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Rapid convergence of lattice sums and structural integrals in ordered and disordered systems
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We present a new interpretation of the Ewald technique that suggests a simple rule to guide the
transformation of any lattice sum into a pair of sums, one over the original lattice and the other
over the reciprocal lattice, both converging faster than any power law in the distance from the ori-
gin. The rule sets conditions needed in finding an approximation to the long-range part of the func-

tion being summed, and it is the Fourier transform of this approximation that then appears in the
reciprocal-lattice sum. Once such an approximation is found, the same transformation can be used

not only for lattice sums over Bravais lattices or lattices with a basis, but also for the structural in-

tegrals associated with noncrystalline systems, including glasses and liquids. The approach can also
be applied to quasicrystals, where the transformation takes two different forms depending on wheth-

er the sum is viewed in three dimensions or six, for the icosahedral case. Finally, other implications
of the interpretation are presented, including a set of conditions under which an alternative plane-
wise summation method can be used.

I. INTRODUCTION

A general problem in calculating cohesive energies, '

in the dynamical theory of crystals, in calculating defect
energies, and in the use of pseudopotentials, is the eval-
uation of the sum of terms originating with a function
evaluated at the points of a crystal lattice. This function
might for instance be based on the interionic pair poten-
tial for some system, and may include oscillating phase
factors. Since pair and higher-center potentials are often
of long range, the corresponding lattice sums are only
very slowly convergent or, as is the case for the Coulomb
potential, may only be conditionally convergent. This
means that direct evaluation of the sums even by comput-
er is impractical if high accuracy is required, and in
consequence an initial rearrangement or transformation
is needed to improve the convergence.

Many techniques have been used in the past to achieve
such a rearrangement. The most useful for the simple
Coulomb problem on a three-dimensional lattice was first
proposed by Ewald, ' and was soon thereafter extended
to arbitrary power laws by Misra and by Born and Brad-
burn;" it has since been developed further in various
ways. ' ' ' ' All these Ewald-like methods split the
potential into two pieces, one a sum over the original lat-
tice and the other transformed by the Poisson relation to
a sum over the reciprocal lattice. For a function in a
given number of dimensions, the same transformation
can be used with any Bravais lattice. Other methods, in
contrast, generally require specification of the lattice be-
fore the transformation is made. A second commonly
used approach, also quite general, is the planewise sum-
mation technique. ' ' Instead of splitting the sum into
two pieces, this method separates the fundamental lattice
translation vectors into two subsets and the Poisson for-
mula is applied to the sum over the lattice generated by
just one of them. The final sum is then over a lattice

which in some directions is the real-space lattice, and in
others is the reciprocal lattice. There are other possible
rearrangements to produce rapidly converging series,
such as the Schlomilch series of Hautot. ' These are usu-
ally restricted to a small class of sums, but they may pro-
duce even faster convergence than the Ewald-like
methods since the entire sum is expressed as an analytic
function which is then approximated by a rapidly con-
verging series. For the Ewald-like methods the final ex-
pression still contains sums over the lattice sites, or possi-
bly integrals over the correlation functions for a noncrys-
talline material.

In this paper we first point out a very simple explana-
tion of the success of the Ewald and similar methods, by
appealing to a widely known property of the convergence
of Fourier series for a smooth function. In hindsight it
seems surprising that this observation has not been made
before; possibly it has been obscured by previous deriva-
tions and their notations, since it becomes very clear once
the problem is cast in a general form. In any case, this
new understanding of the Ewald method allows us to gen-
eralize it even further, and to apply it immediately to al-
most any lattice sum. The same result also gives an un-
derstanding of when the planewise methods can work,
which we examine in Sec. IV.

