum is mapped out for constant rf amplitude and fre-
quency. Near the end of a given Shapiro step the signal is



38 SWITCHING AND CHARGE-DENSITY-WAVE . . . IN NbSe;. III. ...

;-‘:(s) [ (a) NoSe
.E : - T=265K
% R L I

52. ;’_~l 1 1 ;-dk'l 1 L 1
~ [t (iv)

ok [

5 W: W
o :A-L/Jl 2N .
o o 10 20 3 (0} 10 20 30 40
< Frequency (MH2z)

£

| wsey feo M (b)

— V,-21mV 04

c

Q

=

=

=3

o

2

o

&

N 24 2

2? 286 27 8 29
Bias Voltage (mV)

FIG. 7 (a) Power spectra of the current response in the
Shapiro-step region of sample 3. External rf drive frequency
and amplitude as in (b). (i) V4. =25 mV, period 1; (ii) V4. =25.1
mV, period 2; (iii) V4. =25.2 mV, period 4; (iv) V4. =25.5 mV,
chaos. (b) Schematic representation of the periodicity of the
current response in the Shapiro-step region for sample 3, for
forward- and reverse-bias voltage sweeps.

period 1 as in (i) of Fig. 7(a). (Since there is essentially no
space between Shapiro steps, and the periodic spectrum
occurs over only a small range of dc bias, it was difficult
to determine whether this spectrum occurred at the end
of one step or the beginning of the next.) The period-1
spectrum was followed by relatively narrow regions of
period-2 and period-4 spectra and a broad region of
chaotic spectra as shown in (iv) of Fig. 7(a). At the end of
a chaotic region, the spectrum again became period 1 and
the entire sequence repeated itself on the next Shapiro
step. The period-doubling cascade is thus periodic in dc
bias over a large range of dc bias. If the dc bias is in-
creased sufficiently, the mode-locking and period-
doubling cascades become weaker and eventually evolve
into different spectra presented below. The period-
doubling route to chaos can also be achieved by varying
rf amplitude for fixed rf frequency and dc bias.

Not all switching samples exhibit the period-doubling
route to chaos as clearly as the one shown in Fig. 7 (sam-
ple 3). For instance, in sample 2, a period-1 spectrum [(i)
of Fig. 7(a)] was unattainable in the range of parameters
in which period-doubling cascades occurred. At the be-
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ginning of a Shapiro step the power spectrum was period
2 as in (ii) of Fig. 7(a) and evolved into chaos as dc bias
was increased. As dc was increased further, the system
jumped onto the next step where the spectrum was again
period 2. Apparently the hysteretic jump always by-
passed the region in which the system was period 1.

(i) Noisy precursors. In addition to the familiar
period-doubling route to chaos, a number of more unusu-
al sequences of power spectra also occur in switching
NbSe; crystals. In all spectra shown here the dc bias
exceeds the switching threshold, and the rf frequency and
amplitude are fixed. One characteristic sequence is
shown in Fig. 8. We identify this sequence as an example
of the virtual Hopf phenomenon?? (see Sec. IV). For the
lowest dc bias shown (top trace) the spectrum is relatively
featureless. As dc bias is increased, broad “bumps” ap-
pear symmetrically about f/2=10 MHz. These bumps
move symmetrically toward 10 MHz, until they become
sharp peaks located at approximately f/3 and 2f/3.
These peaks broaden again as they move closer to f /2
and finally coalesce into a sharp peak at f /2. For a finite
range of dc bias, the power spectrum does not change.
Then the f /2 peak suddenly jumps to a lower amplitude
and again bumps appear symmetrically about f/2.
These bumps now move symmetrically away from f/2
and eventually disappear. As dc bias is increased further,
the identical sequence repeats itself. As in the period-
doubling cascade, the sequence of power spectra is nearly
periodic in dc bias.
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FIG. 8. Sequence of power spectra of the current response of
sample 2 for different dc biases at fixed rf amplitude and fre-
quency. The dc bias increases from the top trace to the bottom
trace. This sequence is nearly periodic in dc bias. This se-
quence is identified as an example of the ‘‘virtual Hopf
phenomenon” [see (iii) of Sec. IVB2a]. The power spectra are
offset, and each “tic” on the vertical axis is at —80 dBm. The
critical field ¥V for this sample was 150 mV. The power levels
in Figs. 8—10 may be compared with one another as they were
recorded for identical amplifier gains and spectrum analyzer
bandwidths.
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A related sequence of power spectra is shown in Fig. 9.
We call this sequence “period 2 with excess noise.” In
this series the bottom trace represents the smallest value
of dc bias. The spectrum for the bottom trace shows only
a sharp peak at f/2=10 MHz. As dc bias is increased,
the amplitude of this peak shrinks continuously until the
spectrum changes discontinuously to that shown in the
third trace from the bottom, where the peak at f /2 has
grown by 23 dB and broad symmetric structure appears
on the flanks of the f /2 peak as well as near the sides of
the trace. As the dc bias is increased further, the sym-
metric structure first smoothly increases and then de-
creases in magnitude while remaining at the same fre-
quency. Finally, the spectrum changes discontinuously
to that of the top trace of Fig. 9, which is virtually identi-
cal to the bottom trace. Like the sequence in Fig. 8, this
sequence is nearly periodic in dc bias over a broad range
of dc bias for constant rf amplitude and frequency.

In the course of sweeping through the large parameter
space available in this experiment, spectra such as those
depicted in Fig. 10 occurred occasionally. Figure 10(a)
shows a power spectrum with a sharp peak at f/2=5
MHz and broad peaks symmetrically located at intervals
of f/8 about the central peak. Figure 10(b) shows a
power spectrum with broad peaks at intervals of f /6.

(ii1) Mixing. There are also V- f combinations for
which none of the above instabilities occur. In these re-
gions of parameter space, only a weak mixing between
the narrow-band noise and the rf field is observed. At a
given dc bias, peaks occur at the narrow-band noise fre-
quency fnpn» at the rf frequency f and its harmonics,
and at the sum and difference frequencies nf * fygn (1 is
an integer). As dc bias is swept, the narrow-band noise
and sum and difference frequencies move through the

NbSeg T=19K V=071V f=20 MHz
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FIG. 9. Sequence of power spectra of the current response of
sample 2 for different dc biases at fixed rf amplitude and fre-
quency. The dc bias increases from the bottom trace to the top
trace. This sequence, like the sequence in Fig. 8, is nearly
periodic in dc bias. We call this sequence “period 2 with excess
noise.”
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FIG. 10. Power spectra of the current response of sample 2.
(a) Period 6, (b) period 8. These power spectra are observed oc-
casionally and do not fit into any clear sequence.

spectrum but no behavior obviously different than simple
mixing is observed. (For a more extensive description of
mixing in nonswitching CDW’s, see Ref. 25.)

