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Structural and electronic properties of bulk ZnSe
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Results of a highly precise all-electron total-energy calculation of the equilibrium lattice constant,
bulk modulus, cohesive energy, band structure, pressure dependence of the gap, density of states,
and charge density are presented for ZnSe. The calculation is performed within the local-density

approximation using the all-electron full-potential linear-augmented-plane-wave (FLAP W) method.
The results obtained are compared with other calculations and with the experimental data available
for the structural properties and from photoemission spectra measurements; good agreement with

these experiments is found. In particular, the study of the direct band gap as a function of the pres-
sure shows that it does not transform into an indirect band gap and, moreover, that the correct be-

havior is predicted.

I. INTRODUCTION

Technological and theoretical interest in ZnSe has been
growing recently due to its appealing electrical and opti-
cal properties. Considerable effort is being devoted to
realize a p-type material by using different techniques as,
for example, by doping or growing with impurities such
as Li or Cl. ' Further, ZnSe has proved to be a particu-
larly interesting dilute magnetic semiconductor when
doped with Mn. Finally, the very recent molecular-
beam-epitaxy (MBE) growth of bcc Fe and Ni single crys-
tals on ZnSe (Ref. 7) is opening up the possibility of using
such materials as microelectronic magnetic switches.

From the theoretical point of view, many authors have
studied this semiconductor in order to explore, in more
detail, its electronic properties; among the various previ-
ous calculations ' of the electronic properties of ZnSe
we will particularly refer to the recent work of Bernard
and Zunger' and Jansen and Sankey. ' The method used
in the last reference is based on a pseudopotential scheme
and describes the electronic states as a combination of
"pseudo-atomic-orbitals. " As the authors affirm, this cal-
culation does not require any experimental input and
does not have any adjustable parameters, but, as we will
discuss later, it does not consider the Zn 3d orbitals as
part of the valence states. The calculations performed by
Bernard and Zunger' are based on a mixed-basis all-
electron method which considers a combination of plane
waves and localized orbitals which are obtained by solv-
ing an atomic problem in which the potential is taken to
be equal to the crystal potential. However, the ground-
state structural and cohesive properties of this material
have not been widely investigated as has been done for
other semiconductors (e.g. , GaAs or AlAs}; apart from
the calculations performed in Refs. 13 and 14, to the best
of our knowledge, no such other calculations have been
reported in the literature.

Here we present results of highly precise self-consistent
all-electron total-energy calculations of the ground-state
structural, electronic, and cohesive properties of ZnSe,
and provide a comparison with previous calculations and

the experimental data available in the literature. To this
end, we performed an all-electron total-energy band-
structure calculation using the self-consistent full-
potential linear-augmented-plane-wave band method'
(FLAPW) within the local-density approximation (LDA).

II. METHOD

The crystal structure of ZnSe is zinc-blende with two
atoms per unit cell; the full space group is Td (F43m),
which includes 24 symmetry operations and excludes in-
version symmetry. In the calculation, 2891 plane waves
have been used for the expansion of the charge density
and the potential in the interstitial region, and lattice har-
monics up to l =8 for the expansion inside the muffin-tin
spheres. The dependence of the total energy on the num-
ber of k points in the irreducible wedge of the first Bril-
louin zone (BZ) has been explored within the linearized
tetrahedron scheme' by performing the calculation for
40 and 60 k points and extrapolating to an infinite num-
ber of k points. We also used the special k points tech-
nique' and the results obtained for the equilibrium prop-
erties are compared with those obtained by using the
linear tetrahedron method. A satisfactory degree of con-
vergence was achieved by considering a number of
FLAPW basis functions up to RMTK,„=8.97 (where

RMT is the average radius of the muffin-tin spheres and

K,„ is the maximum value of the wave vector
K=k+G). This corresponds, at the equilibrium lattice
constant, to about 300 basis functions. In order to keep
the same degree of convergence for all the lattice con-
stants studied, we kept the values of the sphere radii and
of K,„constant over all the range of lattice spacings
considered.