The present paper was stimulated by the need to evalu-
ate lattice sums for an icosahedral quasicrystal. ' This is
in fact a three-dimensional structure, but is most easily
derived from a periodic six-dimensional structure, lead-
ing to a problem involving six-dimensional lattice sums.
As mentioned above, an advantage of the Ewald ap-
proach is that it does not depend on the structure of the
underlying lattice, so that it can even be applied to non-
crystalline materials if the structure in real and reciprocal
space is precisely known. Applying it directly to the
quasicrystal transforms the "true" (~~) space parts into
rapidly converging functions, but the six-dimensional
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sum also extends into the "complementary" (I) space
where in reciprocal space the new "potential" decays
only as k~ or even more slowly in those three dimen-
sions. This means that the sum is still only power-law
convergent in these particular directions, and points to a
need for generalizing the Ewald formula.

A slightly different application of the convergence
techniques to be discussed below is in evaluation of the
numerical Fourier transform of certain functions. In this
problem it is advantageous to analytically transform any
singular parts and any long-range parts separately to ob-
tain an expression that is then easily integrated numeri-
cally, with a transform that itself decays in a reasonable
manner.

II. LATTICE SUMS—GENERAL DISCUSSION

The problem at hand is to evaluate

where i (and j) label the points R, of a d-dimensional
structure, nominally representing the positions of ions in
a solid, and with f some interaction potential. The aver-
age implied by ( ) is quite arbitrary and has no effect on
the calculations to follow; it may therefore be evaluated
in whatever manner is physically appropriate to the sys-
tem under consideration. In general, the points R, do
not have to lie on a simple lattice. They may be points of
a lattice with a basis, the coordinates of a noncrystalline
solid, or a single configuration of a liquid. In general the
lattice sum becomes a structural integral, depending on
the pair density

(2)

Note that the system under consideration may be either
finite or infinite. For infinite structures we first assume a
finite number X of ions in a volume V and then take the
limit N~ 00 (with Uo= V/N fixed). Inserting

1=Jd r5(r —R, ) Jd r'5(r' —R, )

d

f (r) = J d f(k)e'"',
(2m. )"

(6)

we can immediately obtain the Poisson transform for the
lattice sum (1):

d kE[f]=f „f(k) f d re'"'P(r)
(2m. )"

d "k

(2m )

For a crystal lattice we find

P( —k)= g e '=N g 5q ~
t 1

(7)

where the Kt are the points of the corresponding recipro-
cal lattice, and since in a volume V the volume per dis-
tinct k in reciprocal space is (2~) /V, then

a uniform distribution of ions, which means replacing I'
by

P'(r) =P(r) —5(r)— 1

Vp

In what follows, we do not assume this, but it is a simple
matter to include these subtractions if necessary. In the

example of the Coulomb interaction, the last term has the
effect of including the effect of a uniform negative com-
pensating background. There are subtleties arising from
the conditional nature of the convergence here, arising
for example from the fact that the average electrostatic
potential in an infinite crystal is not well defined. How-
ever, the use of (5) is the standard technique for dealing
with such background subtractions and yields the physi-
cally correct results in most situations. '

In a Bravais lattice, we then have P(r) =
g& 5(r —RI )

for lattice translation vectors RI, and in general P(r) is
the ion-pair correlation function.

The crucial step common to all the Ewald-like pro-
cedures is to divide the sum into a real-space piece and a
reciprocal-space piece, where the second term is obtained
through the Poisson transformation. More specifically,
writing

in the statistical average in (1) gives us

E[f]=f (0)+—Id r f d "r'f (r r')p' (r, r')—
N so

2 "N
P( —k) = g 5(k —K, ),

I

where

dr r I r 1 g f(K(),
Vp (

(10)

=5(r)+— d "r'p' '(r', r+r') .
N

(4)

Note that we have included the term i =j in the sum
(1). This was done to make the Fourier transform of P as
simple as possible in the crystal case. However, in prac-
tice it is generally necessary to subtract both this self-
interaction term and also the energy term associated with

where vp is the volume per ion. In a liquid or glass, this
P(k) is exactly Uo times the static structure factor S(k),
except that it also includes a 5 function at k=0 [which is
removed if the subtractions (5) are applied]. However,
the crystal-lattice result (10) is the standard form for the
Poisson transformation.