¢. Location of the period-doubling and noisy-precursor
instabilities in parameter space. This section describes the
location in parameter space of the period-doubling and
noisy-precursor phenomena. The boundaries of the insta-
bilities described above are convoluted two-dimensional
surfaces in a three-dimensional parameter space. We
present projections of these surfaces into three different
two-dimensional parameter planes.

Figure 11 maps out a region in which period doubling

1 I I
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- f=35MHz _
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o
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07075 1.0 1.25

dc bias ly¢/Ic

FIG. 11. First period-doubling region in the dc-bias—rf-
amplitude plane for sample 4. The figure was constructed by
sweeping dc bias forward for rf frequency f =35 MHz and vari-
ous rf amplitudes. The solid circles mark the sudden appear-
ance and disappearance of a strong peak at f/2 in the power
spectrum.
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occurs in the rf-amplitude—dc-bias plane. For these ex-
periments, sample 4 was current driven and the driving
frequency was held constant at 35 MHz. The boundaries
of this plot were determined by sweeping dc bias at con-
stant rf frequency and amplitude and marking the onset
and disappearance of the first period-doubling instability.
Because of the relatively high temperature at which these
experiments were conducted, the period-doubling cascade
never developed into chaos. Figure 11 shows a threshold
rf amplitude above which period doubling is possible. As
rf amplitude is increased, the dc threshold for the first
period-doubling instability decreases. On application of a
strong rf electric field, a similar suppression of the CDW
depinning threshold occurs in nonswitching samples.?® A
substantial suppression of V is also evident in Figs. 5, 6,
and 15. The shape of boundary in Fig. 11 is similar for
all of the instabilities that are periodic in V4, (i.e., the in-
stabilities described in Sec. IIIB2b). The only qualita-
tive difference is that for some parameter ranges there is
an attainable upper V threshold above which the insta-
bility no longer occurs. The shape of the boundary is also
similar for voltage- and current-driven cases.

Figure 12 maps out a region in which period doubling
occurs (again, in current-driven experiments on sample 4)
in the rf-frequency—dc-bias plane. Figure 12 was con-
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FIG. 12. First period-doubling region in the dc-bias—rf-
frequency plane for sample 4. The figure was constructed by
sweeping dc bias forward for rf amplitude I,,=0.711. and vari-
ous rf frequencies. The solid circles mark the sudden appear-
ance and disappearance of a strong peak at f/2 in the power
spectrum. For high values of the rf frequency, the f/2 peak
was not much above the instrumental noise level. The open cir-
cles mark the dc biases at which the f/2 peak gradually faded
into the instrumental noise.
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structed in exactly the same number as Fig. 11, except
that here the rf amplitude was held constant at
I:/I-=0.711¢. In this case the period-doubling bound-
ary closes on itself, and there are upper and lower limits
in dc bias and rf frequency for the first period-doubling
instability. As the rf frequency is increased, the lower dc
bias threshold for period doubling increases. A similar
trend is also seen in the study of ac-dc interference in
nonswitching CDW’s. As the rf frequency increases for
constant rf amplitude, higher narrow-band noise frequen-
cies are required for mode locking to occur and a given
n :m mode-locked step moves to higher dc bias values.

The most revealing way in which to map the parameter
dependence of the instabilities in mode locking is as a
function of rf amplitude and frequency, as is done in Fig.
13. By varying the dc bias at fixed rf amplitude and fre-
quency it is possible to observe a number of different
power spectra, as shown in Sec. IIIB2b. We define a
ranking of the observed power spectra in order of prox-
imity to the chaotic state: 1, mixing; 2, virtual Hopf (Fig.
8); 3, period 2 [(ii) of Fig. 7(a)]; 4, period 2 with excess
noise (Fig. 9); 5, period 4 [(iii) of Fig. 7(a)]; 6, chaos [(iv)
of Fig. 7(a)].

In order to generate Fig. 13, rf frequency and ampli-
tude were fixed and dc bias was swept until the power
spectrum closest to chaos (as defined in the above ranking
scheme) was observed. Consider the system at a point in
the frequency-amplitude plane such that the period-
doubling route to chaos depicted in Fig. 7 is possible.
That point is marked chaotic in Fig. 13, even though
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FIG. 13. Location of the instabilities described in Figs. 7-9
in the rf-frequency-rf-amplitude plane for sample 2 for
T < Tyen- The symbols are spaced at 5-MHz intervals and
mark the values of rf amplitude at which one type of instability
is replaced by another. The lines are guides to the eye.
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period-1, -2, and -4 behavior as well as chaos are ob-
served for some values of dc bias. The boundaries drawn
in this plot are only approximate, as the instabilities
evolve continuously from one type to another. The be-
havior of switching CDW’s at low temperatures may be
summarized using Fig. 13 as a guide.

1. For driving frequencies less than 1 MHz, on the
left-hand edge of the figure, ac switching noise occurs for
Vie =™ Vae <Vc < V4. +V,. Note the power spectrum we
call ac switching noise (Fig. 4) is qualitatively different
than the power spectrum we call chaos [(iv) of Fig. 7(a)].
The power spectrum of ac switching noise decreases
monotonically between harmonics of the ac driving fre-
quency. The power spectrum of chaos shows broad
bumps centered halfway between harmonics of the ac
driving frequency.

2. For frequencies between 1 and 5 MHz ac switching
noise becomes mixed with a period-doubling route to
chaos. ac switching noise is not observed for frequencies
greater than 5 MHz.

3. For frequencies between 5 and 30 MHz, a full
period-doubling route to chaos may occur for sufficient rf
amplitude. The first simple period-doubling instability
occurs for rf amplitudes greater than approximately
V-/10. As rf amplitude is increased further, period 2
with excess noise (Fig. 9) occurs. For still higher rf am-
plitude a period-4 instability occurs. Finally, for rf am-
plitudes greater than 0.4V the full period-doubling
route to chaos is observed. For frequencies between 5
and 15 MHz, a period-doubling route to chaos is ob-
served for the highest rf amplitudes that will not damage
the sample. For frequencies between 15 and 30 MHz, in-
creasing the rf amplitude causes the system to exit the re-
gion in which the full period-doubling route to chaos
occurs. As rf amplitude is increased further, the system
first enters a region with only a virtual Hopf sequence.
Finally, the system enters a region where only mixing
occurs.

4. Above 30 MHz, the period-doubling route to chaos
is no longer observed for any rf amplitude. Between 30
and 70 MHz, the most nonlinear behavior is the virtual
Hopf behavior sequence of Fig. 8.

