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Generalized master equations and other theories of the phonon-assisted hopping conduction
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A new method of solving exactly the time-convolution generalized master equations linearized in

the external field but exact to all powers in the electron-phonon coupling is reported for a standard
dc phonon-assisted hopping problem. This method allows one to classify existing theories of this

type of transport, using an exact identity derived and according to the degree of approximation
used, into three categories. It is clarified why theories of the worst category comply with the exact
solution but are appreciably distorted when formally amended so as to fall into the second category
of the lowest-order Markovian kinetic theories.

I. INTRODUCTION

Recently, generalized master equations (GME) for the
standard model describing phonon-assisted hopping con-
duction in amorphous semiconductors have been formu-
lated and solved exactly in the linear approximation in
the external electric field. ' For the dc conductivity, this
result yields surprisingly the old Kasuya-Koide explicit
result

e
o = g g I „(x —x„) +o(g ) .

p, r s =+1/2

Here P, e, 0, x„, and g are the reciprocal temperature in

energy units, electronic charge, normalizing volume,
mean coordinate of the localized single-electron state {r)
in the mobility gap in the direction of the field, and the
electron-phonon coupling constant. I „=I, is the
mean statistical transfer rate r~p; for the Hamiltonian

H =H, +Hzh+H, th=Ho+H, th= g e„a„,a„,+g Ato&bkbk+ g g g U~„az, a„,(b&+bi, ),
r, s =+1/2 k p, r s=+1/2 k

it is

I „=W'qnF(e„)[1 nF(e )]-,
cqW q= g ~ U„~ {2(5„e—e +ficok)ntt(Atok)sn,

+5(e„—e —%co„)

(3a)

Here, the frequency picture has been used. Furthermore,

5f„(t)=Tr[5p(t)a„, a„,]

is the linear field-induced change of the mean number of
electrons at site r;5ls„ is the corresponding linear local
field-induced change of the chemical potential. Finally,

X[1+n,( l~t}„)]],

nF(z)=(e~" "'+1) ', nit(z)=(e~' —1)

(3b)

(3c)

On the other hand, converting the only correct order of
limits (Q~+ ao, frequency co+i5~0, and then g~0),
i.e., expanding as usual in powers of g before performing
the dc limit, we recover (up to kinematic corrections
properly included in GME} at low but finite frequencies
co+i 5' the Miller and Abrahams equations

i(co+i5)5f„—+' = g PI „[e( +' (x„—x )

p [~r)
its+i 6+g CO+i 5 qPr Pp

(4a)

e
—PH

5p( t ) =p( t ) p, =p( t )
— ~0—as t ~ —ao

Tr(e t'") (6)

is the linear change of the electron-phonon density ma-
trix due to the electric field

g(t) co gcu+ise —i(cu+is)t 0 as t2'
Equations (4a) with (4b) form a complicated set of

equations to be solved either approximately or using
computers. They result (upon linearization with respect
to 8) from standard lowest-order Markovian rate equa-
tions:

a—f„(t)= g [ W~f, (t)[1—f„(t)]
p (~r)

5(M„+' = [PnF(c„)[1 nF(e„)]I '5f„"+'—
5fco+(s fdt5f (t)ei(co+(s)t

(4b)

(4c)

—W „f„(t)[1—f (t)]I,
f„(t)=Tr[p(t)a„,a„,] .

(ga)

(Sb}
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For the dc conductivity, (4a) yields the Miller and Abra-
hams formula

r,„(x,—x„)
p, r s =+1/2

6p 6p„
X x —x„— + +o(g ),

eD eD

(9)

where 5p„/6 is the dc limit of 5p, , +' /8 +' . Relations
(4a) and (9) may be converted into the classical random
resistance network problem which serves then as a start-
ing point for most of the contemporary dc phonon-
assisted hopping theories.

Equation (9) clearly contradicts (1) due to the presence
of the local shifts 5p . It is of course known to be just
approximate, owing to the lowest-order (in g) expansion
used to derive (4a) [or (8a)] before performing the dc lim-
it. On the other hand, result (1) was originally derived
under two important approximations —the first one being
mentioned just now as inherent to (4a) [or (8a)] and the
second one being the full neglect of the shifts 5p in (4a)
and (9}. It is therefore surprising that (1) results from a
rigorous theory' ' (see also Ref. 6 and 7 though this old-
er form of a rigorous theory has never been given a physi-
cal interpretation).

