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A method is described for calculation of the real (E'1) and imaginary parts (e,) of the dielectric
function of Si and Ge at energies below and above the fundamental absorption edge, in which the
model is based on the Kramers-Kronig transformation and strongly connected with the electronic
energy-band structure of the medium. A complete set of the critical points (CP's) are considered in
this study. This model reveals distinct structures at energies of the Eo, Eo+60 [three-dimensional
{3D)Mo], E, , E

~ +6, (3D M, or 2D Mo}, Ez [a mixture of damped harmonic oscillator (DHO) and

2D Mz], E', , and Eo (triplet) CP s (DHO). The indirect-band-gap transitions also play an important
part in the spectral dependence of e2 of Si. Results are in satisfactory agreement with the experi-
mental information over the entire range of photon energies. The strength and broadening parame-
ters at energies of each CP are obtained and discussed.

I. INTRODUCTION

Studies of the optical properties of solids have proved
to be a powerful tool in our understanding of the elec-
tronic energy-band structures of these solids. ' The
dielectric function, e(co}=e,(co)+ie2(co), is known to de-
scribe the optical properties of the medium at all photon
energies E =%co. Real and imaginary parts of this dielec-
tric function are connected by the Kramers-Kronig (KK)
relations:

co Ep(co )
Ei(co) = 1+ f dco

rr 0 (co ) —co

to Ei(co )
E2( co ) = —

& 2
d to

o (co')~ —co2

Spectroscopic ellipsometry is an excellent technique
with which to investigate the optical response of semicon-
ductors. Recently, Aspnes and Studna have studied
optical properties of Si and Ge by spectroscopic ellip-
sometry. They reported room-temperature pseudodi-
electric-function data and related optical constants of Si
and Ge for energies E from 1.5 to 6.0 eV. Vina et al.
also studied the temperature dependence of the dielectric
function of Ge in the temperature range between 100 and
850 K by spectroscopic ellipsometry (E=1.25—5.6 eV).
They obtained broadening parameters, amplitudes, and
phase angles for the E, , E]+El Eo and E2 critical
points (CP's}. They also found a decrease of the excitonic
interaction with increasing temperature. More recently,
Lautenschlager et al. ' measured the dielectric function
of Si by ellipsometry in the (1.7—5.7)-eV photon-energy
range. They obtained the parameters of the Eo, El, E2,
and E'& CP's at temperatures between 30 and 820 K.
However, these spectral-dependence data seem to have
one disadvantage with respect to theoretical modeling:
they are not expressed as continuous analytic functions of
the photon energies.

In this paper we present a method for calculation of

the spectral dependence of the dielectric constants, e, (co)
and e'2(co), of Si and Ge based on a simplified model of the
energy-band structures of the materials. This model cov-
ers the optical response of Si and Ge over the entire range
of photon energies. In Sec. II we present a brief review of
material properties of Si and Ge with particular emphasis
on their electronic energy-band structures. This informa-
tion will be used to build a theoretical model in the next
section. We describe in Sec. III the details of our model,
which is based on the KK transformation and includes
the Eo, Eo+b,o, E, , E, +E„E2,E', , and Eo (triplet) gaps
as the main dispersion mechanisms. The effects of
indirect-band-gap transitions, which will play an impor-
tant part in the analysis of the e2 spectrum (Si}, are also
discussed. In Sec. IV we show the fits with our model to
the experimental data of Si and Ge reported by Philipp
and Ehrenreich (Ref. 21) and Aspnes and Studna (Ref. 4).
Finally, in Sec. V the conclusions obtained in this study
are briefly summarized.

II. ENERGY-GAP ARGUMENT

Si and Ge have been the subject of considerable
research and device-development activities. A wide
variety of calculations and experiments ' have
given detailed information about their electronic energy-
band structures. We reproduce in Fig. 1 the energy-band
structures of Si and Ge along two lines of high symmetry
from the center to the boundary of the first Brillouin zone
(BZ) (see, e.g. , Refs. 33 and 35). The electronic states are
labeled using the notation for the representations of the
single group of the diamond structure. ' The locations
of several interband transitions are included in the figure.
These are the transitions which may play an important
part in the analysis of e, and e2 spectra. We also list in
Tables I and II indirect-band-gap and CP energies of the
main structure present in the optical spectra of Si (Table
I}and Ge (Table II) at 300 K taken from the literature re-
ported.
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FIG. 1. Electronic energy-band structures of Si and Ge along
two symmetry directions, including locations of several inter-
band transitions.