5. Above 70 MHz, only mixing is observed.

Figure 13 was constructed for sample 3, but the shape
of this plot is similar for different switching CDW sam-
ples.

d. Instabilities for T > T, Just above the switch-
ing onset temperature, a number of instabilities disap-
pear. The ac switching noise, which is directly associated
with a low-frequency rf field driving the CDW repeatedly
through the switch, is no longer present. Neither is a full
period-doubling route to chaos observed. However,
period-2 and period-4 instabilities, as well as the virtual
Hopf (Fig. 8) and period 2 with excess noise (Fig. 9) are
still observed. Figure 14 locates these instabilities in rf-
frequency —rf-amplitude space. Figure 14 was construct-
ed in the same manner as Fig. 13, but for T=37 K in-
stead of T=19 K. The boundaries in Fig. 14 are similar
to those in Fig. 13, except that certain instabilities no
longer appear.

The differential conductance at 37 K for a series of rf
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FIG. 14. Location of the instabilities described in Figs. 7-9
in the rf-frequency-rf-amplitude plane for sample 2 for
T > Tuuen- The region marked “period 2. .." exhibited period
2, period 2 with excess noise, and virtual Hopf behaviors.

amplitudes for rf frequency 50 MHz is shown in Fig. 15.
This figure should be compared with Fig. 6. For V=0,
simple CDW depinning is observed. As V' is increased,
troughs develop in the differential conductance, signify-
ing the onset of mode locking. As V is increased fur-
ther, period-doubling instabilities are observed. The
mode-locked regions become broad for intermediate
values of V, filling most of the available range of dc bias
at V;=0.1V-. As V is increased further, the mode-
locked regions become narrower and period doubling
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occurs less frequently. Finally, for V ;=0.4V., the
differential conductance is high over most of the available
range of dc bias, and period doubling occurs not at all.
There are two sets of interference troughs in this sample
(most clearly visible in the high-V; data), indicating the
presence of two domains with different velocities.

IV. ANALYSIS

The results section of this paper has described a num-
ber of unusual instabilities that occur only in switching
crystals of NbSe;. In this section these instabilities are
analyzed in terms of the phase-slip picture of switching,
using simple mathematical models borrowed from the
modern theory of nonlinear dynamical systems. A
phase-slip model of switching was proposed in the first
paper of this series.”> Anomalies in the ac conductivity of
switching CDW’s are explained in terms of a phase-slip
model in the second paper in this series.’ Theoretical de-
tails of a phase-slip model, and extensive simulations of a
differential equation proposed to describe the phase-slip
process, are to be found in the fourth paper of this series.*

According to the phase-slip picture of switching,>*?%’
in crystals which show switching at low temperatures,
the CDW is pinned by sparsely distributed ultrastrong-
pinning centers as well as conventional, weaker impuri-
ties. For electric fields below a critical electric field E,
the CDW becomes heavily polarized, but the ultra-
strong-pinning centers prevent it from sliding. The CDW
switches and begins to slide only when the polarization
energy is sufficiently large to cause the CDW amplitude
to collapse at the strongest-pinning centers. When the
amplitude collapses, the CDW phase advances by a mul-
tiple of 27, partially relieving the CDW polarization and
allowing the CDW amplitude to increase again from
zero. However, the CDW polarization rapidly builds up
again, causing another amplitude collapse and phase slip.
Once the critical field has been exceeded, the CDW ad-
vances by periodic slips of the CDW phase. The average
pinning force due to the ultrastrong-pinning centers col-
lapses as the electric field is increased above the critical
value. Thus, once it depins, the CDW slides with a rapid
velocity, comparable to what it would have for the same
electric field in the absence of strong-pinning centers.

The instabilities observed in switching samples of
NbSe; can be divided into low- and high-frequency
categories. The low-frequency instabilities are the large
1/f noise and intermittency associated with negative
differential resistance (analyzed in Sec. IV A), and ac
switching noise (analyzed in Sec. IVB1). The low-
frequency instabilities are attributed not to the details of
the phase-slip process, but to the complex dynamics of
many asynchronous phase-slipping domains. The high-
frequency instabilities are the period-doubling and related
instabilities associated with mode locking (analyzed in
Sec. IV B2). The high-frequency instabilities are attribut-
ed to the dynamics of synchronized phase-slipping
domains. The mathematical formalism used to describe
the instabilities in mode locking is in the sine circle map,
which has been used in recent years as a paradigm of
mode-locked systems (Sec. IVB2a). The physical basis
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for the observation of period doubling and related insta-
bilities in mode-locked switching CDW’s is the motion-
dependent inertia associated with the phase-slip process
(Sec. IVB2b).

A. Negative differential resistance

In this section, negative differential resistance (NDR)
and associated instabilities are explained in terms of a
phenomenological two-fluid picture. It is shown that
NDR may not occur in a voltage-driven CDW. NDR
will occur in a current-driven experiment if the CDW
current increases sufficiently steeply as a function of ap-
plied dc current near threshold. It is suggested that, for
dc biases just above threshold, only a fraction of the
CDW is depinned and sliding at high velocity. If only a
fraction of the CDW is depinned during NDR, the distri-
bution of CDW current within the crystal must be spa-
tially inhomogeneous. The large-amplitude 1/f noise
and intermittency observed during NDR are attributed
to the CDW hopping between the many distributions of
CDW current that are accessible for a given dc current
bias near threshold.

A CDW crystal can be thought of in terms of a two-
fluid model. The current is carried by a channel of nor-
mal electrons with a field-independent conductance o y in
parallel with a CDW channel with a field-dependent con-
ductance ocpw. Increasing the electric field across a
CDW crystal may only cause an increase in CDW
current, and hence docpw(V)/dV 20. This condition is
sufficient to show that a voltage-driven CDW may never
exhibit NDR. The current through the CDW for a given
applied voltage is

I=[oy+ocpw(M]V . (1)
The differential conductance [=1/(differential resis-
tance)] is

dI docpw(V)

which is always positive. NDR has not been reported in
any voltage-driven experiment on NbSe;.

In nonswitching samples, it makes little difference
whether a sample is driven by a constant voltage or a
constant current. In switching samples, however, the
difference may be crucial. For the current-driven case,
we begin by assuming that the CDW conductance is a
monotonically increasing function only of the applied
current I. The voltage V across the CDW crystal is given
by

1

y=— " .
U;V+O.CDW(I)

(3)

The differential resistance is then

dav _ 1 Tocpw(I)

dI N [U\+UCDW(I)] - [O'A\r_f‘O'CDw(I)]z

, (4)

where o cpw(I)=do cpw(l)/dI. The condition for NDR
(dV /dI <0)is



13 038

0-N+0-CDW(I)

el > = (5)

When condition (5) is satisfied, a small increase in current
causes a sufficiently large increase in conductivity that
the voltage across the sample is a decreasing function of
applied current. In nonswitching samples, the CDW
conductivity does not increase sufficiently rapidly near
threshold to satisfy condition (5). However, condition (5)
is easily satisfied near threshold in switching samples: the
CDW conductivity ocpw(]) is always less than or of the
order of the normal conductivity oy, while o ¢pw(I) may
be arbitrarily large [if the sample shows switching,
o cpw( ) is infinite at threshold].

