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Perpendicular upper critical field and critical temperature
of superconducting —interphase —normal-metal multilayers
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Proximity-effect theory of superconductor-normal-metal (S/Ã) superlattices is extended to the
case of multilayers with an interphase between S and N layers. A nonmonotonic dependence of the
superlattice critical temperature on the period A is obtained theoretically, in accordance with exper-
iments of Qian et al. on Nb/Ti. Similar behavior of the perpendicular upper critical field H, t is pre-
dicted.

I. INTRODUCTION

Artificially layered superconducting superlattices re-
cently have raised considerable interest, because they can
have properties that differ significantly from those of the
constituent bulk metals. The critical temperatures, fields,
and currents all show very interesting dependences on the
superlattice period.

Several attempts to describe these systems theoretically
have been made using the de Gennes —Werthamer
proximity-effect theory' for dirty-superconductor—
normal-metal (S/N) bilayers. However, the agreement
between the theory and experimental data for critical
temperatures and fields is in many cases only qualitative.
One interesting situation where a generalization of the
simple bilayer theory is obviously needed, and which is
often met in practice, is the case when an interphase (I) is
formed between the two metals constituting the superlat-
tice. While in the two-metal (S/N) superlattice the de
Gennes —Werthamer theory predicts (Refs. 1 and 2) a
monotonic dependence of T, on the superlattice period,
the presence of an interphase can cause nonmonotonicity.
In the present paper we extend the theory of Biagi, Ko-
gan, and Clem for S/N superlattices to this case to cal-
culate the perpendicular upper critical field H, z and the
critical temperature T, . We actually treat the general
case for which all three layers (S, I, and N) are supercon-
ductors, but the transition temperature of N is lower than
that of S.

We demonstrate the possibility of explaining by our
theory the experimentally observed increase of T, at
small superlattice periods, where the interphase effect be-
comes important. %'e predict similar effects in the behav-
ior of H, 2. We also show that our main equation for the
superlattice made of two metals with the interphase be-
tween them gives the same critical temperature as that
obtained by Triscone et aI. for a single trilayer.

The organization of this paper is as follows: In Sec. II
we give a system of equations for the critical temperature
and the perpendicular upper critical field of a
superconductor-interphase —normal-metal (S/I/N) su-

perlattice. In Sec. III we compare our equations with the
equations for a single S/I/N trilayer. We compare
theory and experiment in Sec. IV and give a summary in
Sec. V.

II. DERIVATION OF THE MAIN EQUATION

G'+ /F i'=1, (2)

where D is the dilfusion coefficient, II=V (2mi/P—o) A,
and A is the vector potential.

Near the phase transition to the normal state, we seek
the solutions for G(r, co) and F(r, co), the Gorkov Green's
functions integrated over the energy and averaged over
the Fermi surface, in the form

G=1, F(r)= h(r)
fin) +2trktt T„p(T/T„)

in each S, N, or I region. Here h(r) is the order parame-
ter, T„ is the critical temperature of the bulk i metal
(i =S, N, or I, i.e., T„=T,s, T,tv, or . T,t ) and
co=ttkttT(2n+1)/R is the Matsubara frequency with
n =0, 1,2, . . . . The self-consistency relation, which re-
lates F and 6, defines the functions p=p(t; ) via

where t, = T/T„is the reduced temp. erature and 0' is the
digamma function. In each region F(r} is governed by

We consider an infinite stack of alternating S and N
layers (parallel to the x yplane) w-ith an I layer between
two neighboring N and S layers (Fig. 1}. The period of
the superlattice is A=ds+dtc+2dt, where ds N t are the
thicknesses of S, N, and I layers.

Following Ref. 3 we use the quasiclassical equations of
superconductivity in the dirty limit

——II (GIIF —FIIG)=—G coF, —D
2

and
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an equation of the form

O'F = —I 'F . (S)

for N layers. Here

Assuming the external field in the direction transverse
to the layers, H =Hz, we choose the gauge A=(O, Hx, O)

and separate variables in Eq. (5):
and

/CS ( 2
(s, l

(8a)

F(r)=f(x,y)g(z) .