The fundamental absorption edge of Si corresponds to
indirect transitions from the highest valence band at the
I point to the lowest conduction band near X (i.e.,
I z~ ~b;). The conduction band I » appears to be lower
in energy than I 2.. This ordering of the conduction
bands is in direct contrast to those of Ge and zinc-blende
materials (such as GaAs and InP). The spin-orbit in-
teraction splits 1 t~ into I'6 and I s (double-group nota-
tion; splitting energy b,o), and I z5 into I s and 17
(double-group notation; splitting energy b,o). The corre-
sponding transitions at or near k=0 (I ) are, respective-
ly, labeled Eo [I 2~.(I s) It~(I s)], Eo+50 [I 2~.(I s)

I »(I's)], E'+6 [I 2, ,(I ") I'„(I'6); dipole forbid-
den], Eo+bo+50 [I;,(I ", ) I'„(I",)], E [I',",(I",)

I'(1 s)], and Eo+b, [1 25 (1 7) I 2 (I')]. The split-
ting energies 50 and Ao of Si are, however, very small'
and are not taken into consideration in the present
analysis. The lowest direct band gap of Si is the Eo edge.
It is not easy to measure the Eo and Eo+ ho edges of Si
because of their exceedingly weak structures in this ma-
terial.

The E& and E, +5, transitions in Si take place along
the (111) directions (A) of the BZ [E„A3(A4 ~)

Ac(Ac). E +g Av(Av) Ac(Ac)] 29, 32 —34, 38, 39,4S, 49

The spin-orbit-splitting energy A„ like 60 and ho, of Si is
extremely small, ' and thus no clear observations relat-
ing to it have been reported. The E& transitions in Si are
nearly degenerate with the Eo transitions, and therefore
the most attention has been given to these complicated
E, -edge structures [(3.1—3.4)-eV region]. s9 6o 3' 4 The
edge labeled E', results from transitions in the A direc-
tions of the BZ, A3~A3, and is well separated in energy
from other CP's (see Table I).

The more pronounced structure found in the region
higher in energy than E, is labeled E2. The nature of the
E2 transitions in Si is more complicated, since it does not
correspond to a single, well-defined CP. In fact, the pre-

TABLE I. Energies of indirect-band-gap (E~ ) and critical points in Si at 300 K (in eV).

Eid

1 1117'
1.124

'Reference 57.
Reference 58.

'Reference 59.
Reference 60.

Eo

3.281'
3.294

3.32'

3.320N'

3 330"
3.34'

3.5'

El

3.360'
3.412
3.38'
3.38'

3.40"
3.41'
3.7"

3.38"

Eo

4.06'

'Reference 61.
Reference 62.
Reference 19.

"Reference 63.

Eo+~o

4.13'

E

4.4'
4.31'
4.49'
4.270~

4.492~

4.5"

4 4k

4.303'

El

'Reference 64.
'Reference 65.
"Reference 66.
'Reference 67.
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TABLE II. Energies of indirect-band-gap (E,' ) and critical points in Ge at 300 K (in ev).

E&d
8'

0.6657'

Eo

0.802b

0.798'
0.80
0.796'

Eo+ ho

1.09'
109
1.092'

El

2.09'
2.12'
2.065~
2.087~

2.09"
2.105'
2.126'

2.1073

2.11"
2.111'

1 15m

2.12"
2.15'

El +5)

2.26'
2.34'
2.266~

3.291~
2.29"
2.303'
2.332'
2.3033

2.31"
2.298'
2.325
2.32"
2.35'

El

3.13'

3 110'

2.80"

Eo+ Ao Eo+Ao+ ~o

3.32'

2.93"

E

4.42'

4 35"

4.44"
4.368'

E',

2.92~

2.983q 3.169q 3.470q

5.80'

'Reference 57.
Reference 68.

'Reference 69.
Reference 70.

'Reference 71.
'Reference 62.

~Reference 72.
"Reference 73.
'Reference 74.
'Reference 75.
"Reference 61.
'Reference 7.

Reference 76.
"Reference 77.
'Reference 78.
Reference 79.

qReference 80.
"Present work.

cise low-field electroreflectance analysis ' revealed that
the Ez structure consists of three CP's, E2(1), E2(2), and

E,(3), of type M, , M„and Mi, respectively. It was con-
cluded that this is due to an accidental coincidence of the
M, saddle point in the (110) directions (Xz~X3) and an

Mi saddle point near I (b, ",~bt).
The energy-band structure of Ge is essentially the same

as that of Si because both materials have the same crystal
structure (i.e., diamond lattice). However, the
conduction-band ordering at the 1 point of Ge is quite
different from that of Si (but is the same as those of zinc-
blende, III-V inaterials), as mentioned above.

The Ge crystal is an indirect-band-gap semiconductor.
The lowest indirect-absorption edge of Ge corresponds to
transitions from the highest valence band at the I point
(I z& ) to the!owest conduction band at or near L (L, or
A, ). As in the zinc-blende materials, the lowest direct-
band-gap transitions in Ge occur in the center of the BZ
[Eo: I 2~.(l s) I z (I 6)]. The E, edge results from tran-
sitions in the A directions of the BZ. The next prominent
structure, E2, is attributed to an accidental coincidence
of an M, saddle point at X and an M2 saddle point in the
X directions. ' ' This structure is also believed to
originate mainly from a region in the I —X—U —L plane
near k=(2ir/a)( —,', —', —,'). ' More recently, it is attri-
buted to a small region centered at k=(2ir/a)(0. 77,
0.29,0. 16).' The b,o, 50, and 5, spin-orbit splittings of
Ge are considerably larger than those of Si, ' and thus
the splitting-related transitions have been experimentally
observed (see Table I).