The steep nonlinearity which gives rise to NDR can be
explained within the context of the phase-slip model of
switching. The gradual depinning of nonswitching sam-
ples is usually described as a spatially homogeneous pro-
cess: in pure and undamaged samples the CDW current
is uniform throughout the crystal. Above the switching
onset temperature, the ultrastrong-pinning centers are
ineffective in causing phase slippage and switching sam-
ples behave like nonswitching samples. Well below the
switching onset temperature, CDW depinning is charac-
terized by bulk discontinuities in CDW current.’ As dc
bias is increased above a critical field, a longitudinal sec-
tion of the crystal abruptly switches from the static state
to a state in which the CDW is sliding with its maximum
conductivity (in the high-field limit).> A phase-slip center
only a few micrometers wide may separate the sliding
section from a section of the crystal in which the CDW is
pinned.> NDR occurs at temperatures intermediate be-
tween the switching and nonswitching regimes in a CDW
crystal. We assume that small sections of the CDW
behave similarly in the NDR temperature regime and in
the switching temperature regime: a section either is
static, or it slides with its high-field conductivity. Given
this two-state assumption, it is possible to apply a current
which is sufficient to depin only a fraction of the CDW.
The observation of NDR indicates that, near threshold,
the fraction of the CDW which is depinned is a continu-
ous but rapidly increasing function of applied current.?®

The rate at which the depinned fraction changes with
applied current appears to be a strong function of tem-
perature. At the relatively high temperatures at which
NDR is observed, the average fraction of the CDW
which is depinned changes continuously over a small
range of dc bias. At the lower temperatures at which
switching is observed, the depinned fraction changes
abruptly. The temperature dependence of the depinning
rate may be related to the temperature dependence of the
coupling between the domains associated with
ultrastrong-pinning centers.

The two-fluid model with a spatially inhomogeneous
current distribution leads naturally to a picture of the ob-
served instabilities. The total current is divided between
a component carried by the normal electrons and a com-
ponent carried by the CDW. Thus a given value of the
total applied current in the NDR region does not unique-
ly determine the magnitude of the CDW current. In
principle, for a given total current, current may shift be-
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tween the normal electrons and the CDW. Such a shift
causes a change in voltage across the CDW crystal. If
such shifts occur erratically, noise will result. The pic-
ture of an inhomogeneous current distribution suggests a
related mechanism for noise. A given value of the CDW
current does not uniquely determine the spatial distribu-
tion of CDW current. For a given CDW current, the
spatial distribution could shift within the crystal, causing
some noise. Thus the instabilities observed in the NDR
region are naturally attributed to the system hopping be-
tween distinct accessible states which have different mag-
nitudes and spatial distributions of CDW current.

It has been shown that even the case of a system hop-
ping between two states can lead to intermittency. Ben-
Jacob et al.*® have considered a Josephson junction
biased to an unstable region between two stable regions
where d6/dt=y (t) or d6/dt=y,(t), where O is the
phase difference across the junction. The system may
hop back and forth between states y,(¢) and y,(¢). In this
simulation, apparently random hopping between the
states leads to intermittent behavior, with a power spec-
trum strikingly similar to Figs. 1 and 2. A related study
of bistable systems by Arecchi and Lisi*® again finds
dramatic increases in the low-frequency noise level, con-
sistent with a 1/f power law. Our simultaneous observa-
tion of 1/f noise and intermittency suggests two different
time scales for hopping in this system. The 1/f noise of
Fig. 1 appears to be dictated by a relatively high frequen-
cy, possibly the intrinsic narrow-band-noise frequency.
The intermittent behavior displayed in Fig. 2 suggests a
longer time scale, of the order of 1072 s. This time scale
is likely related to the avalanche depinning process (see
next section, ac switching noise). We conclude that
NDR, large-amplitude 1/f noise, and intermittency may
all be explained as arising from a phase-slip mechanism in
which hopping occurs between many marginally stable
spatial distributions of CDW current.’!

B. ac+dc electric fields
1. ac switching noise

ac switching noise occurs when a sample is driven
through the switch in the dc I-V curve at frequencies less
than 1 MHz. These frequencies are low on the scale of
typical narrow-band-noise frequencies (1-100 MHz), and
on the scale of the crossover frequency in the ac conduc-
tivity (50 MHz). It is thus reasonable to model ac switch-
ing noise in the dc limit, ignoring dynamical effects such
as entrainment or motion-dependent inertia. In the dc
limit, there are two possible contributions to an increase
in the broadband noise level when the sample is repeated-
ly driven through the switch in the I-V curve. If the
sample is repeatedly depinned by a sinusoidal voltage, the
power spectrum of the CDW current must include a
broadband component due to the ordinary broadband
noise associated with sliding CDW conduction. Howev-
er, the ac switching noise of Fig. 4 is as much as 10 dB
larger than the broadband noise associated with sliding
CDW conduction. We propose that ac switching noise
arises because the switching process itself is unpredict-
able.



Consider the current through a switching sample
driven by a sinusoidal voltage. If the switch occurs in-
stantaneously at exactly the same voltage for each cycle
of the sinusoidal drive, then (ignoring broadband noise
associated with sliding CDW conduction) the CDW
current will be a perfectly periodic function of time.
Only harmonics will appear in the power spectrum of the
CDW current. However, if the switch occurs at a slight-
ly different voltage for each cycle of the ac drive, or if the
switch itself takes finite time to occur and is irregular,
then the CDW current will not be a perfectly periodic
function of time. The power spectrum of the CDW
current will contain harmonics plus a broadband com-
ponent. Thus the observation of ac switching noise sup-
ports the notion that switching is an unpredictable pro-
cess.

The conclusion that switching is unpredictable is con-
sistent with previous observations of Zettl and Griiner.*?
Current pulses with I > I~ were applied to a switching
sample. The CDW remained pinned for a time 7, after
the beginning of the pulse and then depinned in a shorter
time 7g;,. The waiting time was a random variable, dis-
tributed about its mean with a Lorentzian probability dis-
tribution. The mean 7,,; and the width of the distribu-
tion were found to decrease as the height of the pulse
above threshold increased. For pulse height 7=1.011/,
the average 7,,;, was 100 us. The switching time 7
was of the order of 1 us.

For a switch to occur, a large fraction of the CDW
must depin. This means that the domains associated with
many ultrastrong-pinning centers must begin to slide at
nearly the same time. An appealing picture of the onset
of CDW conduction in a switching sample is that, when a
critical electric field is exceeded, an avalanche of the ul-
trastrongly pinned domains occurs. The results of Zettl
and Griiner have been modeled by Joos and Murray**® as
arising from such an avalanchelike process. The CDW is
treated as a two-dimensional ribbon of identical domains
(the physical origins of the domains and their couplings
are not specified in this model). When an electric field
exceeding threshold is applied to the crystal, each domain
is assigned a probability per unit time of depinning. Once
a single domain is depinned, it can trigger depinning of
neighboring domains, thus setting off a ““depinning wave”
or avalanche. The model reproduces the waiting and
switching times reported by Zettl and Griiner.”? It is
likely that the Joos-Murray model sinusoidally driven
through threshold at frequencies less than 1/7,,., will
result in power spectra similar to those for ac switching
noise (a broadband component plus spikes at the drive
frequency and its harmonics).