The Ewald technique in its most general form can now
be stated succinctly. Given f (r), we are required to find
a function g (r) such that h (r) =f (r) —g (r) decays rapid-
ly in real space, and such that Fourier transform g(k) de-
cays rapidly in reciprocal space. Assuming these condi-
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tions have been met, and taking for the moment only the
crystalline case, then

E[f)=g h (RI )+ gg(R, )

I I

= g h (R()+ gg(K(),1

I Uo 1

where the Poisson relation has been applied only to the
second term here. The result is a pair of sums, one in real
space and the other in reciprocal space, and both are rap-
idly converging provided an appropriate function g (r) is
found. The approach of Sugiyama suggests that the
search can be carried out systematically, but is not itself
complete since, for example, it fails when the initial func-
tion f has a singular line or plane.

A good example of the Ewald approach is the general
method of Misra, and of Born and Bradburn, "who pro-
ceeded from Ewald's result for the Coulomb potential to
produce functions which allow evaluation for any power
law or product of a polynomial in the position coordi-
nates with an inverse power law. We give here their re-
sults expressed in most general form. With the 1/r po-
tential function we can use incomplete I functions,
which for integer values of m reduce to Gaussians or to
error functions; thus,

er, there is a price, namely that a pair of lattice sums still
remains in the final expression, so that the other lattice-
specific methods might in some cases be more efficient.

g„(k)= J (V )"f(r)e '"'d r=( —k )"f(k) . (16)

However, by the second condition in the lemma we have
for all k

Ig. (k) I J I
(V')"f (r) Id'r =C. n&—

2
(17)

III. RESTRICTIONS ON THE CHOICE
OF FUNCTIONS g

The main step in understanding the success of the
method for certain functions g is the following lemma,
which is itself based on a relatively well-known result in
approximation theory.

Lemma: If (i) f (r) is a C" function, and (ii) there ex-
ists some X for which all nth derivatives of f are abso-
lutely integrable (for all n )X), then j(k) exists and de-
cays at infinity faster than any power law in k.

To prove this, we need only note that for any polyno-
mial Q the Fourier transform of Q (8/Br)f (r) is

Q ( ik)f(k ). In particular, let us consider g„(r )
=(V )"f(r). Then

1 mf (r) g(r) = h (r) =— I —,vr
r I (m/2)

(12) where C„ is a finite constant. This implies that

with the reciprocal-space part

3/2

I'(m /2) k

r

3 —m k

4v
(13)

3/2 2

I (m/2) lKI —al

3 m

3 —m (KI —a)xr
4v

(14)

This immediately reproduces the original Ewald result
for m =1 or 2. Thus, for f (r) =e' 'Ir (the exponential
shifts the origin of reciprocal space by a) we find

ia RI

I I

C„
lf(k)lk "&C„and lf(k) & n )—. (18)

2

Taking the limit k ~ oo in this last relation implies that f
must decay faster than any inverse power of k, as we set
out to prove. Note that this also implies that f can have
an infinite singularity at k=0, but nowhere else.

How can this result be applied? Clearly the problem of
generalizing the Ewald method is now to find appropriate
functions g (r) such that both g and h =f —g are rapidly
decaying. The lemma therefore asserts that the following
rule guarantees a successful division of the lattice sum.

Rule: Given f, choose g (i) to be a "good" approxima-
tion to f, (ii) to be a C function, and (iii) to have all
high-order derivatives absolutely integrable.