III. THEORETICAL EXPRESSION

The joint-density-of-states functions J,„(co) can be re-
lated to the optical constant e2(co) as follows:

4R e
e2(co)=

i
(c ip v)

i J„(cv),
~m co

where (
~ p ~

) is the momentum matrix element for v

(valence) ~c (conduction) transitions. In the following
we try to obtain the model dielectric functions for the
CP's of various transition energies (Eo, ED+ho, E&,
E, +b,„Ei, E'„etc.). The effects of indirect-band-gap
transitions which will take an important part in the
analysis of the e2 spectrum (Si) are also discussed briefly.

A. Ep and Ep+kp transitions

The Eo and ED+60 transitions in the diamond- and
zinc-blende-type semiconductors occur in the center of
the BZ (I ). These transitions are of the three-
dimensional (3D) Mo CP's. Assuming the bands are par-
abolic, we obtain the contribution of these gaps to ez(co)
and e&(co) (Ref. 107):

ei(co)=[A/(fico) ][(fiiv —Eo) ' H(XQ —1)

+ —,'(A'co —Eo —bo) H(X, , —1)],
(2)
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e, (co) = AEO "[f(Xo)+ —,'[Eo/(Eo+bo)] "f(X, , )],

with

A =—'( —'m*)' P
3 2

(3)

larger than its transverse counterparts, one can treat
these 3D M, CP's as two-dimensional (2D) minima Mo.
The contribution to e2(co) of this type of 2D minima is

given by

ei(co)=ir[B,X, H(X, —1)+B2X,, H(X„—1)],

—(1—X, , ) 'H(1 —X, , )], (5b)

f(X )=X [2—(1+X ) —(1—X ) H(1 —X )], (5a)

f (X,.)=X,.'[2 —(1+X,.)"
where the H's are functions defined by Eq. (7).

The contribution of the E, and E, +5& transitions to
e, (co) can be calculated from Eq. (11) by using the KK
transformation. The result is

Xo ——Ace/Eo,

X, , =%col(EO+ho),

and

(6a)

(6b)

E,(co)= —B,X, ln(1 —X, ) —B~X,, ln(1 —Xi, ) . (12)

The first and second term on the right-hand side of Eq.
(12), respectively, correspond to the E, - and (E, +b, i)-
gap contributions.

1 fol' 3i —0
0 for y (0.

In Eq. (4), m * is the combined density-of-states mass and
P is the squared momentum matrix element.

As we will see later, the strength of the Eo and Eo+60
transitions in Ge is very weak. This is due to the small
density of states associated with these transitions (i.e.,
due to the small effective mass of the I ~ conduction
band). However, we can clearly see the Eol(Eo+bo)
structures in the optical spectrum of Ge in the region
very close to the fundamental absorption edge.

The Eol(EO+ho) structures in Si, on the other hand,
appear in spectrum between the dominant E, and Ez
structures. ' As a result, its exceedingly weak nature
would be completely covered with them. Because of this
reason, we shall not take into account the contribution of
these transitions in the e(co) spectra of Si.

C. E2 transitions

~ (~)=cX2r l[(1'X2)'+—X2x'],

~i(~)=c (1—X2) l[(1—Xi)'+X2r ']
with

(13)

(14)

The E2 structure appears in the region near 4.3 eV for
Si and near 4.4 eV for Ge. As mentioned in Sec. II, the
nature of the E2 transitions is more complicated: it does
not correspond to a single, well-defined CP. The struc-
ture in Si had been tried to be characterized by a one-
dimensional (1D) maximum, ' a mixture of a 2D M, and
a 2D M2, ' or a mixture of a 3D M& and a 3D M2
CP. ' ' The E2 structure in Ge could be fitted using ei-
ther a 3D M2 or a mixture of a 2D M& and a 2D M2
CP.

Here we shall characterize the E2 structure as that of a
damped harmonic oscillator (DHO). This oscillator gives

B. E& and E, +6& transitions
X2 ——Ace/E2, (15)

AX) [B, B„(E, fico) —] (iii~ (E,—),
Ei($)=

irB, X, (A'co )E, )
(8)

for the E, transitions, and

irX (, [B2—B~, (E, +b, —iiico ) ] (fico (E, + b, , ),

irB,X,, (fico )E i + b, , )
—2 (9)

for the E, +4& transitions, where

X, =%co/E, ,

=%co/(E& +6& )

(iOa)

{10b)

In Eqs. (8) and (9), the B's are the strength parameters.
Since the M& CP longitudinal effective mass is much

Band-structure calculations and some experimental
work indicated that the E, and E, + 6& transitions take
place along the (111) directions (A) of the BZ. These
CP's are of the 3D M, type and occur in the region near
3.4 eV (E, ) for Si and near 2. 1 eV (E, ) and 2.3 eV
(E, +b, ) for Ge. The contributions to e2(co) of this type
are'

where C and y are, respectively, the strength and damp-
ing parameters of the oscillator.