As exchange-correlation potential, we used the Hedin-
Lundqvist' form, but we also tried the Ceperley-Alder'
parametrization in order to see the dependence of the
semiconducting gap on the exchange-correlation poten-
tial. The semirelativistic approximation (no spin-orbit
effects included} was employed in the calculation of the
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FIG. 1. Total energy E (in Ry) as a function of the lattice

0

spacing a (in A), calculated with the special-k-points technique
(Ref. 17).

valence-band states, whereas the core levels were treated
fully relativistically and were self-consistently updated at
each iteration. The 3d electrons of the Zn atom were
treated as part of the valence band since they are relative-
ly high in energy even though they constitute a well-
localized and narrow band. This makes the calculation
easier to converge, even though we need quite a large
value for the product K,„RMT in order to have a suit-
able number of plane waves to correctly describe these
states.

III. RESULTS

A. Structural properties

Figure 1 shows a plot of the total energy as a function
of the lattice constant calculated using ten special k
points. ' In Table I we report the bulk properties as ob-
tained using these 10 special k points as well as 40 and 60
k points in the irreducible Brillouin-zone (BZ) wedge
with the linear tetrahedron method. We then extrapolate
up to an infinite number of k points, knowing that the er-
ror in the total energy decreases as (n„) where n~ is
the number k points used.

The cohesive energy was computed from the difference

between the total atomic energies, calculated for the
ground-state configurations of Zn(4s ) and Se(4s 4p ) in-
cluding spin polarization, and the minimum energy of
bulk ZnSe calculated at the equilibrium lattice constant
(ao). The bulk modulus is obtained from the curvature
of the total energy as a function of the lattice constant
[B=(4/9ao)d E/da ] and has been determined by
fitting the calculated energy values with a parabola. The
equilibrium lattice constant obtained from the minimum
of the parabola which best fits the calculated results in
Fig. 1 is very close to the experimental value, with only a
0.6% deviation obtained with the special-k-points
method. As expected, the calculated bulk moduulus and
cohesive energy show a larger deviation from the ob-
served values, ' but the discrepancy in the case of the
bulk modulus is smaller than that obtained in another
LDA calculation (Refs. 13 and 23) or with Cohen's
empirical method (Ref. 14). As far as the cohesive energy
is concerned, the calculated value overestimates the ex-
perimental one, showing a quite large deviation. Al-
though a comparison with other LDA calculations is not
possible because of the lack of published data, we believe
that the deviation from the experimental value is mainly
due to the LDA which is known to underestimate, ' in
the atomic calculations, the contribution to the total en-
ergy coming from the outermost atomic shells whose
electronic charge density is not homogeneously distribut-
ed in the regions around the nucleus.

The calculated results reported in Table I show that
the special-k-points technique is particularly suitable in
the case of semiconductors and gives very good results.
The larger discrepancies found by the linear tetrahedron
method are probably due to the fact that a relatively
small number of k points (up to 60) was used to extrapo-
late to an infinite number of k points. This also shows
that the linear tetrahedron scheme requires a larger num-
ber of k points to get good accuracy, even in the simple
case of semiconductors, in order to minimize the errors
associated with the use of a linear interpolation on a lim-
ited set of k points.

B. Band structure and density of states

The band structure, calculated at the equilibrium lat-
tice constant given in Fig. 1, is shown in Fig. 2. The

TABLE I. Bulk properties: results obtained in the present calculation and other theoretical results
compared (as a percentage deviation) with experimental data.

10 k points
40 k points
60 k points
~ k points
Ref. 13
Ref. 14
Ref. 23
Expt.