A physical explanation of the contradication between
(9) and rigorous result (1) was given' where terms exactly
canceling those leading to 5@~ in (9) have been identified

among higher-order terms in GME. Here, another and
yet more transparent form of these arguments is given
which is based on a new method of solving the exact
linearized GME. In addition to physical transparency,
the present theory clearly shows why the two above-
mentioned crude approximations used by Kasuya-Koide
to derive a closed formula for the dc conductivity
effectively cancel each other, i.e., why this crude approxi-
mate theory complies with the exact result (1). Standard
theories leading to (9), due to the finite-order expansion
performed before taking the dc limit, are then shown to
disturb one exact relation derived here. As this is the
only approximation used, there is nothing in these

theories which might compensate the corresponding er-
ror. This is then the reason for their contradiction with
the exact formula (1).

II. dc CONDUCTIVITY CALCULATION

As we must go to the infinite order in g if we want to
construct a rigorous theory, the formal structure of our
approach is more complicated than in standard theories.
First, we introduce the projection superoperator D
( =D ), i.e., operator in the Liouville space, with matrix
elements

R R
ll. , my, n v prr Pi p5vrr5lm 5ln 5mp & g Pi i (1Oa)

1.e.,

A )li., m/i y li, my, n pvrArn pvir

nv, pn.

=pi„5t (TrphA» (10b)

(1 la)

1.e.,

1
Llim pi, n prr vg (Hlk, n 5mvip iir p mrrp. 5li, n )v (1 lb)

and similarly for Lo and L. Here A is an arbitrary
operator; the Latin (Greek) indices designate the set of
the electron site (phonon mode) occupation numbers, i.e.,
m p designates the whole many-body eigenstate of Ho.

Upon linearization with respect to 6'(t), the Liouville
equation

i p(t) = [H—dh(t),—p(t)]-. a
Bt

1=Lp(t) —6'(t) [d,—p(t)] (12)

yields the linearized GME (Ref. 1)

and the Liouville superoperators

LA = [H, A],—LOA =—[Ho, A ], g A = —[H, h, A ],1 1 1

at
[D 5p(t)]= i—DLD 5p(t) JDL—e " —' " '(1 D) — 6(~—) [d,p, ]+L—D5p(r) d7. C(t) D[d,p, —] —.eq eq

(13}

DLD =0,
DLo =LDD =0

and, due to the choice of d,

D[d,p, ]=0.

(14a)

(14b)

(14c)

Here d = g, g, +, z~ e x„a„,a„ is the dipole moment in
the direction parallel to 6(t). As a consequence of
(10)—(11),

Consequently, the first and the last terms on the right-
hand side of (13) disappear. Expanding formally in
powers of g, the first (second) term in curly brackets on
the right-hand side of (13) would reduce to the first term
-x„—x (second term ——6p„+' +6p +'

) on the
right-hand side of (4a) as far as the kinematic corrections
(due to a correlation in occupation of neighboring sites,
included in GME) are neglected. So the structure of (4a)
and (13) is formally the same.
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Before going further, let us mention that (4a) may be
converted to the matrix form

[(co+i5)1.—A ']5f +' =8' ' (15)

[(~+i5)1 g co+is]D 5 ~+is —Bra+is (16)

where the operator matrices A' '/g and X' '/g are g
independent. Here, I designates the unit operator ma-
trix. The necessity of performing the inversion
[(co+i 5)1—A' '] ', i.e., solving the complicated set of
dynamic equations {15),is the reason for enormous tech-
nical problems of standard lowest-order Markovian (per-
colation, rate equation, random resistance network, etc.)

theories. Now, with (13), we shall perform an analogous
algebra but exactly to all powers of g and on our super-
operator level.

Performing the Fourier transformation of (13) and tak-
ing (14a)—(14c) into account, we obtain exact dynamic
equations in the superoperator form

g co+is —D~ 1 XD
( co+ i 5 )1 —(1 D—)L

(17a)

as well as the operator

Boo +is — @co +i 51 1

(co+i 5)1—( I. D)L—

(17b)

are both of the formal order -g but contain arbitrarily
high powers of g. Multiplying (16) from the right-hand
side by a„,a„, taking the trace and neglecting the kine-
matic corrections would turn (16) to (15) in the lowest or-
der in g. Instead, we devote our attention to the exact
form of B"+' .