The DHO model provides a Lorentzian-like line shape
(see Figs. 2 and 3), and in the limit y~0 the ez spectrum
exhibits a divergence at fico=E2. We can also regard the
E2 gap as the CP of 2D M& type. The contribution to E2

of this type is

ei(co ) = irX2 ( D, ln
~

1 —X2
~

D2 ), — (16)

where the D's are the strength parameters. Equation (16)
exhibits a divergence at X2=1.0 (i.e., A'~=Ei), and its
spectrum very much resembles that of the DHO model
when we take into account the damping effect in the
equation. Therefore, we can say that the DHO is a
different representation of the broadened 2D M& CP. It
is also interesting to point out" that variation of CP an-
isotropy parameters from three to two dimensions
changes the density-of-states functions from M, and M2
CP's (3D) to M, (2D). This simply means that the 2D
M

&
CP originates from the 3D M

&
and M2 CP's.

We found that the E2 structures in some III-V corn-
pounds (such as InSb, GaAs, GaP, and Al Ga& As)
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(Refs. 107 and 111)can be well fitted by the DHO model.
However, unfortunately the structures in semiconductors
of group IV (Si and Ge) are not reasonably fitted only by
the DHO. We find that the best result is obtained with a
mixture of the DHO and a 2D maxima (M2 ).

The contribution of the 2D Mz CP to e2(co) is written

30-

20-

10-

---- DHO

DHO+M ~
2

as

E~(CO) =
vrFX2 (fico (Ei ),
0 (fico) E2), (17)

0
0

15-
-- --DHO

2 3 5 6
A~ {ev)

where F is the strength of the 2D M2 CP.
The conduction and valence bands reducing to

infinitely small energies implied by Eq. (17) should be
nonphysical. Because of this reason, we now modify the
model by taking into account a low-energy cutoff at the
energy E,I. This modification provides

ei(ru)=rrFX2 H(X„—1),
with

10-

-10-

1 2 3
e~ (ev )

—
E2

%co/E

The KK transformation of Eq. (18) gives

1 —X,(
e,(ci)= —FXi ln

l —X',

(19)

(20)

-15-

FIG. 3. Line shapes of the E&-gap contribution to e(co) for
Ge. The dashed lines correspond to the DHO [ez, Eq. (13); e~,

Eq. (14)]. The solid lines are the results of a mixture of the
DHO and 2D Mz CP [e„Eq.(18); e„Eq. (20)].

40- SI

30-

20-
-- --DHO

DHO+ Q
2

10-

0
0

30-

20-

1 2 3

-- --DHO

4 5
A~ (eV)

10-

-20-

FIG. 2. Line shapes of the Ez-gap contribution to e(co) for Si.
The dashed lines correspond to the DHO [ez, Eq. (13); e~, Eq.
(14)]. The solid lines are the results of a mixture of the DHO
and 2D Mz CP [e2, Eq. (18); e„Eq. (20)].

In Figs. 2 and 3, respectively, we show the line shapes
of the E2-gap contribution to e(co) for Si and Ge. The
dashed lines correspond to the DHO [e2, Eq. (13); e„Eq.
(14)], and the solid lines are the results of a mixture of the
DHO and 2D M2 CP [e2, Eq. (18); e it Eq. (20)]. The nu-

merical parameters used in the calculations are listed in
Table III. Here, the low-energy cutoff E I in Eqs.
(18)—(20) is assumed to be the same value as E, (i.e.,

Parameter

Eo (eV)

Eo +ko (eV)
a (ev'')
E] (eV)

E, +a, (eV)

Bl
v —0 5)

B2
( v —0.5)

I [Ei l(E~ +6~ )] (eV)

E, (eV)
C
r
F
I (E, ) (ev)
E. (eV)'
C,
ra
E„(eV)'
Cb

rb
E, (eV)'
C,

C

E," (eV)
D

Si

3.38

5.22
7.47

0.05
4.27
3.01
0.127
3.51
0.04
5.32
0.21
0.089

1.12
0.89
1.8

0.80
1.09
2.70
2.11
2.30
3.79
5.08
3.29
7.35
0.07
4.35
2.51
0.109
0.23
0.04
5 ~ 80
0.51
0.156
3.30
0.91
0.140
3.80
1.33
0.133

2.7

'This energy corresponds to the E', gap (see Tables I and II).
"These take account of the [Eo (triplet)]-gap contribution.

TABLE III. Parameters used in the calculation of e&(co) and
e2(a) ).

Material
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E,t =E, ). An addition of the 2D M, component to the
DHO one increases optical density (ez) in the low-energy
region and produces a new structure in e, in the region
close to E,&. As we will see in the next section, a consid-
erably larger strength of the 2D Mz CP is required for Si
to achieve a fit with experimental data.

with

g,~
——fico/E, ~ .

