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Strictly localized eigenstates on a three-dimensional Penrose lattice
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The existence of the strictly localized states in a three-dimensional (3D) Penrose lattice is dernon-

strated for a simple tight-binding model. In the center model there exist degenerate states at an en-

ergy E =2; the corresponding wave functions are strictly localized and have the form of tenfold

rings. In the vertex model the degenerate states at E =0 were found; the corresponding wave func-

tions have the form of rhombitriaconta icosidodecahedra. The degeneracy of these states is propor-
tional to the system size and, therefore, is infinite in the infinite system.

I. INTRODUCTION

Quasicrystals, quasiperiodic systems with a long-range
bond-orientational order, attract wide interest from the
viewpoint of both experimental and theoretical physics.
Since the successful preparation of real samples of these
interesting systems, quasicrystals pose a challenge to
those who attempt to understand their structure and
their physical properties. Quasicrystals are solids with
much more general and more complicated arrangements
of atoms than we have considered so far. Though many
experimental and theoretical works devoted to the inves-
tigation of the structure of quasicrystals have appeared in
print, the local arrangement of atoms in real systems is
not yet fully understood. One possible approach to un-
derstanding the structure of real quasicrystals is to con-
sider their atomic structure as a certain decoration of a
three-dimensional (3D) Penrose lattice (PL).

The prerequisite for understanding the physical prop-
erties of quasicrystals is a knowledge of their electronic
structure. The electronic structure of realistic models of
quasicrystals has not been yet calculated, mainly because
of our lack of information about detailed positions of the
atoms in the system. However, even a very simple model
of quasicrystals based on the decoration of the 3D Pen-
rose lattice by one atom with one s orbital can elucidate
the possibility of exotic physical properties of quasicrys-
tals caused by their quasicrystalline nature.

The electronic structure of 1D quasilattices (Fibonacci
lattices)' and 2D Penrose lattices have been investigated
by several authors. The energy spectrum of a 1D
quasilattice is known to be singular continuous. The
peculiar features of the electronic structure of 2D Pen-
rose lattices are the exotic (multifractal) character of the
energy spectrum, the existence of the infinitely degenerat-
ed energy levels, and the strictly localized (confined) and
string states corresponding to this level.

The electronic structure of 3D Penrose lattices were
calculated, and an electronic structure with similar char-
acter to those of crystal lattices was reported.

The quasiperiodicity follows from the golden mean
~=(1+&5)/2 which plays a central role in quasilattices
with icosahedral bond-orientational order. In the nurner-
ical calculations of the electronic structure, as the system

is nonperiodic, we should impose the Dirichlet boundary
conditions or treat a small finite system. Because of the
sensitivity of the electronic structure on boundary condi-
tions, the most natural way to get a well-defined model is

imposing optimal periodic approximation to the non-
periodic system. The systematic procedure for construct-
ing "periodic quasilattices" consists in replacing the gold-
en mean ~ by its rational approximation ' ~„=F„+,/F„.
F„ is a Fibonacci number, defined as F +I=F +F
for n 1 with Fo =0 and F

&

= 1. For n =0, 1,2, 3, . . . ,
we get a series of periodic quasilattices with increasing
periods. For large n the generated structure tends to the
true Penrose lattice. We call these structures the
"periodic" Penrose lattices (PPL's).

In this work we investigated the electronic structure of
simple 3D models of quasicrystals. We demonstrate the
existence of the strictly localized states in 3D Penrose lat-
tices. The basis of the structural models is PPL's consist-
ing of the golden rhombohedra. In Sec. II some details of
the construction are given. We considered two types of
the decoration of PPL's by atoms. In the vertex model,
the atoms are placed on the vertices of the rhombohedra;
in the center model, the atoms are placed at the centers
of the rhombohedra. We considered one s orbital per
atom. The Schrodinger equation of the system is

The transfer-matrix element t, is assumed to be nonzero
only between the nearest neighbors and constant t,"= —1.
The eigenvalues and eigenvectors were calculated by the
exact diagonalization. The resulting electronic structure
is presented in Sec. III. The results are discussed in Sec.
IV.