'Reference 21 ~

Reference 22.

a (A)

5.6357
S.6202
5.6173
5.6067
5.5

5.6676'

0.6
0.8
0.9
1.0
)2

0.2

B (Mbar)

0.667
0.688
0.678
0.639
0.76
0.75
0.602
0.625b

4 (%%uo)

6.7
10.0
8.5
2.2

&10
17.2
3.8

E„h (eV)

5.57
S.71
5.72
5.76

4 38'

4 (%)

27
30
31
31
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FIG. 2. C. Calculated self-consistent band structure of ZnSe
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an per atom, shown in Fig. 3, in or-

er to better identify the origin and the ch
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these states are in f

e n states;
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jSe p states (I
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respectively.
~ ~

The two eaks belop ow the Fermi level correspond to the
Se 4p levels partially mixed with the Zn 4s and 3 '

s and 4p states of Zn partially hybridized with the Se
states. By ooking in more detail at tha e main valence

, we found that the corresponding DOS has a well-
defined structure. In particul th 1ar, e evels mostly due to
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tion agrees with the results of Bachelet and Christensen
for GaAs, Christensen, and Bernard and Zun
gardin the i

'
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TABLE II. Dependence of the direct and indirect band a s
on lattice constant for positiv dive an negative pressures.

(A)
El

g

(eV)

Ex
(eV)

EL
(eV)

ha /ao
(%)

5.3675
5.5088
5.6357
5.6500
5.7913
5.9325

1.73
1.39
1.10
1.07
0.78
0.52

2.44
2.64
2.79
2.81
2.96
3.09

2.64
2.50
2.38
2.32
2.24
2.10

—4.8
—2.3

0.0
0.25
2.76
5.27

C. Pressure dependence of the energy gaps

In Table II w, we report values of the direct (E")and in-
direct (E,E ) a s calculg p u ated as a function of pressure.
Compared with the experimental value of the gap at the
equilibrium lattice spacing ' [(E ) =2 80
culated value is very small; this is

~ ~ t f
is is, "owever, not too

surprising i one recalls, as is well known, that the LDA
underestimates the ener
and s

gy gap in the case of insulators
an semiconductors since it does not ive
descri tion o'p ' of the excitation properties of the system.

~ ~

In agreement with experiment th d'e irect and a
increases with pressure and d
~ ~

oes not transform into an
g P

indirect band a as obd'
g p, served m other semiconduct

GaAs, GaP anG, , d InP). In the ZnSe case, in fact, the cal-
uc ors

culated indirect band gaps (E and E ) are m
b —l V) h E" fo
's also in a re

e an for a wide range of pressure and th', an is

In order to corn
greement with the experimental obo servations.

er o compare with the experimental data w fi
our results with a seci a second-order polynomial expansion fol-
lowing the method described in Ref. 23 and also con
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TABLE III. Experimental and calculated parameters of
direct band gap vs lattice constant as fitted to Eq. (1). All values
are given in eV.

Expt. '
Present calc.
Pseudopotential'
LMTO-ASA'

'Reference 23.

2.685
1.10
2.695
1.16

14.4+0.4
12.1

14.9
12.95

6.2+0.4
21.2

—125.7
—26.8

sidered the negative pressure region,

Eg (a) =E~"(ao)+b Aa Aa+c
ao ao

The values of the coefficients obtained from this fitting
are shown in Table III, along with other calculations and
experimental values for comparison. We should point
out that the range of pressure ( ha /a o ) we considered is
quite limited and that, as stated, we also included in the
fitting the region of negative pressure; if that region is ex-
cluded, we obtained, for a pure linear fitting, b =13.1 eV.
The results of our calculation compare satisfactorily with
the experiments and give, especially for the c coefficient, a
value much closer to the experimental result than do oth-
er calculations.

Remarkably, our calculation predicts the correct cur-
vature (the sign of the c coefficient) recovering the slight
supralinearity dependence of Eg" as a function of (b,a lao )

observed by the experiments. Our result is therefore
proof that the deviations between the theoretical results
and experiment presented in Ref. 23 are not to be attri-
buted to errors introduced by the LDA, as might be sug-
gested. The reasons for such deviations are to be
sought, instead, in the role played by the Zn 3d electrons:
Our calculation seems, in fact, to confirm the hy-
pothesis that the nonsphericity of the charge density
due to such states is an important factor to take into ac-
count in order to correctly describe the behavior of the
direct gap under pressure.