Here g is a good approximation to f if there exists a set.
A such that for all r in A and for any n,

and multiplying the potential by a polynomial we then
have

C„
lrl )R —

l f (r) —g(r)l & (19)

Q(r)e' '
1 a cia r

=Q
i Ba

(15)
and

B„
p(Ir, lrl) R, rE Az l) &

where Q is any polynomial. Kornfeld used a similar
strategy to derive results for the multipole potentials
starting from the Coulomb result.

These functions [(12) and (13)] are extremely useful for
calculations of lattice dynamics and have also been ex-
tended, for example, to treat lattices with a basis' or
even to potentials with Friedel oscillations. ' ' The great
advantage here is that the method can be applied to a
wide variety of functions on any kind of lattice. Howev-

for all R, where B„and C„are finite. Thus, in essence,
for large R, g must be exponentially close to f, except
possibly on a set which is itself of exponentially small
size.

Now let us consider by way of example the potential
f (r) = 1/r that is dealt with so successfully by the func-
tions (12). We set g(r) =g&(r) lr, where we can assume

g, is spherically symmetric. Our rule requires us to
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choose g& to be smooth except possibly at r =0, where
the series expansion of g, must be of the form

R~P(r)= g 5(r —RII)P
R 2RO

(24)

g&(r)= aor +a&r + . (21)
where

But we also require, as r ~~, that g, (r)~ 1 exponential-

ly fast. If we let Po(x ) =[1+(
—3x +x ') /2]e(1 —x) . (25)

r dr
g, (r)=

J u (r')dr'
(22)

then the conditions on u (r) are integrability, exponential
decay at infinity, and a power-series expansion of the
form u(r)=bor '+b, r +' about r =0. The simplest
choice is then clearly

u(r}=r 'exp( —
vier ),

which is exactly the result (12). We see that the principal
reason for the success of (12) is the property of smooth-
ness everywhere. This includes cancellation of the singu-
larity at r =0 to leave only even powers of r, since odd
powers would produce new square-root singularities at
the origin. Finally, as r ~ (x) the nth derivatives of g vary
as 1/r"+, so that for n & d —m we see that these are
indeed absolutely integrable. From this we are provided
with an automatic guarantee that in any dimension g(k)
decays faster than any inverse power of k at infinity. In
fact, in d dimensions

2~ ™77~~& d —mg(k)=
r( /2)k 2 4

(23)

which decays to zero roughly as exp( —k l4v ) for any
values of d and m.

But the lemma can now easily be applied to any func-
tion of r, and in particular to the quasicrystal sums men-
tioned in the Introduction. The result (15) encompasses a
large class of functions by replacing the polynomial Q by
any function which, when its argument happens to be a
derivative, gives an unambiguous differential operator.
However, potentials which cannot be obtained in this
way require a transformation quite distinct from this
class. An excellent example of both this and the applica-
tion to noncrystalline systems is provided by the
Coulomb sum for an icosahedral quasicrystal.

In one model for an icosahedral quasicrystal the loca-
tions of metal ions in real space is determined by a pro-
jection from a six-dimensional cubic lattice in which the
"basis" consists of a three-dimensional ball of radius Rp
in each unit cell. There are then two alternative methods
for evaluating this sum. The first is to regard this as a
three-dimensional problem, in which f (r)= 1 lr as for a
standard Coulomb sum. Then

The sum in (24) is over the six-dimensional cubic lattice.
Then

27r 3

P(k) = y 5(k —KII)SO(2ROKJ ),
K

(26)

where

So(x)= [3(sinx —x cosx ) lx ] (27)

vp is the volume per ion in this structure, and the recipro-
cal vectors K run over the six-dimensional reciprocal lat-
tice.

We then apply (7) to this noncrystalline problem, using
the standard three-dimensional Ewald formula, to obtain

erfc(gR
II

) R jE= T PpR
II

2Rp QVp

4m. exp( —K
II

/4g+ So(2ROK~ )
o Kpp K

II

R~O

2(rile—)'~.
We have included the subtractions referred to in (5) to
demonstrate that they are indeed easy to apply. Both
sums are absolutely convergent, since in the perpendicu-
lar directions the first is cut off at R~=2Rp and the
second falls as I/K~. We have found (28) to be useful in
obtaining rough values for the Madelung energy.