II. STRUCTURAL MODELS

The structural models of 3D Penrose lattices were gen-
erated by the dual method. ' In the dual space, the
icosahedral basis set g&

=
I 0, l, r„], for 1=1,2,3 and

gt = I0, —l, r„),„ for 1=4,5,6 were chosen as grid vec-
tors, c.p. stands for cyclic permutation. ~„ is the rational
approximation to the golden mean. The grid vectors
defines the hexagrid of planes 66,
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G6=tx« lx g« y—«=k«lg«l

(2.1)
N(E)
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n(E)

where g, =g«/lg«l. The parameters y«defining the shift
of the origin are chosen to get the regular grid. Any one
point intersects no more than three planes. Each inter-
section point xo defines in the real space the rhombohed-
ron with the vertices

0.5

o.o

0.25

0.0

R(xo,j)= gE;(xo+a )t, , j=1,2, . . . , 8 (2.2)
I I I I I I
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E

where K;(y) is an integer function,

& (y)= l(y'g y I)/lg11 « =I » ~ 6 (2.3)

which in a small neighborhood of the intersection point
xo takes eight values K;(y&), j=1,2, . . . , 8, correspond-
ing to eight subspaces determined by the intersecting
planes, y =xo+c; the infinitesimal vectors sj define the
subspaces. t; are the tiling vectors. We chose t; =g; with
r„here and only here equal to the exact golden mean r.

If ~„ takes in the dual (grid) space values F„+,/F„ for
certain n, we get the periodic Penrose lattice. The lattice
has bcc symmetry for n = 1,4, 7, . . . , 3k + 1, . . . , and
for other n it has sitnple cubic (sc) symmetry. The period
of the cubic symmetry is d„=(2+2/&5)'~ r". The cubic
cell consists of N„=4F3 +3 golden rhombohedra:
4F3 +2 of them are prolate and 4F3 +, oblate. We will

refer to the models by the pair of corresponding Fibonac-
ci numbers (F„+«,F„).

We constructed three models of PPL's: (2,1), (3,2), and
(5,3), consisting of 136, 576, and 2440 golden rhombohe-
dra, corresponding to n=2, 3, and 4, respectively. The
parameters y«were chosen as y« =0.5+ I X 10
1=1, . . . , 6.

FIG. 1. The integrated density of states N(E) and the eigen-

value distribution n(E) of the (5,3) PPL center model. The
plotting interval for n(E) is 0.08. The energy level at E=2 is

multiply degenerate. The concentration of the eigenvalues

around the degenerate level is strongly enhanced.
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ever, the effect of the finiteness in these systems is more
evident.

The peculiarity of the spectrum is the existence of de-
generacy at the energy E=2. The numbers of the degen-
erate states of the models are zero, four, and twelve for
n=2, 3, and 4, respectively. The wave functions of the
degenerate states are strictly localized. The wave func-
tion is nonzero only on the sites forming tenfold rings.
These are shown in Fig. 2. The wave function on each
ring has a constant amplitude and its sign is alternating.
The number of rings corresponds to the number of degen-
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In the center model, atoms are placed at the centers of
the rhombohedra. The Hamiltonian matrix element is
nonzero only between the centers of the neighboring
rhombohedra with a shared face. The coordinate number
of each atom is equal to 6.

The calculated integrated densities of states N (E) and
the eigenvalue distribution n(E) of the biggest model,
(5,3), are presented in Fig. 1. The plotting interval for
n(E) is 0.08. We prefer the term "eigenvalue distribu-
tion" to the common term "density of states, " as the den-
sity of states in the case of quasiperiodic systems need not
be a well-defined quantity.

The spectru«n extends from the energy E = —6.0 (cor-
responds to the uniform state P; = 1) to the energy
E='3.59. Above this energy there are no states because
the odd-membered rings dominate the ring statistics and
cause strong frustration in the phase of the wave func-
tions. The steps on the integrated density of states N(E)
near the edge of the band is the effect of the finiteness of
the system. The integrated density of states of smaller
calculated systems, (3,2) and (2, 1), are very similar; how-
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FIG. 2. The projection of the positions of atoms of four cubic
cells of the (5,3) PPL center model on the x-y plane, shown by
small crosses. The wave function corresponding to the degen-
erate level E=2 is strictly localized. It is nonzero only on the
sites forming tenfold rings (solid circles). The wave function has
on the ring a constant amplitude and alternating sign. In the
(5,3) model there are 12 rings in the cubic cell corresponding to
the 12-fold degeneracy. In the figure some of the rings are pro-
jected on the same place.
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crate states. The rings are separated. Each ring itself is a
solution of Eq. (1.1). The structure of the ring is shown
in Fig. 3, in which ten oblate rhombohedra are aligned
around one common edge —the perpendicular axis of the
ring.