In attributing ac switching noise to a repeated
avalanche process, we are invoking a many-degree-of-
freedom explanation. An avalanche takes a finite amount
of time to occur, as observed in switching CDW’s by
Zettl and Gruner. When a switching CDW is driven at
frequencies greater than 1/7y,, (=1 MHz), the
avalanche will not have time to occur. A qualitatively
different regime of switching CDW dynamics ensues, and
is described in the next section.

switch
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2. Mode locking

It is crucial to include many degrees of freedom in or-
der to understand most aspects of the dynamics of
nonswitching samples.'*!*>33% In switching samples,
many-degree-of-freedom pictures have been invoked to
explain depinning, the instabilities associated with nega-
tive differential resistance, and ac switching noise. Thus
it is surprising that the simplest route to chaos, the
period-doubling route, occurs in switching CDW’s. This
route to chaos occurs in systems with a small number of
active degrees of freedom. Evidently, the many-body dy-
namics of switching CDW’s *“‘collapses” during mode
locking to a state in which only a few degrees of freedom
are important. This collapse is similar to the freeze out
of fluctuations observed during mode locking in
nonswitching CDW’s.!! Thus, even though the dynamics
of the mode-locked states in switching CDW’s are more
complicated than those of nonswitching CDW’s, in both
cases the dynamics are characterized by few degrees of
freedom.

Given the low-dimensional dynamics of the mode-
locked switching CDW system, it is appropriate to ana-
lyze our results mathematically in terms of low-
dimensional maps and differential equations. In Sec.
IV B2 a mode locking in switching CDW’s is examined in
light of dynamical systems theory, and in Sec. IVB2b
the physical mechanisms for mode locking in switching
CDW’s are explored. In (i) of Sec. IV B2a the structure
of mode locking in switching CDW’s is shown to be con-
sistent with the simplest mathematical realization of a
mode-locking system, the two-parameter sine circle map.
For parameters appropriate to our experiments, the sine
circle map predicts a period-doubling route to chaos
which may be modeled by the even simpler one-
parameter logistic map. In (ii) of Sec. IVB2a, the
period-doubling route to chaos is compared to the
period-doubling cascade in the presence of noise studied
by Huberman and Crutchfield.?’ In (iii) of Sec. IVB2a,
the instabilities of Figs. 8-10 are compared with predic-
tions of Wiesenfeld’"?> for noisy precursors of
codimension-1 bifurcations.

a. Dynamical systems theory analysis. Here we exam-
ine mode locking in switching CDW’s in light of dynami-
cal systems theory.

(1) The sine circle map and the structure of mode lock-
ing. The sine circle map is a discrete mapping that has
been studied extensively as a paradigm of natural systems
with two competing periodicities.'®!%3673% Natural sys-
tems evolve in continuous time. However, all the infor-
mation contained in continuous-time orbits is superfluous
to an understanding of many aspects of the dynamics.
Consider a periodically driven system like the (ac+dc)
driven damped pendulum:*¢

BO+6+ sinf=f .+ f,.sin(wt) . (6)

The equation is written in dimensionless form. 0 is the
phase of the pendulum, 3 is a parameter quantifying the
inertia of the pendulum, f,. and f,. are, respectively, the
dc and ac torque on the pendulum, and w is the dimen-
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sionless frequency of the ac torque. To determine the
time-average phase velocity d6/dt or the frequency of
the pendulum’s orbit relative to the frequency of the ac
drive, it is necessary to sample the phase only once each
cycle of the ac drive at 8, =6 (t=nT), where n is an in-
teger and T=2m/w. It has been shown for certain pa-
rameter values that Eq. (6) may be modeled by a one-
dimensional mapping of the circle (8) onto itself.> The
most studied member of this class of mappings is the sine
circle map

0n+l-_—6"+ﬂ+%sin(2ﬂ'0n). 7

The solutions to Eq. (7) have a rich structure which has
been investigated in detail by many authors,!81%:36~38
Particular attention has been devoted to the universal
scaling behavior of high-order mode-locked states near
the quasiperiodic transition to chaos at K=1. We find
that, for switching CDW’s Eq. (7) has predictive power
for even the low-order 0:1, 1:2, and 1:1 mode-locked
states.

The structure of mode locking predicted by the circle
map for the 0:1, 1:1, and 1:2 mode-locked steps is shown
in Fig. 16 for 0 <K <3.5. Since 6 is a mod 1 variable, the
structure of mode locking is perfectly periodic in Q, re-
peating itself with a periodicity 1. A detailed calculation
of the structure of mode locking for 0 <K < 1.5 has been
performed.’’” We have added a calculation of the boun-
daries of the 0:1, 1:2, and 1:1 mode-locked regions for
values of K up to 3.5. The boundaries of the 0:1 and 1:1
steps were determined by a simple linear stability
analysis. The boundaries of the 1:2 step were calculated
by iterating the circle map on a computer in the neigh-
borhood of the boundary until the 1:2 behavior lost sta-
bility to an unlocked state.

For K <1, the sine circle map is a monotonically in-

\
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FIG. 16. 0:1, 1:2, and 1:1 mode-locked regions for the sine
circle map (after Refs. 18, 19, 35, and 40). Period doubling and
chaos are observed only above the solid line.

o
o
N
o
F-3

M. S. SHERWIN, A. ZETTL, AND R. P. HALL 38

creasing function of 8. The fraction of the € axis occu-
pied by mode-locked regions is a small but increasing
function of K for K <1. When the solution is inside the
0:1 or 1:1 region, O is at a period-1 fixed point and returns
to the same value each iteration of the map. The winding
number W = lim(6y —6,)/N is 0 (mod 1), independent of
Q. If the solution is in the 1:2 region, the winding num-
ber is 1 independent of Q, and 6 is at a period-2 fixed
point. In between the 0:1 and 1:1 steps the system alter-
nates between higher-order mode-locked states and un-
locked (quasiperiodic) states.