However, the summations above are over a six-
dimensional lattice, even though the real structure is
three dimensional, and in particular the reciprocal-space
sum does not converge rapidly in the perpendicular direc-
tions. There is an alternative method, however, which is
to consider the original problem as a sum of the six-
dimensional function f(r}=Pa(r~/2RO)rII, over a six-
dimensional cubic lattice. The problem thus becomes one
of finding a smooth approximation to this that satisfies
our rule in six dimensions. The function
Po(r~/2RO) erf(grII)/rII used in (28) does not, since al-
though it removes the singularity at rII =0, others remain
at r~ =2Rp and r~=0, and, furthermore, since there are
points with rII close to zero with r~ arbitrarily large, our
condition (i) is also not satisfied. It is these singularities
that are responsible for the 1/K~ behavior seen above.

There are, in fact, many functions g that completely
satisfy our rule. One of the simplest is

r2
2 «f(brIIe ""

) 3g(r}=—,'I 1+erf[a(4RO rj )e"" ]I— ~ 1+ ——
2R

+
2

II

3
2

erf(cree"" } . . (29}

This is smooth, since it has the correct properties at
r~ =0, rII =0, and r~ =2R p, and thus satisfies our condi-
tion (ii). The magnitude of its derivatives is exactly as for
f (r) itself for large r, and the smoothness for small r im-

plies that condition (iii) is also necessarily satisfied. Fi-
nally, the presence of the factors of exp(gr ) allow this to
satisfy our first condition. If these were absent, the real-
space sum would not converge well, as the singular re-
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IV. PLANEWISE METHODS REVISITED

The rule for the Ewald-like methods above has an ana-

log for the planewise methods that we now discuss. As
mentioned in the Introduction, the key step in planewise
summation is to split the lattice A into two sublattices A&

and A2, which is accomplished by dividing the fundamen-

tal lattice vectors into two sets, and generating the sublat-
tices from these sets. If we wish to treat noncrystalline
materials (so far as we are aware no such application has
previously been made) this means splitting the vector
space R into two subspaces S, and S2, in the crystalline
case these become the vector spaces spanned by the two
lattices. In any case, writing the points of R " as
r=(r&, rz) and writing the points k of reciprocal space
similarly, we obtain

21'
f(r)= f „ f(r(, kz)e

' (2~) ' (30)

and thus

gion r~(=0 extends to r~= ao with a width that decreases
at most as a power law. This factor ensures that the size
of the singular region decreases exponentially at large r.

Of course, the Fourier transform g(k} must be deter-
mined numerically, which adds to the computational
time. However, the error remaining with the first
method decreases roughly as the inverse one-sixth power
of the computational time, whereas for the second the er-
ror remaining would be exponentially decreasing in time,
except for the numerical integral. The integration again
results in a power-law decay with computation time, but
with a power law of roughly —4, which is a considerable
improvement. However, the overhead involved with the
second method in this specific problem' means that it be-
comes faster only at an accuracy of about 10

It is a simple matter to extend these techniques to a lat-
tice with a basis, a finite-sized lattice, or the liquid and
glass systems by applying Eq. (3) in the real-space part,
and Eq. (7) in the reciprocal space, using the appropriate
pair correlation function P(r). The first method in the
quasicrystal case discussed above is an example of how to
do this in general, and it should be clear that these trans-
formations are practical in many different systems.