D. Comparison with photoemission and other calculations

Table IV presents the energy levels referred to the top
of the valence band at selected symmetry k points for the
calculated equilibrium lattice spacing, compared with
photoemission experimental data. Note that the
agreement is rather good for the valence states, except for
the 3d [I », (d), I,2, (d)] levels of the cation (listed only
for the I point) and the 4s band of the anion, which are
lower in the experiment, by about 2.6 and 1.8 eV, respec-
tively. It is now generally accepted that this discrepancy
is certainly due to correlation and relaxation effects
which arise in the ionization of a core level and are un-
derestimated in a local-density calculation. In particular,
one should note that the discrepancy regarding the Zn 3d
levels has been shown to be removed by including self-
interaction-correction terms. In addition, the precise
determination of the anion s-level position is quite hard
to obtain experimentally due to the large superimposed
secondary-emission background.

Table V lists the energy levels at I, X, L, referred to
the top of the valence band together with the results ob-
tained in previous calculations for somewhat different lat-
tice constants. Given the small deviation among the vari-
ous lattice spacings used ( & 0. 7%%uo), this should not, how-
ever, affect dramatically the comparison; we expect that
the difference would be of the order of 0.01—0.05 eV de-
pending on the symmetry point and on the nature of the
energy eigenvalue. Very good agreement is found with
the results of the energy eigenvalue. Very good agree-
ment is found with the results of similar FLAPW calcu1a-
tions by Hamada, which used the Ceperley-Alder
exchange-correlation functional. The value of the band
gap -is remarkably close, as is the position of most of the
other energy levels. The main discrepancy, found for the
Zn 3d levels, might be due to the different computational
details involved in carrying out the two calculations.

Our results compare quite well, also, with those of Ber-
nard and Zunger, ' and to a lesser extent with those of
Jansen and Sankey' —the main difference being the posi-
tion of the Se 4s bands which are deeper, in our case, by
about 0.5 eV, and the Zn 3d, which are higher by about

TABLE IV. Energy levels (eV) at high-symmetry k points compared with photoemission spectra.

Calc.

—13.43
—6.79

—6.42
0.00
1.10
5.69
9.70

Point I
Expt.

—15.2+0.6'
—9.2+0. 15'
—8.9+0.4'
—8.6

0.0'
2.80'

Xl
X)„

X5„

Xi,
Xsc

Point X
Calc.

—12.33
—4.92

—2.27

2.73
3.33

Expt.

—12.5+0.4'
—5.3+0.3

—2.1+0.3'

L„
Lsc

Point L
Calc.

—}2.61
—0.91

2.38
6.32

Expt.

—13.1+0.3'
—1.3+0.3'

0.7+0.2

'Reference 26.
Reference 27.

'Reference 28.
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TABLE V. Calculated ener gy eigenvalues (in eV) at high-symmetry points in the BZ as obtained in
the present calculation (a =5.6357 An a, = . ) using the Hedin-Lundqvist (HL) and Ceperley-Alder (CA)
exchange-correlation potentials, compared with those of other calculatio N t: Th 1

'
ns. o e: e resu ts in Ref.

, and 30 refer to the experimental lattice constant (a =5 668 A) d hn ao ——. an ave been obtained with the
Ceperley-Alder exchange-correlation potential; those of Ref. 8 fose o e . are or ao =5.65 A and use the Slater
a= ) exchange approximation.

r,
I is„(d)
rl2„(d)
I is.r„
I is

r,
X)
X3,
Xs,
Xl,
X3,
X),
Li

L3,
LI,
L3,
Ll,

Present
Calc.
(HL)

—13.43
—6.79
—6.42

0.0
1.10
5.69
9.70

—12.33
—4.92
—2.27

2.79
3.33

10.64
—12.61
—5.41
—0.31

2.38
6.32
8.43

Present
Calc.
(CA)