B. The vertex model

In the vertex model the atoms are located on the ver-
tices of rhombohedra. The Hamiltonian matrix element
is nonzero only between atoms connected by the edge of
one rhombohedron. The coordination number varies
from 4 to 12. The average coordination number is exact-
ly 6.0.

The calculated integrated density of states N(E) and
the eigenvalue distribution n (E) for the largest calculated
model, (5.3), are presented in Fig. 4. The plotting inter-
val for n (E) is 0.08. The spectrum is symmetric and ex-
tends in the range F =+6.60. This range is determined
by the average coordination number and its dispersion.
The global similarity of the spectrum with that of a
simple-cubic lattice is remarkable. The difference comes
from the eighth or higher moment of the spectrum. The
most interesting feature of the spectrum is the degenerat-
ed levels at the energy F.=O, which we have found in the
(5,3) model —the largest investigated model thus far but
not in the smaller ones. The level E=O degenerates twice
in the (5,3) model. The corresponding wave functions are
strictly localized (see Fig. 5). The eigenstates are nonzero
only on sites which form together a bcc packing of rhom-
bitriaconta icosidodecahedra (RTID). Each degenerate
state forms a sc sublattice of connected RTID. The am-
plitude of the eigenfunction is constant on one sublattice.
Inside each RTID the amplitude of the wave function is
zero. The RTID have icosahedral symmetry. Each
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FIG. 4. The integrated density of states X(E) and the eigen-
value distribution n(E) of the (5,3) PPL vertex model. The
plotting interval for n(E) is 0.08. The (5,3) model has degen-
erated twice at the E=O level.
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RTID has 120 vertices, 180 edges, and 62 faces. The
faces have an even number of edges. There are three
types of faces: squares, hexagonals, and decagonals. The
sign of the wave function around a face alternates. The
edges of RTID are formed by the connection of the
second-nearest-neighboring vertices of the 3D Penrose
lattice. The length of edges are equal to the length of the
diagonals of one golden rhombohedron face:

FIG. 3. The structure of the ring from Fig. 2 (the center
model) viewed from the top. Ten oblate rhombohedra are
aligned around the common edge —the perpendicular axis of
the ring. This ring can exist also in the infinite Penrose lattice,
which has an infinite degeneracy at E=2.

FIG. 5. The projection of the position of the atomic sites of
four cells of the (5,3) PPL vertex model on the x-y plane, shown

by small crosses. The wave function correspond to the degen-
erate level E=O is nonzero only on the sites (circles) which to-
gether form vertices of the rhombitriaconta icosidodecahedra
(RTID). The supporting structure of one degenerate state (solid
circles) —the vertices of RTID—is connected by thick lines.
The supporting structure of the other degenerate state (open cir-
cles) is connected by thin lines. In the extended cubic lattice the
wave function corresponding to each degenerate state forms the
connected simple-cubic lattice of RTID. Both degenerate states
together form the interlocked structure of bcc-packed RTID in

the extended cubic lattice.



12 906 MARIAN KRAJCI AND TAKEO FUJIWARA 38

(2+2/+5)'~ and (2 —2/&5)'~, respectively. The
RTID of one sc sublattice are connected through the
square faces by the bridges of the length (2+2/&5)'~~.
Both sc sublattices form an interlocked bcc lattice. The
bcc structure is obviously the consequence of the bcc
symmetry of the (5,3) PPL lattice of our largest structural
model.

IV. DISCUSSION

The difficulty in the calculation of the electron struc-
ture of quasicrystals is in the necessity of exact diagonali-
zation of very large matrices. This problem is particular-
ly serious in 3D systems. The recursion method does not
here give enough information about the spectrum. The
largest model we investigated —the (5,3) model —consists
of 2440 rhombohedra, and the next one —the (8,5)
model —would consist of 10366 rhombohedra. For such
size, special methods for diagonalizing sparse matrices
should be used.

On the basis of our calculations we now discuss our ob-
servations.

In both models we could not observe any particular
characteristics of quasiperiodicity in the spectrum,
presumably partly because the size of the models is too
small.

The number of the strictly localized states depends on
the values of the parameters yI.

In the center model the localized states consist of ten-
fold rings. As the supporting structure (Fig. 3) does not
violate the matching rules for 3D Penrose lattices, " such
states certainly exist in 3D PL s (infinite system). Ac-
cording to Conway's theorem, ' if a certain structure ex-
ists in one place, there is an upper bound of distances to
find the exact copy of the structure in another place. The
number of such structures is therefore proportional to the
volume of the system. In the infinite center model infinite
degeneracy therefore exists at E=2. In larger models we

may expect an existence of other types of localized states;
for instance, the string states similar to those observed in
2D models.