This gives

2p(t~ )

kQ
lV

where

(gb)

—(II„+II )fs I(x,y) =(ks I qsj—)fs I(x,y),
d gs I

2

dz2
= —q: lgs, l(z)

for S and I layers and

—( I I„+I I )f~ ( x,y ) = ( —k,„+qz )f~ ( x,y ),

(7a)

(7c)

AD,
(i =S,N, I)

8 ci

(9)

is proportional to the corresponding diffusion coefficient
Ds, D~, or D, . Assuming that the solutions of Eqs. (7)
are related at the interfaces by the same boundary condi-
tions as in Ref. 3, we take

gN

dz2
(7d) fs=fI ~ lngs=1s

dz dz
(10)

II. =ds+ 4N

ds 4N

4, /2 4„/2

ds+ dN+2d

dl ds dl 4N

I I

I

ds/2 dl 4N/&

FIG. 1. (a) Two-metal S/N superlattice and its decomposition to corresponding half-thickness bilayers. (b) S/I/N superlattice
with interphases I between neighboring S and N layers and its decomposition to corresponding trilayers (see text).
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at the 5/I interface, and

Gf

fear =f„ lngN =rlrv lngr
6fZ GfZ

at the N/I interface. The parameters gs and gz charac-
terize the interfaces [gs ~ ——o r/as ~ in the dirty limit for
specular scattering, o,. (i =S,N, I) being the normal state
conductivities].

Similar to the case of bimetallic superlattices, one can
construct a solution F(r) corresponding to the lowest ei-
genvalue of Eq. (7) and satisfying the Bloch condition
along the z axis. It describes the nucleation of vortices
threading through the multilayer.

The corresponding critical field H, 2 is obtained, using
the boundary conditions (10) and (11), from the condition
for the existence of a nontrivial solution (see Appendix}:

1 =cos(qsds ) cosh(qN dry ) «s(2qrd r }

2
1 qy 1 qsqw

+2 ~S /N 2 sin(qsds ) s'nh(qadi ) sin (qrdr )
qsqw '9s'Qw

1 qw 1+
2 ql 9N

qy
9N cos(qsds ) sinh(qrvdjv ) sin(2qrdr }

qw

1 qw '9s
+

qs '9x
N qs

sin(qsds) sinh(qNdN) cos (qrd, )
'Qs qx

1 qs 1 + gs sin(qsds ) cosh(qrr dry ) sin(2qrdr )
qs '9s qs

(12)

where

2 2 2WHe2
2

2KHc2
qs, ( =ks, s

— qw =km+
4o

'
4o

(13)

with

qN qN~a
tanh

2

When combined with Eqs. (4) and (8), Eqs. (12) and (13)
give H, 2(T) as the highest possible value of the field at a
given temperature T. The superlattice critical tempera-
ture T, is obtained for H, 2

——0.

III. MULTILAYER VERSUS TRILAYER PROBLEM

To show that this equation yields the highest superlattice
T, and H, 2, we note that, assuming

cos(qsds /2) cos(qr d, ) cosh(qrv drv /2 }&0,

Eq. (12) can be put into the form

QiQ2=0 (16a)

qsds qNBN
qs tan =gqz tanh

2 2
(14)

with 71=a N la.s. The equivalence of Eqs. (12) with dr ——0
and (14}, due to the symmetry of the problem, can be
proved by simple trigonometric transformations.

The same symmetry-based arguments were used by
Triscone et al. to reduce the S/I/N multilayer problem
to that of a trilayer [see Fig. 1(b)] in order to calculate the
critical temperature. Replacing in their result k; by q;
(i =S, N, or I), one gets 0,2 from

qsds & — (tqarndr )
qs t» =nsql

2 1+a tan(qrdr ) (15)

In general, a superlattice can be made of subsequent n

layers periodically repeated with n =2,3,4, . . . . For
n =2, a bimetallic S/N superlattice, it is easy to show
that Eq. (12) with dr ——0 is equivalent to a simple de
Gennes —Werthamer relation for a bilayer, ' with
ds~ds/2 and dN~d&/2. Assuming dg/dz =0 at the
outer boundaries of the bilayer [see Fig. 1(a)] and apply-
ing the usual boundary conditions at the S/N interface,
one gets

qs 1 qs~s qw 1 q'w ~x
Qi —— tan +tan(qrdr ) — tanh

I gs 2 'gg 2

I qsqw qs~s qz~w
+ 2

tan tan(qrdr )tanh
9slw

(16b)