As a final note, consider the numerical computation of
the Fourier transform of any function f (r) If f .is
known at large r, perhaps in terms of some expansion in
inverse powers of r, then by subtracting smooth func-
tions, such as the g's above, with analytically known
Fourier transforms, we can successively eliminate higher
and higher powers of 1/r, making the final necessary
real-space integral considerably easier to evaluate. If f
also has known singularities at certain finite r, these may
be removed by subtracting functions such as the h's. If
both of these subtractions can be accomplished, then the
final function in the numerical integral is everywhere
finite and also decays more rapidly at infinity. The result-
ing computations are then very much easier.

d k2E[f]=f f d 'r(f(r&, kz)
(2m) '

d2 ik2 &2X d r2e (r( r2}

d k2= f f d r, f(r„k2)P(r, , —k2) .
(2m. )

'

For a crystal lattice, the pair distribution function is

P(r)= g +5(r, —R( )5(rz —R, ),
I [ 12

which leads to the intermediate function

P(r„—k, )=X~ g 5(r, —R, )5„~

(31)

(32)

E[f]= Q g f(R(,K( },
02

(34)

which is a single sum over this new "half-transformed"
lattice, with U02 the volume per unit cell in the sublattice
A2.

Therefore, for this method to succeed, we must have
rapid convergence of f in both the real- and reciprocal-
space parts. In turn, the conditions for this to occur are
now clear from the lemma of the preceding section. As-
suming integrability of the terms, the requirements are (1)
f (r, rz) must be smooth, considered as a function of rz
alone, and (2) f(k„k2) must be smooth, considered as a
function of k& alone.

As an example of this method we can again consider
the Ilr potential. Although this planewise method is
quite general, the general expressions simplify in the spe-
cial case of a cubic lattice. Therefore, for convenience we
will assume here that we wish to evaluate this over a
three-dimensional simple-cubic lattice. Labeling the cu-
bic indices i,j, I gives

1

ijl I J2+ ~ 2+ i2 }(m/2)
(35)

Let r, = [i,j ], and rz = [1]. Clearly, f (r, , rz) is smooth as
a function of r2 alone so long as [i,j ]&0 Since f i.s

I (2 —m)f(k)=4m sin(mn/2), .
3 f71

this is also smooth as a function of k, alone, provided
again that k&&0. Thus we are guaranteed that the plane-
wise method will work in this case. Indeed, for the sim-
ple case m =2 we obtain a function

f(r, , k2) =—exp( —r, k2 ),
1

(36)

where r(=(i +j )'~ and k2=2vr~k'~ for k' an index of
the reciprocal-lattice sum. The cases i =j =0 and k'=0

d2

g 5(r, —R( )5(k2 —K( ) . (33)
(2~) '

UO2 l, , l2

The lattice sum may therefore be written simply as



38 RAPID CONVERGENCE OF LATTICE SUMS AND STRUCTURAL. . . 12 947

must be evaluated separately, but these reduce to lower-
dimensional sums, and can therefore be treated similarly.

For applications and a more detailed treatment of this
planewise approach, see the references below, particular-
ly the paper by Sholl. '

V. CONCLUSIONS

From our results here it should be apparent that al-
most any lattice sum involving a long-range potential can
be split into real-space and reciprocal-space pieces that
are rapidly converging. The previous generalizations of
Ewald's method already cover a wide class of functions,
which has since been expanded by a variety of extensions.
The lemma of Sec. III now explains the underlying prin-
ciple of these techniques, and in addition demonstrates
that similar results may be easily obtained for other types
of long-range potentials. The lemma shows why the
planewise methods are also quite successful for some po-
tentials, but they appear to have a somewhat smaller
range of application. An illustration of the usefulness of
this result, aside from explaining how to do (1/r )-type
potentials, is in the calculation of the Madelung energy

and similar structure integrals for a quasicrystal. It is
clear that the techniques may be applied equally to simi-
lar calculations in liquids and glasses. We have also indi-
cated the possibility of application to numerical Fourier
transforms, which in essence follows the general rule for
division of functions into short-ranged and very smooth
long-ranged pieces. The approach therefore has a poten-
tial applicability well outside the immediate domain of
lattice sums.
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