Because of (14b),

from which the solution D 5p'"+' must (and, as we are

going to show, also can easily) be found Here, 1 is the

superoperator unit matrix. The superoperator

B"+' = ——DL
1 1 1 DL

1 @co+is.[d p ](co+i 5)1 L(co+—i5)l (1 —D)L —(co+i 5)l L— eq

I—DL
1 1

D DL 8" ' [d,p,q] .1

(co+i5)1—(1 D)L —(co+i5)1 L— (18)

Here, we have used the idempotency property D =D . As it is

L
1 = —1+(co+i 5 }

1

(co+i 5)1 L— (co+i5)1L. — (19)

(18) gives using (14c)

B +' = ——(co+i5)1 DL— [(co+i5)1—(1 D)L+(1 D—)L ]D—
(co+i 5)1 (1. D—)L—

1 @~+is. d
( +5}1—L

(20)

Because of (14a)—(14c), (20) finally yields

B"+' = ——(co+i 5)1DX. —1 1 XDD . +1 1 1

(co+i 5)1—(1 D.)L—(co+i 5 )1. Lo (co+i 5)1——Lo (c.o+i5)1L. —

1 ~ 1

[( +&5 )I g co+is]cr»+ is (21)

This is our chief result showing that in the exact {to all

powers of g} theory, the right-hand side B +' of our dy-
namic equations (16) is [in contrast with the standard
treatment (15)] a product of two factors; the left-hand
side factor in B +' is exactly the same superoperator

which appears on the left-hand side of (16) while the
right-hand side factor C +' is proportional to
g /(co+i 5) This releva. nt observation has several impor-
tant implications.

(a) The exact solution of (16) is [due to (21) but in con-
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trast to the standard theory] absolutely elementary.

Namely, multiplying (16) by [(co+i5)I—A +' ] ', we

obtain

(b) Proceeding as in the standard lowest-order Marko-
vian (rate equation, percolation, etc.) theory [i.e., like in

(15)] means to replace (16) by the second-order equation

D5 QJ +l 5 D~ P~+(s1 1

&( +5) ( +5)I—L.

[( + '5)I A (2Iru+&s]D5 m+/s B(2)~+js (23)

equivalent in the above-mentioned sense to (15). In (23),

(22)

This is singular in the dc limit and yields exactly the
Kasuya-Koide formula for the dc conductivity (1).' '

g (2)co+IS =D 1

( co+ i 5 )I Lo—
but according to (17b) or (21),

(24a)

B(2ku+ is D~
~ 1 1

@au+
is e

fi (co+i 5 )I Lo — '
0

SHp ( S P)Hp
e phe

Tr(e ')
(24b)

g (2)CO+ I'6 0IA, , IA, , mp, nv
l, k

while simultaneously,

B(2)co+ i6
Il, , li.

I, A,

(26a)

(26b)

as it may be easily verified. This also contradicts the ex-
act result (22) but as it is seen from (25), this contradic-
tion is just due to the above mentioned inconsistency. Fi-
nally, writing [(co+f5)I—A"+' ] as (co+i5)[I
—A +' / (co+i5)] in (21) on the right-hand side of (16),
it is also seen that theories of this kind are based on an
unjustified neglect of higher-order terms -g /(co+i 5)

(c) One might try to be "consistently crude" in the
sense of being formally yet more crude than in (b) but in a
consistent manner: If the approximation B"+'

Here A' '"+' /g and B' ' +'
/g are g independent.

Clearly, this means to approximate [(co+i5)l —A +' ]
as [(co+i5)I—A' ' +' ] on the left-hand side of (16) but
as only (co+i5)l on the right-hand side of (16) because
A +' -g . This is of course inconsistent and is the very
source of technical, but unphysical as our approach
shows, difticulties in the standard treatment. These are
due to roughly approximate converting elementary and
exact problem (16) with (21) with the exact solution (22)
to a completely nonelementary problem (23) or (15)
without any explicit solution, motivated by naive at-
tempts to make the standard theory "simpler. " After the
full neglect of A +' in (21) on the right-hand side of
(16), it is