The strictly localized states give a 5-function contribu-
tion to the energy spectrum. Therefore, the height of the
peak of the eigenvalue distribution (Fig. 1) at E=2 de-
pends on the plotting interval. At the present value of
the plotting interval, 0.08, the degenerate states them-
selves contribute to the height of the peak only by about
13%. This fact indicates that the concentration of the ei-
gen values around the degenerate level is strongly
enhanced. The asymmetry of this enhancement, obvious
in Fig. 1, is also remarkable.

The degenerate states of the vertex model consist of
RTID. The RTID are separable —each RTID itself is a
solution of Eq. (1.1). As the internal structure does not
have the icosahedral symmetry that the surface has, it is
difficult to prove adherence to or violation of the match-
ing rules inside the RTID. However, we have found that
at least the structure with the topologically equivalent
surface —RTID and more symmetrical internal
structure —does not violate the matching rules for 3D
PL's. The construction of such structure is indicated in
Fig. 6. The structure is built from a rhombic triacon-

tahedron in the center covered by two layers of rhombic
dodecahedrons. The atoms of the upper rhombic dode-
cahedron (indicated in Fig. 6 by solid circles) are two ver-
tices of the RTID structure, and together with the corre-
sponding atoms on the rear side of the dodecahedron
form a square face of the RTID. The other vertices of
the RTID are constructed in the same way. The length
of all edges of this RTID is equal to (2—2/&5)'~ . The
construction does not violate the matching rules" (indi-

cated in Fig. 6 by line segment, triangle, and arrow).
Therefore, the structure can exist in 3D PL's which, in an
infinite system, again leads to the infinite degeneracy for
the vertex model at E=O. In larger models structure of
the localized states much richer than we observed in the
models presented may be expected.

The strictly localized states that we have observed are
a manifestation of the long-range bond-orientational or-
der. The degeneracy of the energy level is the conse-
quence of confinement (separability and independence) of

FIG. 6. The construction of the vertices (solid circles) of the
rhombitriacontra icosidodecahedron which is topologically
equivalent to that of Fig. 5. A rhombic triacontahedron in the
center is covered by two layers of rhombic dodecahedra. The
atoms indicated by the solid circles together with the equivalent
atoms on the rear side of the upper rhombic dodecahedron form
a square face of the RTID. The other vertices and faces are
constructed in the same way. As the construction does not
violate the matching rules (indicated by line segment, triangle,
and arrow), such RTID can exist in the infinite Penrose lattice
and cause the infinite degeneracy at E=O.
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the localized states.
The infinitely degenerate states in the electronic spec-

trum of quasilattices were already observed in 2D mod-
els. In the 2D center model the degeneracy was observed
for the first time by Semba and Ninomiya' and studied
in detail by Fujiwara et al. The degeneracy in the spec-
trum of the 2D vertex model was first reported by Koho-
moto and Sutherland and analyzed in detail by Arai
et al. Marcus calculated the electronic structure of 2D
and 3D vertex models on (3,2) PPL's. He could not find
localized states and concluded that the electronic proper-
ties of quasilattices are little influenced by their quasi-
periodic nature. At the present stage of this work, we
cannot propose any statement about the possible singular
continuous and multifractal structure of the electronic
spectrum of 3D PL's similar to those observed in 1D and
2D quasiperiodic systems. '

The important property of a quasilattice is the long-
range bond-orientational order. The long-range bond-
orientational order and resulting local structure in real
quasicrystals may give rise to strictly localized states
similar to those we observed in our simple models and
presumably others more complicated in larger or infinite
models. The existence of such states in quasicrystals
should manifest itself in an enhancement of the density of

states and the resulting anomaly of physical properties
such as electrical conductivity, electronic specific heat,
etc. Particularly interesting should be physical properties
of the system similar to our vertex model. If we consider
one orbital per atom, the Fermi level lies just in the de-
generate state E=O. If the localized states form an
infinite connected structure, as in our (5,3) 3D PPL mod-

el, or consist of the infinite string states similar to those
observed in 2D PL's, then, for instance, the conductivity
of such a system should be extremely high.

V. SUMMARY

Structural models of the 3D periodic Penrose lattice
have been constructed. The electronic structure of the
center and vertex models was investigated. The degen-
erate levels in the electronic spectrum and the corre-
sponding strictly localized states were found and ana-
lyzed.
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