I qsds
s tan

qs 2

qr qNBA—tan(qt~t ) g~ tanh
qw 2

2
qsds+ psych tan tanfq&d~) tanh-

qsAr 2 2

(16c)

Equation (16a) means that Qi ——0 or Q2 ——0. However,
the condition Q, =0 is exactly Eq. (15) for a trilayer.
This means, as Triscone et al. pointed out, that the tri-
layer T, gives the lower bound of T, for a superlattice
with interphase layers. Also, for qsds/2 & m/2 (which is
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Vs 1 tIs "s
I tan

9r t)s

qN 1 qNdN
tanh

I QN 2
(17a)

qsds
Q2 ——— t)s tan

2

qwd v
t) Jv tanh ', (17b)

N 2

so that Qz &0 for realistic parameters and the condition

Qt ——0 gives Eq. (14) with rl=rislri~.

IV. COMPARISON BETWEEN
THEORY AND EXPERIMENT

usually the case, except in proximity with magnetic met-
al ) and qadi &&1, Qz is always negative so that the tri-
layer model gives the same result as the superlattice cal-
culation. The same conclusion holds if qz &0 (which, if
we want to find T„means that T,I & T, ). Our numerical
calculations also show that for a large variety of parame-
ters (and in particular for the case of a Nb/Ti superlattice
discussed in Sec. IV) the condition Q2=0 cannot give
higher T, and H, ~ than the condition Q, =0. In particu-
lar, for the case di ——0 we have:

and X layers T,. tends to the critical temperature of the
interphase T,&

——9.5 K. For 30 A & A & 180 A T, is ap-
proximately constant and equal to 4 K, which would be
the critical temperature of the Nb/Ti superlattice in the
thin-layer limit in the absence of the alloy interphase be-
tween the Nb and Ti layers.

It should be noted that the theoretical curve in Fig. 2 is
obtained for T,~ =0.4 K, d, =4 A, gs ——30 A, g, = 35 A,
&~&.

——178 A, gs ——1.3, and gz ——0.75, i.e., with coherence
lengths which are much smaller than corresponding bulk
values (for example, ps=170 A). Taking into account
that D =uzi/3 where uF is the Fermi velocity and I the
mean-free path, this would mean [see Eq. (9}] that the
mean-free paths and/or Fermi velocities are much small-
er than in the bulk materials. Biagi et al. have come to
a similar conclusion for the perpendicular upper critical
field of a Nb/Cu superlattice. One possible explanation
would involve electron scattering at the thin layers boun-
daries, the mean-free paths being suppressed and highly
anisotropic.

In Fig. 3 the theoretical curves H, z(T) are plotted for
different values of A as well as H, z s(T), H, 2 ~(T}, and

We have used Eq. (12) for the theoretical explanation
of the experimental results for the critical temperature of
a Nb/Ti superlattice obtained by gian et al. In Fig. 2
the experimental curve T, (A) is plotted (with ds ——d~ ),
as well as the theoretical curve, which is in good agree-
ment with the experimental data. As can be seen, there
are three characteristic regions. For very thick S and N
layers the critical temperature tends to the critical tem-
perature of bulk niobium T,s ——9.22 K. For very thin S

0.7
l l l l l l I I l

&~bulk Nb (S)

&0 F00

A(A)

I

F000 0 1 2 3 I 5
T(K)

6 7 8
Iih
9

FIG. 2. Dependence of the critical temperature T,. and upper
critical field H, .2(T =0) upon the period A=d& +d~+2dI for
dz ——d,& and constant di in a Nb/Ti superlattice: a, experimen-
tal results for T,. from Ref. 4 (dash-dot curve, left scale); b,
theoretical result for T, using parameters given in the text (solid
curve, left scale); and c, theoretical prediction for K, ,(T =0),
expressed in reduced form as h =2nrH, ., /P„, the square of the
inverse magnetic length (dashed curve, right scale).