1 . +,g 1[(co+i5)I—A +' ]~ . (co+i5)I=I . (25)
co+l5 N+l5

Consequently, there is no wonder that for D5p ' /
8 +', i.e., also 5@~+' /6 +', one obtains finite results
when co+i5~0 in the standard theory. The fact that
(co+i5)1—A' '"+' is singular in the dc limit on the
left-hand side of (23) does not change the situation as this
is due to the fact that

~8' ' +' means to neglect fully A +' as a part of the
prefactor in B" ' on the right-hand side of (16) [see
(21)], one should neglect also A " ' on the left-hand side
of (16). It is amusing to observe that this yields

D 5 co+is [B(2)a)+is+0(g2)]1

a+i5 (27)

(cu+i5) '[)(—A' ' +' /(cu+i5)]= 1+ 0(g')
co+i 5 co+i 5

it is seen that from the point of view of the standard
theories, theories of the present group are (formally) due
to unjustified neglect of higher-order terms. ' In fact,
however, as we have seen, it is successively necessary to
neglect the terms proportional to g /(co+i 5) twice when
going from (16) via (23) to (27). As shown above, it is
then not fully fortuitous that the net effect of these two
formal approximations eA'ectively cancels in the sense
that it leads to just the term o(g ) in (1).

III. CLASSIFICATION OF THE PHONON-ASSISTED
HOPPING THEORIES

As we have seen, the most characteristic feature of any
theory of the dc phonon-assisted hopping is whether it
preserves (21) as an exact identity connecting the left- and
right-hand side of the dynamic equation (16) or not. We
have also seen that preserving this identity is a necessary
condition for obtaining the exact result (1) for the dc con-

which is nothing but (22) up to higher-order terms
-g /(co+i 5) Conseq. uently, as the conductivity is given

by the current —(co+i5)d +', this approach reproduces
the exact result for the dc conductivity cr (1). It is worth
mentioning that neglecting A +' on the left-hand side of
(16) means to neglect the field-induced changes of
D5p +' on the right-hand side of (13), i e , 5' +' . i.n
(4a). Exactly this type of consistently crude approxima-
tion was used by Kasuya-Koide in their original work.
Finally, writing [(co+i5 )I —A ' ' +'

]
' as
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ductivity. Therefore, we shall classify the existing
theories of the dc phonon-assisted hopping according to
the degree to which the identity (21) is preserved.

Historically the first theory of the dc phonon-assisted
hopping in amorphous or doped crystalline semiconduc-
tors was due to Kasuya-Koide; it was based on the con-
sistently crude approximation neglecting 3"+' on the
left-hand side of dynamic equation (16) (i.e., neglecting
local shifts 5p ) as well as on the right-hand side of (16)
(as a part of taking just the lowest order in g). Theories
presented in Refs. 10—12 belong to the same group and
all of them legitimately reproduce the exact result (1)
which has been, however, found later. '

The second group of theories is formed by those which
use arguments equivalent to retaining A "+' (as
A'~I"+'

) on the left-hand side of (16), i.e., keeping
5@~+' in (4a) but neglecting it fully on the right-hand
side of (16) as a part of taking just the lowest-order con-
tribution in the driving term of relevant dynamic equa-
tions. Hence, the identity (21) is not preserved. Most of
the contemporary theories belong to this class. ' ' '
In this list, we do not include papers on the rate equa-
tions, percolation, or computer modeling of random
resistence networks, which are based on results of works
quoted here. Also the works ' ' belong to this group in
the sense of disturbing relation (21); nevertheless, in this

case, the situation is more complicated since an incom-
plete Hamiltonian is used and technically, the theory is
formulated in terms of electronic functions which are not
eigenfunctions of Ho [Eq. (2)].

The third group of theories is formed by those ap-
proaches which retain A +' on both sides of (16). To
this group, theories' ' belong; historically, also the
works ' belong here. They all yield the same exact result
(1) irrespective of whether they use the kinetic equa-
tions' ' or not. ' The fact that the theories of the first
group yield the same result for o(1) means (irrespective
of their roughly approximate nature) their rehabilitation
in practice. It should be mentioned here that in contrast
to the usual opinion, result (1) for the dc phonon-
assisted hopping conductivity may be shown to agree well
with experiment so that it forms a sound basis for fur-
ther discussion.
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