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Band structure of quantum wells under crossed electric and magnetic fields
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We investigate the band structure in GaAs quantum wells in the presence of an electric field ap-
plied along the growth direction (z) and a magnetic field perpendicular to it. The strong coupling
between heavy and light holes gives rise to a nonquadratic behavior of the hole states as a function
of the magnetic field. The presence of the electric field introduces new transitions by breaking the z

symmetry and by coupling with the magnetic field. The Kramers degeneracy is also lifted by the
external fields. The results are discussed in terms of band-to-band transitions.

I. INTRODUCTION

Optical spectroscopy' in semiconductor quantum wells
(QW) has been a powerful tool for exploring the physics
of these new types of structures, particularly in the pres-
ence of external fields. Electric fields applied along the
growth direction (defined as the z direction) have been ex-
tensively studied both experimentally ' and theoretical-
ly. ' Stark shift and luminescence quenching were ob-
served and explained. The QW confinement permits the
observation of well-defined structures associated with ex-
citons under strong electric fields. Also, the electric field
can be used to tune the energy levels in the well so as to
modify the heavy- and light-hole interaction. The effect
of a magnetic field has been investigated in many hetero-
structures. ' For the magnetic field along the z direc-
tion, the in-plane motion is confined to cyclotron orbits
with the formation of Landau levels. When the magnetic
field is applied parallel to the interfaces, the situation be-
comes rather complex. For weak fields the barrier
confinement is predominant; the carriers cannot complete
the entire cyclotron orbits, and the energy levels are then
the QW levels perturbed by the magnetic field. At high
fields the magnetic confinement is predominant, and for
carriers localized near the center of the QW, the magnet-
ic orbits may be completed. However, when the centers
of the orbits are close to the interface, the orbits are
skipped at the barriers. Although some insight into this
behavior has been obtained from the comparatively sim-
ple electron subbands, the valence band has to be con-
sidered in all its complexity to get a correct understand-
ing of the transitions observed in this configuration.

Maan studied the effect of the in-plane magnetic field
on interband absorption in superlattices. Also, diamag-
netic shifts in GaAs-(Ga, A1)As were observed under
strong magnetic fields applied in the well planes. ' Re-
cently, the situation with the simultaneous application of
electric and magnetic fields has been considered. " When
crossed electric and magnetic fields are applied, crossed
field effects, namely the Hall drift, exist in addition to the
possibility of tuning the levels. This effect has been stud-
ied in bulk semiconductors. The optical-absorption
coefficient exhibits an oscillatory behavior as a function
of the electric field for a fixed magnetic field. ' In un-

doped heterostructures, optical spectra are generally
dominated by the excitonic transitions. Indeed, the high
quality of the GaAs-(Ga, A1)As samples permits the ob-
servation of some excited excitonic states besides the
ground state. A detailed study of their behavior in the
presence of external fields has then been made possible.
Although the electric-magnetic behavior has been con-
sidered in electronlike subbands, ' it is essential to in-
clude the coupling between the heavy- and light-hole sub-
bands if we want to analyze the detailed structure of the
optical transitions.

We consider in this work the energy levels and sub-
band structures in GaAs-(Ga, A1)As QW's in the presence
of crossed electric and magnetic fields. While such con-
siderations are of interest in their own right, they are fur-
ther motivated by recent experiments under those condi-
tions where fine structures in photoluminescence and
photoexcitation spectra have been observed. " A quanti-
tative comparison with the experiments, however, must
await the inclusion of excitonic effects which usually
dominate the experimental spectra. Here we present cal-
culations of the conduction- and valence-subband struc-
tures and discuss the band-to-band transition energies
and their oscillator strengths. The focus is on the central
effect of band mixing under crossed electric and magnetic
fields. We will consider a magnetic field parallel and an
electric field perpendicular to the interfaces limiting our-
selves to the situation of predominant QW confinement
so that we can describe the states in terms of the QW lev-
els perturbed by the external fields. In Sec. II we discuss
the details of our calculations, and in Sec. III we show
some illustrative results and discuss their significance. In
Sec. IV we summarize our conclusions.

II. THEORY

In our calculations we use the envelope-function ap-
proximation to describe the electrons and holes in the
quantum we11. The electric field F is applied along the z
direction. The magnetic field H applied parallel to the in-
terfaces is described by the vector potential A =(0,
—zH, O).

Close to the fundamental gap, in the GaAs system, we
have one conduction band (I 6), two valence bands (I s)
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degenerate at k=0, and one split-off valence band I 7.