At K =1, the sine circle map develops an inflection
point and the power spectrum develops broadband noise.
This is the quasiperiodic transition to chaos, which is dis-
tinct from the period-doubling route to chaos we have
observed. At K =1, it has been shown for the sine circle
map that the space between mode-locked steps is a fractal
with dimension 0.87.'% This prediction has been verified
in several physical systems.*

Above K =1, the circle map has a local maximum, and
the possible states of the system are different.’”% At the
edges of the (n:1,n:2) regions shown in Fig. 16, the solu-
tions are mode locked as for K <1, with W=(0,4) and
periodicity (1,2). As  is swept toward the center of the
mode-locked regions, the solutions maintain their wind-
ing number but undergo period-doubling instabilities.'®
For sufficiently high K, the solutions near the centers of
the mode-locked regions become unlocked and chaotic.
The first period-doubled states occur inside the n:1
locked regions for K >2,'” and at lower values of K for
higher-order mode-locked states. For K >, the 0:1 and
1:1 steps begin to overlap. As ) is swept, the system
jumps hysteretically from one step to the next. For K
near 1, as () is swept from the edge of a step towards the
middle, a period-doubling route to chaos is observed.*0
This is consistent with experiment (see Fig. 7).

It is not straightforward to make a one-to-one
correspondence between the parameters of our experi-
ment and the parameters of the circle map. The winding
number W is defined as the large-N limit of (6, —6,)/N.
W is proportional to the average phase velocity of the
pendulum, or in our experiment to the dc velocity of the
CDW. In the absence of nonlinearity (K =0), W=Q. In
the high-dc-field limit, V. is proportional to the CDW
velocity. Since depinned switching CDW’s are in the
high-field limit,? it is reasonable to make a correspon-
dence between () and V. over small ranges of dc bias.
The strength of the nonlinearity K is most closely related
to the experimental parameter V. However, changing
Vs changes both the strength of the nonlinearity and the
threshold for depinning a CDW. Thus changing V¢ in
an experiment corresponds to changing both Q and K in
the circle map. In our comparison with the circle map,
we assume that, for fixed V, changing the dc bias be-
tween the zeroth and first mode-locked steps corresponds
to changing ) at constant K in the circle map.

Figure 17 shows the structure of mode locking for sam-
ple 2 at T=19 K driven by a 30-MHz rf field. The re-
gions of 0:1 (pinned), 1:2, and 1:1 (mode locking) are plot-
ted in the V.-V, plane.*! At the lowest values of ¥V,
(top of this figure), there is a hysteretic transition between
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FIG. 17. 0:1, 1:1, and 1:2 mode-locked regions of sample 2
for a temperature well below the switching transition tempera-
ture. Period doubling and chaos are observed only above the
solid line.

the 0:1 and 1:1 steps, and the 1:2 step is eclipsed. There
is no space between the 0:1 and 1:1 steps. The period-
doubling route to chaos is most strongly developed in this
region of most hysteretic mode locking. For higher
values of ¥V (lower in the figure) the 1:2 step emerges and
a smaller fraction of parameter space is occupied by the
mode-locked regions shown. Period-doubling instabilities
persist, but the period-doubling cascade is not so fully
developed as in the highly hysteretic region. Below the
critical line drawn in this figure, the period doubling and
other instabilities are no longer observed, and the 1:2
mode-locked region takes up a smaller and smaller frac-
tion of the space between the 0:1 and 1:1 mode-locked re-
gions.

Figure 18 shows the 0:1, 1:1, and 1:2 mode-locked steps
(also for sample 2) for f =50 MHz and T =37 K, just
above the switching onset temperature. For these param-
eters, period-2, period-4, and virtual Hopf behavior were
observed, but fully developed chaos was not observed.
Unlike in the low-temperature case, the 1:2 mode-locked
step is always visible for this set of parameters. For low
values of V, no period-doubling instabilities are ob-
served and the 1:2 step occupies a relatively small frac-
tion of the space between the 0:1 and 1:1 steps. As V¢ is
increased, the fraction first increases and then decreases.
Period-doubling instabilities are observed in the inter-
mediate range of V. For the highest values of ¥V, the
fraction occupied by the 1:2 step shrinks to a very small
value and no period-doubling instabilities are observed.

Figures 17 and 18 demonstrate that the fraction of pa-
rameter space which is mode locked is positively correlat-
ed with the presence of dynamical instabilities. This be-
havior is consistent with Fig. 16, calculated from the sine
circle map. However, Figs. 17 and 18 show a surprising
correspondence between the parameter K in the circle
map and the experimental parameter V ;. At T=19 K,
V. is negatively correlated with K: small (large) values
of V¢ correspond to large (small) values of K. At T =37
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FIG. 18. 0:1, 1:2, and 1:1 mode-locked regions of sample 2

for temperature just above the switching temperature. Period
doubling is observed only between the solid lines.

K, K appears to first increase and then decrease as Vi is
monotonically increased. The dependence of the strength
of the nonlinearity on ¥V will be discussed in Sec.
IVB2b.

The period-doubling route to chaos and the structure
of mode locking are both nearly periodic in dc bias over a
certain range of dc bias. For instance, the 1:1, 3:2, and
2:1 mode-locked regions could have been plotted in Figs.
16—18 instead of the 0:1, 1:2, and 1:1 regions. The
dependence of the widths of the mode-locked regions on
V¢ is similar. The major difference is that the 1:1 region
is narrower than the 0:1 region.

The circle map’s best-known prediction'® is that the
fractal dimension of the space between mode-locked steps
is 0.87 at the critical line K =1. The critical line is usual-
ly identified in physical systems by a sudden onset of
broadband noise signaling the quasiperiodic transition to
chaos. An attempt was made by Brown et al. to verify
this prediction in nonswitching CDW’s, but the critical
line was not located.'® Subsequently, the fractal dimen-
sion of the space between mode-locked steps in
nonswitching CDW’s has been measured for various rf
amplitudes, and it was found that the fractal dimension
was less than 0.87 for all values of the applied rf ampli-
tude.*? Thus it appears that, in the language of the circle
map, mode locking in nonswitching CDW’s is always
subcritical (described by the circle map with K < 1).%

The observation of period doubling in mode-locked
switching CDW’s indicates that mode locking in this sys-
tem can be supercritical (period doubling occurs in the
sine circle map for K >1). Thus it is possible to test
some scaling predictions of the circle map. The critical
lines in Figs. 17 and 18 separate regions in which period
doubling is and is not observed in a switching CDW sam-
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ple. The “dimension” of the unlocked space along these
lines should be a lower bound* to the dimension predict-
ed by the circle map at the quasiperiodic transition to
chaos. We find* d =0.85+0.05 at the lower critical lines
in Figs. 17 and 18. This lower bound on d is in agree-
ment with the predictions of the circle map.

The structure of mode locking in switching CDW'’s is
seen to be consistent with the predictions of the circle
map in nontrivial ways. (1) The presence of dynamical
instabilities is correlated with the width of mode-locked
steps. (2) The structure of mode locking and the period-
doubling route to chaos are periodic in dc bias. (3) The
period-doubling cascade occurs as the system is pushed
from the edge of mode-locked regions toward the middle.
(4) The dimension of the space between mode-locked
steps at the critical line is within experimental error of
the prediction of the circle map.