(26)

(27)

D, E ~ Eo Eo +Lo and Eo +ho+ 5,0 transitions

The E', transitions are seen in optical spectra near 5.3
eV for Si and near 5.8 eV for Ge. Their structures could
be characterized by the 2D M, saddle point' or the 3D
M, (or M~) CP. For Si the Eo structure lies very close
to the E, region. ' ' ' The Eo triplet (Eo, Eo+bo,
and Eo+b,0+ho) in Ge, on the other hand, appears in
the energy region between the dominant E] and Ez struc-
tures. They were treated either as a 2D Mo (room tem-
perature) (Ref. 19) or a 3D Mo CP.

In previous works, ' "'" no attention had been paid
to the E'~ and Eo (triplet) transitions in analyses of optical
constants of semiconductors (GaSb, InAs, GaP, etc.).
This is because they are too weak to be dominant in opti-
cal spectra. " For completeness, we shall take into ac-
count these transitions, but for simplicity we assume their
nature to be as the following DHO's:"

(21)

(22)

with

7; =%co/E;, (23)

where the E s are the energies of corresponding oscilla-
tors.

K. Indirect-band-gap transitions

with

(toe)=
~

(Ate Eg +Ate ) H—(1—X ),
(Ace )

(24)

(25)

where 6 is the direct-transition strength parameter, Acoq

is the phonon energy taking part in the indirect transi-
tions, and H is a function defined by Eq. (7).

The parabolic bands extending to infinite energies im-
plied by Eq. (24) should also be nonphysical. We shall,
therefore, modify the model in a manner similar to that
mentioned in Sec. IIIC by taking into account a high-
energy cutoff at the energy E,z. This modification gives

Si and Ge are indirect-band-gap semiconductors. The
lowest indirect band gap of Si is —1.1 eV and that of Ge
is -0.8 eV. The transition mechanism at the indirect
band gap, Eg is expressed by a second-order process in
the perturbation. Using the result of the perturbation
calculation, we can write the contribution of the indirect
optical transitions to ez(co) as

Unfortunately, there has been no expression for the
contribution of the indirect transitions to e, (co). Analyti-
cal expressions for this contribution from the KK trans-
formation are also not yet available. We will, therefore,
take into account the contribution of the indirect transi-
tions only to ez(co), but not to e( to).

IV. RESULTS AND DISCUSSION

The models given in Sec. III can be used to fit the ex-
perimental dispersion of ez and e, over most of the spec-
tral range (0—6.0 eV). The experimental data of e~ in the
transparency region are, however, usually somewhat
smaller than those of our model (i.e., the sum of each
contribution). In order to improve a fit, therefore, we
shall consider an additional term, e~ „,to e, . This term is
assumed to be nondispersive (i.e., constant).

A. Silicon

The fits with our model to the experimental e~ of Si are
shown in Fig. 4. The experimental data are taken from
Aspnes and Studna (Ref. 4). The solid line is obtained
from the sum of Eqs. (8) (E, gap; 3D M& CP), (13) (E&
gap; DHO), (18) (Ez gap; 2D Mz CP), (21) (E~ gap;
DHO), and (26) (indirect-band-gap transitions). The
dashed line is from the sum of Eqs. (8), (13), (18), and (26)
[i e , withou. t.taking account of Eq. (21)]. The dotted line
is the result of the sum of Eqs. (11) (E, gap; 2D Mo CP),
(13), (18), (21), and (26). We consider in Eq. (21) only one
oscillator which corresponds to the E', transitions [i.e.,
E, (i =a) =E', ]. In Eq. (26) the high-energy cutoff E,t, is
assumed to be E,&

——E, . The numerical parameters of
the fits used are listed in Table III.

The strength of the Eo/(Eo+ho) transitions in Si is
rather small, and it can be seen to be successfully
neglected here. It is also clear from the figure that the
DHO model [Eq. (21)] interprets the E~ structure ( —5.3
eV) well. As discussed in Sec. III B, we are able to fit the
E, CP structure with either the 3D [Eq. (8); solid line] or
2D model [Eq. (11);dotted line]. The 3D model explains
the experimental lower-energy shoulder of this structure
well. The fit in the (1—2)-eV region also becomes satisfac-
tory when the indirect-band-gap contribution [Eq. (26)] is
taken into account.

Figure 5 shows the fits with our model to the experi-
mental e, spectrum of Si. The theoretical curves are ob-
tained from the sum of Eqs. (12) (E& gap; 2D Mo CP),
(14) (Ez gap; DHO), (20) (Ez gap; 2D Mz CP), and (22)
(E', gap; DHO). The nondispersive term, e, (=1.8), is
also taken into consideration in this summation. The ex-
perimental data are taken below 1.5 eV from Philipp and
Ehrenreich (Ref. 21; open circles) and those in the
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FIG. 4. e& spectrum of Si. The solid line is obtained from the
sum of Eqs. (8) (E, gap; 3D M& CP), (13) (E& gap; DHO), (18)
(E& gap; 2D M, CP), (21) (E', gap; DHO), and (26) (indirect-
band-gap transitions). The dashed line is taken by the sum of
Eqs. (8), (13), (18), and (26) [i.e., without taking account of Eq.
(21)]. The dotted line is the result of the sum of Eqs. (11) (E,
gap; 2D Mo CP), (13), (18), (21), and (26). The experimental
data are taken from Ref. 4 (solid circles).