FIG. 3. Variation of the upper critical field H,.z (expressed in
reduced form as h =2rrH, , /Po, the square of the inverse mag-
netic length) vs temperature T. Dashed curves show the intrin-
sic H, .2 for bulk Nb (S), bulk Nb/Ti alloy (I) and bulk Ti (N).
Solid curves show perpendicular H,.& calculated for the S/I/N
superlattice for parameters given in the text and A=1588, 208,

0 0
and 22 A. Note that the curve for A =22 A is above the curve
for A=208 A.
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H, z, (T). The parameters are the same as for the curve
which represents T, (A) in Fig. 2. A significant positive
curvature near T, cannot be seen except for A corre-
sponding to T, ~ 8 K, which is the temperature where
H, z s(T) and H, z I(T) intersect. This effect has been dis-
cussed in Ref. 9.

The A dependence of H, 2 can be seen from Fig. 2

where H, z(T =0) is plotted for the same parameters as
for T, (A). This curve can be simply interpreted. For
very large periods H, z(T =0) tends to H, z s(T =0); if
the periods are small, H, z( T =0) tends to H, z I( T =0).
The curve is significantly asymmetric because
H, z i(T =0) is much smaller than H, z s(T =0), which is
due to the fact that H, z s, -gs, . Unfortunately, no ex-
perimental data for the perpendicular upper critical field
of Nb/Ti superlattices are yet available for comparison
with the theory. It would be especially interesting to see
whether H, z(T =0) against A has "T,(A)-like" profile
which the theory predicts.

V. SUMMARY

We have extended the proximity-effect theory of a su-
perlattice made of two different dirty metals, assuming
that there is a thin alloy interphase between S and N lay-
ers. We have shown that the reduction of the superlattice

I

problem to that of a trilayer seems to be correct as far as
the critical temperature and the perpendicular upper crit-
ical field of a superlattice are concerned. We also have
fitted our theory to the experimental data for a Nb/Ti su-
perlattice, having taken much smaller mean-free paths
than the bulk values. These discrepancies may be due to
our neglect of anisotropy of I and, thereby, of the coher-
ence lengths. The theory predicts a period dependence of
the perpendicular upper critical field similar to that of
the critical temperature, with a characteristic increase at
small periods, where the interphase effect is significant.
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APPENDIX

In this appendix we derive the boundary-condition
equation (12). The solutions of Eqs. (7b) and (7d) are
[Fig. 1(b)]:

and

iqsz '&SZgs(i)= ~se +use in S layers;

iqi Z —I/I Z

g»(z) = A»e +Bi,e in "first" I layers;

(0 & z & di, A & z & A+d, , 2A & z & 2A+d„. . . );

QgZ —tip Z

gjv(z)= A~e ' +Bze in N layers;

Ital Z —iqlz .
giz(z) = AIze +B,ze in "second" I layers

(dl+d~ &z &2dl+d~, A+d, +d~ &z &A+2d, +d~, 2A+d, +d~ &z &2A+2di+dv, . . . ),

(A 1)

where the coefficients are different for different layers of the same metal.
Putting conditions (10) and (11) at I2S, SIi, I,N, and NI2 boundaries and taking into account that g must be a Bloch

function

g(z)=e ' g(z+A), (A2)

cos(q, A ) =cos(qsds ) cosh(qzd~ ) cos(2qidi )

2
1 1 qsqx 2+ 9s'9)v- sinh(quads) sinh(q~d~) sin (q, d, )

qsqw N

1 qN 1+ cos(quads ) sinh(q~dN ) sin(2qid, )
2 qr 9~ qw

1 qN /s+-
qs 1N

'Qw qs 2
sin(quads ) sinh(q~d~ ) cos (q, d, )

'9s qx

where A=ds+dz+2di, we obtain a system of eight linear homogeneous equations for eight unknown coefficients.
After setting the determinant equal to zero, we get

1 qs 1 +
'9s s sin(qsds ) cosh(q&d& ) sin(2qid& ) . (A3)
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When dI ——0, (A3) reduces to the corresponding relation
for bimetallic superlattices. ' " As in this case," the
lowest eigenvalue of Eqs. (7),

ks, j qs, r = kz+qz 2r——rH/Po,2 2 2 2

gives the largest field H, 2 obtained from (A3) with q, =0.
In that case Eq. (A3) gives Eq. (12). Note also that if any
q, (i =S, N, or I) is less than zero, we should simply re-
place q; byiq, in Eq. (12).
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