(ii) Period-doubling route to chaos. The circle map has
a quadratic local maximum for K > 1. The presence of
the local maximum leads to the period-doubling route to
chaos, which may be described in terms of an even
simpler discrete map, the one-parameter logistic map'”*#*

X, +1=bx,(1—x,), (8)

where x,, is between 0 and 1 and b is between O and 4. As
the bifurcation parameter b is increased from O, the
steady-state orbits undergo an infinite sequence of
period-doubling bifurcations which accumulate geometri-
cally at some critical parameter b.. For b > b, the orbits
are chaotic and fall in attractors with 2 bands. As b is
increased beyond b,, these bands merge pairwise until
there is only a single chaotic band. Hence there is an ap-
parent symmetry about b =b_: for b <b,, the orbits are
periodic with period 2". For b > b, the orbits are chaotic
but they lie in attractors with 2™ bands and hence their
power spectra look like noisy versions of 2™ periodic or-
bits. Huberman and Crutchfield? studied Eq. (9) in the
presence of external noise. They showed that for a given
noise level, the period-doubling cascade is truncated at
some 2™ periodic orbit and the system goes into a 2"-
band attractor. All the states with period greater than 2
and all the attractors with more than 2™ bands are
washed out by the noise. The absence of high-order
periodic orbits in the presence of noise has been called
the “bifurcation gap.”

The bifurcation gap is evident in the sequence of power
spectra in Fig. 7. The period-doubling sequence is trun-
cated at period 4. The spectrum in (iii) of Fig. 7(a) has
significant noisy flanks on the sides of the period-4
subharmonics, indicating that this spectrum is between
period 4 and a 4-band attractor. (iv) of Fig. 7(a), with its
noise peak centered around f/2, is the spectrum of a
two-band attractor. This sequence of spectra is a period-
doubling route to chaos with all of the states between the
period-4 orbit and the four-band attractor removed.

(iii) Noisy precursors. The observation of the bifurca-
tion gap dramatizes the importance of taking into ac-
count the effects of noise in explaining our experimental
results. An elegant theory of the effect of noise on
codimension-1 bifurcations*® of dynamical systems has
been developed by Wiesenfeld.?! The theory is based on
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the fact that a dynamical system that is near a bifurcation
is almost unstable and hence is more susceptible to noise
than one that is far from a bifurcation. Thus power spec-
tra of dynamical systems near codimension-1 bifurcations
exhibit bumps near the frequency at which an instability
is about to occur. For instance, when a system driven at
frequency f is near a period-doubling bifurcation, the
theory of noisy precursors predicts that a broad bump at
f/2 will appear before one actually observes the sharp
peak at f /2 that signifies that the period-doubling bifur-
cation is complete. Another type of codimension-1 bifur-
cation of a periodic orbit is a Hopf bifurcation. In a
Hopf bifurcation, a periodic orbit whose power spectrum
has only a single frequency and its harmonics becomes
unstable to a quasiperiodic orbit in which two incom-
mensurate frequencies appear.

The noisy-precursor phenomenon most closely related
to our observations is the virtual Hopf phenomenon.?
The sequence of power spectra characteristic of this
phenomenon is shown in Fig. 19. In the top trace of Fig.
19, the power spectra show bumps symmetrically located

A

FIG. 19. Sequence of power spectra characteristic of the vir-
tual Hopf phenomenon (reprinted from Ref. 22).



about half the driving frequency. These are the precur-
sors to a Hopf bifurcation. However, as the bifurcation
parameter is tuned, the bumps move towards f/2 and
the spectra evolve into the precursors for a period-
doubling instability. In the third trace of Fig. 19, the sys-
tem has undergone a period-doubling bifurcation. The
height and width of the noisy precursor peaks are related
to the rate at which the system relaxes to a limit cycle
after it has been kicked off the limit cycle by a perturba-
tion. The width of the noisy-precursor peak is a measure
of the longest relaxation time of the system. It has been
argued that this phenomenon should be common in
dynamical systems exhibiting a period-doubling instabili-
ty.

The sequence of power spectra presented in Fig. 8
resembles very closely the sequence characteristic of the
virtual Hopf phenomenon. Figure 9 is not identical to
the virtual Hopf phenomenon, but the appearance and
disappearance of broad bumps in the power spectrum is
strongly suggestive of a mnoisy-precursor explanation.
From the 1-MHz width of the broad bumps in both Figs.
8 and 9, we extract a relaxation time of the order of 1 us.
The spectra in Fig. 10 may also have a noisy-precursor
explanation.

An alternate explanation of the spectra in Fig. 8 is pos-
sible. The spectra in this figure look very much like spec-
tra observed during mode locking of ordinary nonswitch-
ing samples."” The broad bumps that travel through the
spectrum could be interpreted as narrow-band noise
peaks which become mode locked on subharmonic steps
when the peaks sharpen into period 3 and period 2. This
explanation is problematic because the appearance of a
strong peak at f/2 did not necessarily coincide with the
observation of an n:2 step in the differential resistance.
This matter requires further investigation. There is no
easy explanation for the spectra in Fig. 9 as arising from
narrow-band noise in conventional mode locking.

b. Physical mechanisms of mode locking and period
doubling. Section IV B2a classified certain aspects of
mode locking in switching CDW’s as manifestations of
behavior common in simple nonlinear dynamical systems.
This section examines mode locking in ac-dc driven
switching CDW’s in terms of the underlying physical
processes. Period doubling and chaos in switching
CDW’s are explained as the frustrated response of a
strongly entrained system with a motion-dependent iner-
tia.>* Period doubling and chaos occur over a limited
range of driving frequencies, driving amplitudes, and dc
biases. These boundaries for nonlinear behavior are qual-
itatively explained and it is suggested that switching
CDW?’s depolarize on a time of the order of 1 us. The
physical relevance of the circle-map nonlinearity parame-
ter K is discussed.

Inertia does not appear to play any role in nonswitch-
ing CDW transport.! In contrast, mode locking in
switching CDW’s has many characteristics of an inertial,
underdamped response.® The symptoms of nonnegligible
inertia are hysteresis in the dc I-V curve, and the induc-
tive ac conductivity observed in switching CDW’s biased
past threshold.»® The simplest differential equation
which incorporates inertia and exhibits mode locking is
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the much-studied pendulum equation [Eq. (6)]. The solu-
tions to this equation share many of the features of the
experimentally observed behavior of mode-locked switch-
ing CDW’s. For 8> 1 (underdamped), the solutions to
the pendulum equation exhibit hysteretic Shapiro steps,
and a period-doubling route to chaos is observed on some
of these Shapiro steps.*’ ~*° We conclude that some pseu-
doinertia plays a significant role in switching CDW trans-
port.