—13.37
—6.77
—6.41

0.0
1.08
5.70
9.69

—12.30
—4.89
—2.24

2.82
3.34

10.59
—12.57
—5.35
—0.91

2.37
6.33
8.42

Ref. 30

—13.25
—7.64
—7.20

0.0
1.07
5.82
9.75

—12.12
—4.91
—2.10

2.98
3.38

10.67
—12.43
—5 ~ 16
—0.85

2.40
6.46

Ref. 12

—12.86
—7.86
—7.60

0.0
1.45
5.77
9.79

—11.79
—4.82
—2.20

2.88
3.47

10.58
—12.06
—5.21
—0.87

2.63
6.36

Ref. 13

—12.54

0.0
2.07
5.87

—11.12
—4.75
—2.12

3.16
3.75

—11.48
—4.99
—0.85

3.04
6.57

Ref. 8

—11.82
—12.6

0.0
2.94
6.66

—10.48
—4.31
—1.65

4.19
4.49

—10.84
—4.40
—0.64

3.79
7.31

1.0 eV with respect to Ref. 12. Better agreement is
found, for these states, with the linear muSn-tin-orbital
(LMTO) calculations reported by Ves et al. ( —6.7 eV).
Besides these states, larger discrepancies are observed in
the direct band gap, which is smaller in our case (by
-0.3 and —1.0 eV compared with those of Bernard and

unger and Jansen and Sankey, respectively). It must13

be noticed that the discrepancy with the result of Ref. 13
regarding the gap value is mainly due to the fact that this
calculation does not include the Zn 3d levels as part of
the valence states. It, therefore, neglects the Zn 3d relax-
ation and the effect of the repulsion on the valence-band
top; it overestimates as a result, the band-gap value.

We must further point out that the results of Refs. 12,
13 30, and 8 were all obtained with different exchange-
correlation functionals: in particular, in Ref. 8 the
Wigner form was used, whereas in Refs. 12 13 d 30~ y y an

e Ceperley-Alder parametrization was considered. In
order to see how the parametrized form of the exchange-
correlation affects the position of the energy levels and
the gap itself, we performed a calculation using the
Ceperley and Alder exchange-correlation functional as

parametrized by Perdew and Zunger. ' The results are
shown in Table V for comparison; we found that the en-
ergy values were only slightly affected (by ~0.05 eV).
Hence, the reasons for the discrepancy with the results of
Refs. 12 and 13 must be sought in the different methods
used.

E. Bonding and ionic character

In Table VI, we show the total integrated charge er
atom decomposed into different angular-momentum con-
tributions; note that the quantities shown, QI, correspond
to the total charge inside each muon-tin sphere, and that

TABABLE VI. Decomposition of charge into different angular-
momentum contributions inside the muffin-tin spheres. The
muffin-tin sphere radii are RM+ =2.09 a.u. for Se and RMz =2.3
a.u. for Zn.

Se
Zn

1.365
0.539

2.223
0.453

0.026
9.758

3.619
10.768

FIG. 4G. 4. Valence charge density at the equilibrium lattice con-
stant in the (110)plane; values are in 1 X 10 ' e/(a. u. )'.
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even though we used different sphere radius values for Se
and Zn, the use of the full-potential feature ensures that
the calculation is completely independent of the choice of
the sphere radii.

The ionic character of the Zn—Se bond is not very
transparent from the total charge contained in the
muffin-tin spheres as shown in Table VI due to the large
difference between the radii values used. For this reason
we show in Fig. 4 the self-consistent valence charge den-
sity in the (110) plane as obtained by subtracting out the
contribution of the Zn 3d levels in order to demonstrate
the Zn —Se bonding charge density. The highly spherical
shape of the charge surrounding the Se atom suggests, to-
gether with the lack of an important bonding charge be-
tween Zn and Se, that a large part of the Zn 4s electrons
is almost completely transferred to the Se site. This can

also be inferred from the results shown in Table VI, not-
icing that inside the Zn sphere there are only 0.54 s-like
electrons, even though the Zn-sphere radius is 10%
larger than that for Se.
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