(1.5—6.0)-eV range from Aspnes and Studna (Ref. 4; solid
circles).

The theoretical E& spectrum [Eq. (12)] exhibits a diver-
gence at the E& edge. ' It is well known that the optical
transitions are strongly affected by a damping effect (i.e.,
a lifetime broadening). The damping effect can be easily
introduced in Eq. (12) in a phenomenological manner by
replacing co by re+i (I /A'). Variation of e, (co) for a par-
ticular choice of the damping energy I is shown in Fig. 5

by the dashed (I =0 eV) and solid lines (1 =0.05 eV). As
seen in the figure, the damping effect can decrease the
strength of the E, structure and leads to a fact which is
coincident with experimental verification. For the same
reason, the value of I =0.04 eV is also taken into con-
sideration in the calculation of Eq. (20). It can be recog-
nized that our model explains the e, spectrum of Si well,
especially in the energy region below 4 eV.

An individual contribution to ez of the E„Ez,E'„and
E~ transitions for Si is shown in Fig. 6. They are ob-
tained from Eq. (8) for the E~-gap contribution (3D M~
CP), from Eqs. (13) (DHO) and (18) (2D Mz CP) for the
E~-gap one, from Eq. (21) for the E", -gap one, and from
Eq. (26) for the E' -gap one. The sum of these contribu-
tions is shown by the bold line. The solid circles are the
experimental data taken from Ref. 4.

The transitions at the E' edge shown in Fig. 6 yield a
continuous absorption spectrum characterized by a
power law of (fico) (%co F. '

) . Be—cause of the extreme-
ly low probability for indirect transitions, one can only
expect to realize them experimentally below the direct
threshold as a tail of the direct-absorption edge E, (also
see Fig. 4). The F. ' transitions may also occur at ener-
gies above E,I,

——E, . However, the ensuing E& and Ez
transitions can provide sufficient strength and thus take
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FIG. 5. e& spectrum of Si. The theoretical curves are ob-

tained from the sum of Eqs. (12) [E, gap; 2D Mo CP, I =0 eV
(dashed line) and I =0.05 eV (solid line)], {14)(Eq gap; DHO),
(20) (E, gap; 2D M~ CP), and (22) (E] gap; DHO). The non-
dispersive term, e, (=1.8), is also taken into consideration in
this summation. The experimental data are taken from Refs. 21
(open circles) and 4 (solid circles).

FIG. 6. Individual contribution to e& of the E&, E~, El, and
E~ transitions for Si. They are obtained from Eq. (8) for the
E, -gap contributions (3D M, CP), from Eqs. (13) (DHO) and
(18) (2D Mz CP) for the Ez-gap one, from Eq. (21) for the E',

gap one, and from Eq. (26) for the E'd-gap one. The sum of
these contributions is shown by the bold line. The solid circles
are the experimental data taken from Ref. 4.
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(28)

over the indirect-band-gap oscillators present at above

E.h ~

The E, gap is of the 3D M, (or 2D Mo) type. Hence,
the line shape of the corresponding e& spectrum should be
characterized by a steep low-energy side and a broader
high-energy side. This line shape is in good agreement
with the experimental data. The strength parameter B]
can be given analytically by"

32&3 aa
1 9'�) ao

~00

10-

CV 1—

E,

E

ohio

0
where az is the Bohr radius in A, ao the lattice constant

0
in A, and to& the E, -gap energy in hartrees (27.2 eV).
Equation (28) predicts B, =4.83 at room temperature,
while we obtained B, =5.22 from the present analysis.
The agreement is extremely good in view of the crudeness
of the theory used. A notable difference between the cal-
culated and experimental values of B, has, however, been
found for InSb (Ref. 8) and GaP (Ref. 112},a fact that
has been attributed to excitonic enhancement of the E&
transitions. " Some calculations " also showed that
the k-linear term for k perpendicular to ( 111) can
significantly increase the strength of the E& structure.

The Ez structure in Si can be fitted using a mixture of
the DHO (broadened 2D M& CP) and the 2D Mz CP. It
is worth noting that the best-fit analyses of dielectric data
in the Ez-structure region of group-(III —V) semiconduc-
tors required only the DHO contribution and no addi-
tional (2D Mz CP) one. ' '" As is clearly seen in Fig. 6,
the 2D Mz CP (Ez structure) has a considerably large
strength. The steep low-energy end of this contribution
at E, is the result of the E,I cutoff-energy modification.
The strongest component in the ez spectrum of Si is

found to be the Ez-gap DHO. It is also recognized that
the strength of the E', transitions is very weak.