The spin-orbit coupling between I 8 and I 7 bands will be
taken as infinite. In that way we can restrict our system
to a 6 X 6 Hamiltonian (where we have considered the
spin degeneracy). We shall also neglect the conduction-
band nonparabolicity since we are interested in the tran-
sitions among the first QW subbands, which are typically
separated by several tens of meV, while the GaAs
bandgap is 1.519 eV. The conduction-band Hamiltonian
which we have to handle is then a scalar,
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where Y(x) is the unit step function [Y(x)=1 if x )0
and Y(x)=0 if x (0], V, is the electron barrier,
A,~( = &A'c/He) is the magnetic length, s, is the electron
spin, and g* is the effective Lande factor. We take into
consideration the continuities of the wave functions and
the current density at the interfaces following the work of
Ben Daniel and Duke. '

For the valence band the problem is more complex.
Besides the coupling between I 6 and I 8, which we are
considering in second order in k, as described above, we
have to include the coupling of I 8 with the higher bands
to obtain the correct heavy-hole dispersion. This cou-
pling is taken into account as a perturbation, keeping the
second-order term in k. This results in off-diagonal terms
in the I 8 Hamiltonian, coupling the heavy- and light-hole
bands and leading to strong nonparabolicity in the hole-
subband dispersion in quasi-two-dimensional heterostruc-
tures. We neglect here the splitting due to the inversion
asymmetry in the III-V system. Following the work
developed by Luttinger, ' the valence Hamiltonian can be
written as

&,=H„(H)+ [ V, Y(zi, L /4) eFzq ]—1+—2 2
vJ,

mP gM

(2)

where 1 is a unit matrix and
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where y, 's are the Luttinger parameters' and
k =k„—ik . Here we have used the axial approxima-
tion, y=yz=y3=(yz+y3)/2. The origin of the coordi-
nates is taken at the center of the well.

First, we have to find a solution for the electronlike
Hamiltonian. We restrict the field range to values where
the barrier confinement is predominant over the magnetic
confinement. We are thus considering either low values
of tnagnetic fields or QW's which are not very wide. In
both cases, the eigenstates are QW-like states perturbed
by the external fields. We approximate the solution of
the electronlike subband by projecting the fu11 Hamiltoni-
an in the basis formed by the eigenstates of the single QW
at H =0 and F =0. The effects of the external fields are
described by the interaction among these eigenstates.
The eigenvalues are obtained by diagonalizing the Hamil-
tonian. We have also numerically solved Eq. (1). No
significant difference in the eigenvalues was observed
when compared to the method described above in the re-
girne of electric and magnetic fields considered here.

To solve the valence-band problem we extend the
method used to calculate the in-plane hole dispersion'
and the Landau levels. Essentially, we project the 4X4
hole Hamiltonian in the basis formed by the diagonal
solutions in the absence of external fields
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where pz=(x, y), k~=(k„,k ), g; and g are the ith and

jth heavy- and light-hole levels, respectively. This
method was applied successfully to describe the in-plane
hole dispersion in the presence of an electric field. ' The
off-diagonal terms in the Luttinger Hamiltonian and the
spin-field term couple the heavy- and light-hole subbands
in the presence of the magnetic field even at k~ =0. The
holes display a free motion along the direction of the ap-
plied magnetic field (x direction} but exhibit a complex k„
dispersion pattern because of the couplings due to the
magnetic field as well as higher-band interactions. The
magnetic field couples the z and y directions, and k
determines the position of the center of orbit in which the
carriers will move if there were no QW.
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The method we use to find the valence eigenstates in-

volves two basic approximations. First, we limit the basis
in which we are projecting the Hamiltonian to the bound
eigenstates of the QW in the absence of external fields,

neglecting the QW continuum. The continuum states
should be included for a complete description of the
problem. However, for the first few subbands, the ap-
proximation is well justified as will be seen later. The
second approximation is that, although we ensure the
current density conservation when we calculate our basis,
such conservation is not always preserved when we write
the hole eigenfunctions in the form of Eq. (5). The off-
diagonal terms of Eq. (2) introduce some discontinuity in
the current density which comes from the differences in
the effective parameters (y, 's) and the values of the wave
functions at the interfaces. However, for systems like
GaAs-(Ga, A1)As, these parameters do not change
significantly from one material to the other (unless the Al
concentration is very high), and the wave functions asso-
ciated with the first subbands have a small value at the in-
terfaces. The deviation from strict current density con-
servation is then not very important.