The underdamped pendulum equation does not agree
in detail with the behavior of switching CDW’s.>*® The
ac conductivity of a switching CDW with no applied dc
field appears overdamped. This is contrary to the predic-
tion of Eq. (6), and indicates that the pseudoinertia is
only effective when the CDW is in motion.»* Equation
(6) predicts a chaotic response?’ only for drive frequen-
cies B~ ' <w < B 2. This is a much narrower range than
observed in switching CDW’s. Finally, the period-
doubling route to chaos in Eq. (6) is not periodic in dc
bias as it is in CDW’s.*’ The period-doubling route may
occur on one step, then skip the next step. In fact, as dc
bias is increased in Eq. (6), mode-locked steps are not
necessarily visited in order of increasing winding num-
ber.*’ In switching CDW?’s, these steps are always visited
in order of increasing winding number (e.g., the CDW
current increases monotonically with dc bias).

The phase-slip process gives rise to a motion-
dependent inertia which can qualitatively account for the
chaotic response of a switching CDW.>* The phase-slip
process requires a macroscopic polarization of the CDW
prior to the collapse of the CDW amplitude. After the
amplitude collapse, it takes a finite time 7 for the CDW
to depolarize and slide. This lag in the response is
equivalent to inertia (in inertial systems, the response lags
the force). When the phase-slip process is entrained at a
frequency of order 1/7, the CDW’s tendency to follow
the external forcing may compete with its requirement to
“remember”’ its previous polarization state. This com-
petition leads to a frustrated subharmonic or chaotic
response. Period doubling occurs both just above and
below the switching onset temperature. The period dou-
bling observed just above the switching onset tempera-
ture can also be attributed to the polarization-induced in-
ertia, because at these temperatures significant polariza-
tion may occur without a hysteretic switch.

The longest depolarization time provides a natural
lower bound on the rf frequency required to produce a
frustrated response. (There may in principle be many
depolarization times in a given sample, and the distribu-
tion of these times may depend on driving conditions.)
Period doubling and chaos occurred in our measurements
on sample 2 only for driving frequencies greater than 1
MHz, suggesting that the longest depolarization time in
this sample was of the order of 1 us. Other experimental
results also suggest that the longest depolarization times
7 in switching samples are of the order of 1 us. The
width of a noisy precursor reflects the longest relaxation
time of a system. The noisy precursors shown in Figs. 7
and 8 for sample 3 have widths of order 1/1 us. The
switching time 7., ascertained from pulsed experi-
ments is also likely related to the depolarization time.
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Measurements on a different sample by Zettl and
Griiner* found 7., of the order of 1 us. There are also
upper bounds in parameter space for the observability of
period-doubling and related instabilities. The disappear-
ance of these frustrated responses for large rf amplitude,
dc bias, or rf frequency can be attributed to a suppression
of motion-dependent inertia. If the CDW is forced to
move too rapidly, the polarization and depolarization
which are inherent to the phase-slip process do not have
time to occur. The motion-dependent inertia is
suppressed. In the absence of motion-dependent inertia,
the switching samples should behave like nonswitching
samples. this similarity is borne out in Figs. 6 and 15.
For the rf amplitudes above which period-doubling insta-
bilities are observed, the differential conductance curves
look similar to those for nonswitching CDW’s. As a
function of dc bias, there is a relatively small ratio of
locked to unlocked space in these high rf amplitudes.

It is now possible to make a physical interpretation of
the nonlinearity parameter K in the circle map. Period
doubling and chaos in switching CDW’s occur for large
values of K (small space between mode-locked steps).
However, K decreases as rf amplitude is increased to large
values. It was argued above that motion-dependent iner-
tia should also decrease as rf amplitude is increased.
Thus it appears that K is correlated with the motion-
dependent inertia of the switching CDW system.

There is a more general mathematical argument for the
presence of an upper boundary on the region in which
period-doubling instabilities are observed. When a non-
linear differential equation is forced sufficiently strongly,
the nonlinearity becomes a mere perturbation on a linear
system.!*!> The dimensionless overdamped pendulum
equation [Eq. (6) with 8=0] illustrates the reduction of
the effective nonlinearity of a system by strong forcing:

6+ sind=ey +e,. sin(wt) . 9)

Consider the limits ey, >>1, ey=1, w=1, e,>>1,e4. =1,
w=l, eq.=1, er=1, and w>>1. In the limit of large
(eger€4c @), dB/dt is of the order of (ey,e,.,®), while the
nonlinear term sinf is much smaller, of order 1. For
large driving parameters, the effective nonlinearity of the
overdamped pendulum equation becomes small. A simi-
lar analysis for the pendulum equation with finite mass is
more complicated. However, it is expected that for large
driving parameters, the effective nonlinearity of the un-
derdamped pendulum equation will also be reduced. The
upper boundaries in V., V¢, and o can be attributed to
the decreased effective nonlinearity of the switching
CDW system for large driving parameters. The argu-
ment also explains why the widths of Shapiro steps in
nonswitching samples decreases at high values of V. !°

V. CONCLUSION

The dynamical instabilities observed in switching
CDW’s can be divided into two categories. Instabilities

M. S. SHERWIN, A. ZETTL, AND R. P. HALL 38

in the first category occur for low driving frequencies.
These instabilities include the 1/ noise and intermitten-
cy observed for current-driven switching CDW’s in a
NDR region, and the ac switching noise observed for
combined low-frequency dc and ac electric fields. The
low-frequency instabilities are attributed to the many-
degree-of-freedom dynamics of the many-phase-slip
domains. The instabilities in the second category occur
for high-frequency ( > 1 MHz) driving electric fields. The
high-frequency instabilities are the period-doubling route
to chaos and related instabilities. For high driving fre-
quencies, the independent switching CDW domains are
synchronized by the rf electric field, causing the many-
degree-of-freedom dynamics of the switching CDW sys-
tem to collapse onto a subsystem with few dynamical
variables. The collapsed dynamical system undergoes the
period-doubling route to chaos, which is characteristic of
systems with few degrees of freedom. The one-
dimensional circle map, the logistic map, and the theory
of noisy precursors explain many details of the second
category of instabilities. Physically, period doubling in
this case may be viewed as the frustrated response of an
inertial CDW which is strongly entrained by a radio-
frequency electric field. The CDW inertia arises natural-
ly from the phase-slip process.

This paper has for the first time presented and
classified a rich and varied assortment of instabilities ob-
served in switching CDW’s. This paper represents the
most successful application of the modern theory of non-
linear dynamical systems to the study of CDW systems.
There is much room for further application of the tools of
nonlinear dynamics to the study of this rich system. For
instance, the theory of nonlinear dynamical systems pro-
vides a quantitative method for estimating the number of
degrees of freedom involved in a chaotic process. The re-
quired procedure is to calculate the Hausdorff dimension
of a chaotic attractor from a chaotic time series. This
procedure is difficult to implement in switching CDW’s
because of the high frequencies involved. Experiments
are planned to directly determine the number of degrees
of freedom involved in the chaotic dynamics of switching
CDW’s by measuring the Hausdorff dimension of the in-
stabilities of switching CDW’s,
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