B. Germanium

A comparison of our ez model to the experimental data
of Ge is shown in Fig. 7. The experimental data are tak-
en below 1.5 eV from Philipp and Ehrenreich (Ref. 21;
open circles) and those in the (1.5—6.0)-eV range from
Aspnes and Studna (Ref. 4; solid circles). The solid line is
taken by the sum of Eqs. (2) [Eo/(ED+ 50) gaps; 3D Mo
CP's], (8) (E, gap; 3D M, CP), (9) (E, +6, gap; 3D M,
CP), (13) (Ez gap; DHO), (18) (Ez gap; 2D Mz CP), and
(21) [E',, Eo (triplet); DHO]. The dashed line is obtained
from the sum of Eqs. (2), (8), (9), (13), and (18) [i.e.,
without taking account of Eq. (21)]. The dotted line is
the result of the sum of Eqs. (2), (11) [E, /(E, +6, ) gaps;
2D MnCP's], (13), (18), and (21).

As in Si, the indirect transitions (Eg ) in Ge take part
at below the onset of the direct-band-gap transitions
which occurs at -0.8 eV (Eo gap). However, the energy
separation between the E' gap and the lowest direct
band gap (Eo) for Ge is very small (-0.1 eV; see Table
II) compared to that for Si (-2 eV; Table I). We can,
therefore, successfully neglect the E' -gap contribution
for the case of Ge. [The Eo/(Eo+ho)-gap contribution

03 =

0.01 I 1 I I I I } I

0 t 2 3 4 5 6 '7 8 9

Ace (eV )

FIG. 7. e& spectrum of Ge. The solid line is taken by the sum
of Eqs. (2) [Eo/(Eo+50) gaps; 3D Mo CP's], (8) (E, gap; 3D
M] CP) (9) (E]+6] gap; 3D M, CP), (13) (E& gap; DHO), (18)
(Ez gap; 2D M& CP), and (21) [E&, Eo (triplet); DHO]. The
dashed line is obtained from the sum of Eqs. (2), (8), (9), (13),
and (18) [i.e. , without taking account of Eq. (21)]. The dotted
line is the result of the sum of Eqs. (2), (11) [E& /(E~ +5~) gaps;
2D Mo CP's], (13), (18), and (21). The experimental data are
taken from Refs. 21 (open circles) and 4 (solid circles).

can take over the weak Eg -gap one. ] In fact, as shown in

Fig. 7, we obtain a good fit with the experimental ez spec-
trum in the fundamental absorption-edge region only by
taking into account the Eo/(Eo+bo)-gap contribution

[Eq. (2}].
We consider in Eq. (21) three DHO's: one corresponds

to the EI transitions [E;(i=a) =E', ] and the remaining
two take into account the Eo (triplet) transitions

[E,(i =b, c)] (see Table III). A consideration of these
components results in excellent agreement with the ex-
perimental e~ spectrum in the E', -edge region (-5.8 eV)
and the region between 3 and 4.5 eV. The 3D M, terms
[Eqs. (8} and (9)] and a mixture of the DHO and 2D Mz
terms [Eqs. (13) and (18)] also explain well the
E, /(E, + b, , ) and E, regions of the e~ spectrum, respec-
tively. An excellent agreement can thus be achieved be-
tween our model (solid line) and the experimental data
over a wide range of the photon energies.

The fits with our e& model to the experimental data of
Ge are shown in Fig. 8. The theoretical curves are ob-
tained by the sum of Eqs. (3) [Eo/(Eo+b, o) gaps; 3D
Mo], (12) [E, /(E, +b, , ) gaps; 2D Mo], (14) (Ez gap;
DHO), (20) (Ez gap; 2D Mz), and (22) [E',, Eo (triplet);
DHO]. The nondispersive term, e„(=2.7), is also taken
into consideration in this summation. The dashed line is
obtained with I =0 eV [Eq. (12)] and 1 =0.04 eV [Eq.
(20)], while the solid line is obtained with I =0.07 eV
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FIG. 8. e] spectrum of Ge. The theoretical curves are ob-

tained by the sum of Eqs. (3) [Ep/(Ep+Ap) gaps; 3D Mp], (12)
[E, /(E, +5, ) gaps; 2D Mp, 1 =0 eV (dashed line) and 1 =0.07
eV (solid line)] (14) (E& gap; DHO), (20) (Ei gap; 2D M&), and
(22) [E'„Ep (triplet); DHO]. The nondispersive term, e„
(=2.7), is also taken into consideration in this summation. The

experimental data are taken from Refs. 21 (open circles) and 4
(solid circles) ~

[Eq. (12)] and I =0.04 eV [Eq. (20)]. The experimental
data are taken from Refs. 21 (open circles) and 4 (solid
circles).