In the absence of external fields, when the off-diagonal
terms of the valence Hamiltonian are neglected, the opti-
cal transitions in QW obey a general rule An=even
(where the strongest transitions are b, n =0). The interac-
tion between the heavy and light holes induced by the
higher-band interaction breaks this simple rule. Some of
the so-called "forbidden" transitions are now allowed and
many new transitions may become observable. Besides,
in the optical transitions, k is not necessarily conserved
because of the crossed effects of the external fields and
V(z). We will not discuss here the complete spectra of
the band-to-band transitions but, as a first step, we will
restrict ourselves to the transitions where ky ky 0.
This simple picture permits us the analysis of the behav-
ior of the higher subbands mixing as a function of the
external fields to gain insight of the expected transitions.
A more detailed description, including the excitonic
effects, will be considered in a future work.

The oscillator strength is proportional to

3 2.90 for GaAs and y &

=3.45, yz =0.68, and
@3=1.29 for A1As. The values for the (Ga, A1)As are tak-
en as linear interpolations of these values. The energy
gap of GaAs is taken as 1.519 eV and of Ga Al, As as
E~(GaAs)+1.247x eV. The ratio between conduction-
and valence-band discontinuities is assumed to be —', . The
Lande g* factor is taken to be zero throughout. The top
of the GaAs valence band is defined as zero in energy.

In Fig. 1 we show the hole levels as a function of the
magnetic field with the center of orbit at the center of the
QW (k =0) for a QW with 175 A width and 35% of Al
in the barrier. The dotted curves represent the case with
N=2, where N is the number of heavy- and light-hole
states included in our basis. The dashed lines are the
N=3 approximation and the full lines include all the
bound QW levels in the basis (seven heavy and four light
holes). We can see clearly the strong nonquadratic be-
havior arising from the coupling between the heavy- and
light-hole subbands. The light-hole ground state exhibits
a stronger nonparabolic behavior due to the proximity of
the first-excited heavy-hole state which pushes upward
the light-hole state. We can also see the lifting of the spin
degeneracy by the magnetic field. This lifting of degen-
eracy is more significant for the light-hole subband. We
also observe that for N =3 the first two subbands have al-
ready saturated. Clearly, the higher subbands play an
insignificant role an may be neglected. For states close to
the top of the QW, the continuum would have to be in-
cluded, of course, to get a correct description.

In Fig. 2 we plot the energy levels as a function of ky
for a QW width of 175 A and 35% Al in the barrier for a
magnetic field of 10 T. The cyclotron radius for this
magnetic field is 81 A and the orbits are close to the QW
width. In this case we expect a strong dependence of the
energy levels on the position of the center of the orbits, as
can be observed in Fig. 2. The relation A,~k =L/2 cor-

HH1

"I~ ~ I

The only significant terms in this expression are of the
type

(7)

while the other terms can be neglected. Here P, and gz
are the electron and hole envelope functions, and u„and
u, are their respective Bloch functions. ' ' Essentially,
the oscillator strength is proportional to the overlap be-
tween the electron and hole envelope functions and their
mixing induced by the external fields and the off-diagonal
terms of Eq. (4).
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III. RESULTS AND DISCUSSION

The parameters used in our calculations are
m, (GaAs) =0.067mo and m, (A1As) =0.124mo (where mo
is the free-electron mass), y, =6.85, yz

——2. 10, and

FIG. 1. Hole subbands as a function of magnetic field for a
single GaAs-(Ga, A1)As quantum well with a width of 175 A and
an Al fraction of 0.35 in the barriers. The dotted, dashed, and
solid lines represent the results obtained using 2, 3, and all the
bound heavy- and light-hole subbands in the basis, respectively.
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E
&
~HH

&
increases its intensity. However, the most

nonparabolic transition E& ~LH& shows a weak depen-
dence of its intensity on the magnetic field, as a result of
the competition between the two mechanisms described
above.

IV. CONCLUDING REMARKS

In conclusion, we have presented here the results of
calculations of the QW subband structure in the presence
of crossed electric and magnetic fields. The strong non-
parabolic behavior induced by the interaction of the
heavy- and light-hole states is described, together with
the coupling between the electric and magnetic effects.
Many of the features which may be optically observable
were discussed in terms of band-to-band transitions al-
though without including the k dispersion.

In real situations, the transition energies and the oscil-
lator strengths are expected to be broadened by the
dispersion of the carriers upon the position of the center
of orbit and the crossed electric and magnetic effects
which do not necessarily conserve k . Besides, they are
folded in several excitonic lines by the Coulombic in-
teraction between the electron-hole pair. A complete
analysis of the optical transitions has to include these as-
pects of the problem.
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