As discussed before, the smaller the damping energy in
Eq. (12) gives the larger the E, -peak value. The experi-
mental value of E'1 at the E, peak is 30.1 Calculation of
Eq. (12}with I =0.07 eV (solid line) agrees well with this
peak value. Equations (14) and (20) also interpret the
peculiar line shape of the E& structure well [see (4—6)-eV
spectrum region in Fig. 8].

An individual contribution to ei of the Ep/(Ep+ho),
E, /(E, + b, I ), Ei, E'„and Ep (triplet) gaps for Ge is
shown in Fig. 9. They are obtained from Eq. (2) for the
Ep/(Ep+b, p)-gap contribution (3D Mp CP), from Eq. (8)
for the E&-gap one (3D M& CP), from Eq. (9) for the
(E, + b, , )-gap one (3D M, CP), from Eqs. (13) (DHO)
and (17) (2D Mz CP) for the Ei-gap one, from Eq. (21)
for the E&-gap (DHO) and [Eo (triplet)]-gap ones [DHO;
marked in the figure by (Ep/bp/bp)]. The bold line in
the figure is the sum of these contributions. The open
and solid circles are the experimental data taken from
Refs. 21 and 4, respectively.

The Ep/(Ep+bp) transitions yield a continuous
ez(co) spectrum obeying the well-known —,

' power law

[i.e., ~ (Ace) (fico Eo ) ]. The transitio—ns contribute
strongly to the dispersion of e, (co) but not to its absolute

107, 117,118

FIG. 9. Individual contribution to e& of the Eo/(Eo+ho),
E, /(E, +b &), E&, E], and Eo (triplet) gaps for Ge. They are
obtained from Eq. (2) for the [Ep/(Ep+kp)-gap contribution
(3D Mp CP), from Eq. (8) for the E, -gap one (3D M, CP), from
Eq. (9) for the (E]+ 6& )-gap one (3D M& CP), from Eqs. (13)
(DHO) and (17) (2D Mz CP) for the E&-gap one, and from Eq.
(21) for the E', -gap (DHO) and [Ep (triplet)]-gap ones [DHO;
marked by (Ep/bp/hp)]. The bold line in the figure is the sum

of these contributions. The open and solid circles are the exper-
imental data taken from Refs. 21 and 4, respectively.

The strength of the E, and E, +6, transitions of dia-
mond (zinc-blende} materials can be estimated with the
simple expression

E1+h1/3
B,=44

a0E1
(29a)

E, +26, , /3
B =44

ao(Ei + b'i )
(29b)

0
where a0 is the lattice constant in A and E, and 51 are in
eV. This expression predicts B,=3.79 and Bz=3.29.
These values are used in the calculations of Eqs. (8)—(12).
[The additional strength parameters B» and BzI in Eqs.
(8) and (9) are then determined from the best-fit pro-
cedures with the experimental ei data (see Table III).]
We can obtain good fits to the experimental e, and ez
spectra using these predicted B, and Bz values (Figs. 7
and 8).

The strength of the 2D Mi (Ez-gap) contribution for
Ge is very weak, compared to that for Si (see Figs. 6 and
9). As mentioned in Sec. II, the energy-band structure of
Ge has a stronger resemblance to those of zinc-blende,
III—V materials (such as GaAs and InAs} rather than to
that of Si. The best-fit analyses of dielectric data in the
Ez-structure region of such III—V semiconductors re-
quired no or negligibly small 2D Mz contribution. A
negligibly small or a weak strength of this contribution
for Ge and some III—V semiconductors may come from
their energy-band structures.
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V. CONCLUSIONS

We have developed a method for calculation of the real
(et ) and imaginary parts (e& ) of the dielectric function of
Si and Ge at energies below and above the fundamental
absorption edge. This model is based on the Krarners-
Kronig transformation and takes into account the effects
of interband transitions at the Ep Ep+4p E] &]+&],
E2, EI, and Eo (triplet) CP's and indirect band gaps. The
Eol(En+ho) structures could be characterized by a 3D
Mo CP, the E, /(E, +Et) structures by a 3D M, (or 2D
Mo ) CP, the E& structure by a mixture of damped har-
monic oscillator (DHO; a broadened 2D M, CP) and 2D
M2 CP, and the E', and Eo (triplet) structures by the
DHO's. The indirect transitions are assumed to provide
a gradually increasing absorption spectrum expressed by
a power law of (fico E' ) —(%co is the photon energy, Eg
the indirect band gap). Analyses are presented for these
semiconductors, and results are in satisfactory agreement

with the experimental data over the entire range of pho-
ton energies (0—6.0 eV). Line-shape analyses of e, and ez
spectra yield information about the strength and
broadening parameters of each CP. Dielectric-related
optical constants, such as the refractive indices and the
absorption coeScients, are easy to obtain from the
present study in the form of practical functions. Since
these expressions are purely analytical functions of the
electronic energy-band parameters, the model would also
be applicable to the analysis of some perturbation-
induced eff'ects of the optical constant (e.g. , the pressure
and temperature dependence of the refractive indices).
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