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Surface-phonon calculations for the Al(110) surface
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The frequencies of surface modes at high-symmetry points of the surface Brillouin zone have been
calculated with interplanar surface force constants determined from first-principles self-consistent
total-energy calculations for the Al(110) surface. The multilayer relaxation for this surface pro-
duces big deviations of the surface force constants from the bulk values.

I. INTRODUCTION

Surface vibrations play an important role in various
dynamical processes on surfaces at ambient or elevated
temperatures. Although theoretical studies of surface vi-
brational waves go back to the early work of Rayleigh in
the previous century,! it is only very recently, with the
development of high-resolution electron-energy-loss spec-
troscopy?~* and inelastic helium beam scattering experi-
ments,>® that we have the capability of accurately
measuring the surface-phonon dispersion curves. Inter-
pretation of these new data revealed the need for further
theoretical work. Theoretically surface-phonon disper-
sion curves can be obtained by solving for the vibrational
modes of a slab or semi-infinite crystal. Early calcula-
tions’ modeled the interatomic interactions by a
Lennard-Jones potential. Subsequent studies® !' used
more realistic force constants deduced from fitting exper-
imental bulk-phonon dispersion curves. Empirical ad-
justments of the surface force constants were made to
reproduce the measured surface mode frequencies. How-
ever, it was found that the changes necessary are very
model dependent: two different models reproducing the
same bulk-phonon dispersion curves may require very
different changes in parameters to reproduce the same
surface modes, giving rise to very different physical inter-
pretations.!! It is obvious that a determination of the
surface force constants from first principles would be
very useful in interpreting experimental data and guiding
experimental investigations on unmeasured crystal sur-
faces.

First-principles local-density-functional total-energy
calculations have been very successful in determining
bulk structural and vibrational properties in a variety of
materials. Applications of the same techniques to sur-
faces are now feasible with advances in the speed of com-
puters. In this paper, we report on a study on the surface
phonons on the A1(110) surface using first-principles self-
consistent total-energy calculations. From our results we
obtained interplanar force constants which allowed us to
determine the surface-phonon modes and surface-phonon
density of states for wave vectors at high-symmetry
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points of the surface Brillouin zone (SBZ). In Sec. II we
will describe details of the calculation. Results will be
presented in Sec. III and compared with experiment® and
other calculations.'?

II. CALCULATION

Self-consistent pseudopotential calculations were per-
formed for the Al(110) surface and the total energy of the
system evaluated within the local-density-functional for-
malism!? using the Wigner interpolation formula'* for the
electronic exchange and correlation energy. In these cal-
culations, the surface is modeled by periodic slabs 15 lay-
ers thick separated by five layers of vacuum. The norm-
conserving pseudopotential used is the same as in previ-
ous calculations.!’> The electronic wave functions are ex-
panded in a basis set containing plane waves up to a
cutoff energy of 8.5 Ry, and additional plane waves with
energy up to 12.0 Ry are included with second-order per-
turbation. Sampling grids for the surface calculations
correspond to a grid of 35 points in the irreducible part
of the SBZ of the (1X1) surface. Partial occupation of
states near the Fermi level is taken into account by a
Gaussian smearing scheme with a broadening width of
0.20 eV. For each geometry, in addition to the total ener-
gy, the forces exerted on each atom are calculated using
the Hellmann-Feynman theorem,'®!” these force calcula-
tions are essential for the efficient calculation of surface
force constants. The inclusion of extra plane waves by
second-order perturbation improves the convergence of
the basis set but creates some modifications in the evalua-
tion of forces. This is described in more detail in the Ap-
pendix. The convergence of our force and energy calcu-
lations with respect to basis-set size, slab thickness, and
k-point sampling have been checked carefully and report-
ed in our earlier paper.'>

The choice of the Al(110) surface is motivated by pre-
vious work'® in which we have accurately determined the
equilibrium geometry of the Al(110) surface. We found a
contraction of the top interlayer spacing by (6.8+0.5)%,
an expansion of the second interlayer spacing by
(3.5%0.5)%, and contraction of the third interlayer spac-
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ing by (2.0+0.5)%. Our calculated interlayer separa-
tions are in agreement with results from precise low-
energy electron diffraction (LEED) experiments'®!® to
within 0.02 A.

To determine the surface phonons at a particular wave
vector q; in the SBZ, we evaluated the phonon dynamical
matrix for a thick slab of 301 Al(110) layers. The inter-
planar force-constant matrices coupling the inner layers
of the slab can be obtained from bulk calculations or
from experimental bulk-phonon dispersion curves mea-
sured by inelastic neutron scattering.?® The force-
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constant matrices coupling the surface layers are evalu-
ated by first-principles calculations using the 15-layer
periodic slab geometry. Starting with the equilibrium
geometry, the surface layer is distorted slightly with
small atomic displacements corresponding to the surface
wave vector q;. Self-consistent calculations are then per-
formed for the distorted surfaces and the forces induced
on the various atoms in the slab are calculated. Since
part of the translational symmetry of the system parallel
to the surface is destroyed, a bigger unit cell is required
for the calculations with distortion. Thus, the first-

TABLE I. Interplanar force-constant matrices coupling the top two surface layers to other layers for
surface wave vectors at high-symmetry points in the surface Brillouin zone. Units are 10* dyn/cm.
Also shown for comparison are the corresponding interplanar force constants obtained from bulk-
phonon dispersion curves and from our first-principles calculation for the interior layers of our slab.

Matrix elements not listed are zero by symmetry.

Interior
Surface Bulk of slab
T
(1x,2x) 2.08 (2x,3x) 1.23 1.49 1.43
(1y,2y) 5.03 (2y,3y) 3.22 4.06 3.80
(12,2z2) 1.67 (2z,3z) 1.44 1.75 1.75
(1x,3x) 0.17 (2x,4x) 0.19 0.23 0.22
(1y,3y) —0.09 (2y,4y) —-0.10 —0.25 —0.28
X
(1x,1x) —9.57 (2x,2x) —11.59 —11.81
(1y,1y) —5.39 (2y,2y) —7.44 —6.51
(1z,1z) —5.36 (22,2z) —4.61 —7.29
(1x,2z) 2.43 (2x,3z) 1.97 2.40
(1z,2x) 2.72 (2z,3x) 1.90 2.40
(1x,3x) —0.40 (2x,4x) —0.24 —0.26
(1y,3y) —0.03 (2y,4y) —0.25 —0.39
(1z2,3z) 2.72 (2z,4z) 1.72 1.79
Y
(1x,1x) —2.38 (2x,2x) —2.51 —2.83 —2.82
(1y,1y) —4.80 (2y,2y) —9.05 —17.92 —17.46
(1z,1z) —4.61 (22,22) —5.57 —17.64 —7.34
(1y,22) 3.61 (2y,3z) 2.67 3.18 2.76
(1z,2p) 3.46 (22,3y) 2.49 3.18 2.76
(1x,3x) 0.19 (2x,4x) —0.08 0.06 0.13
(1y,3y) 0.30 (2y,4y) —0.02 —0.15 —0.27
(1z,3z) 2.90 (22,4z) 1.91 2.39 2.32
q =S
(1x,1x) —9.53 (2x,2x) —11.25 —11.71
(1y,1p) —4.97 (2y,2y) —7.97 —7.93
(1z,1z2) —5.57 (22,2z) —5.42 —7.14
(1x,2y) 3.63 (2x,3y) 2.45 3.35
(1y,2x) 3.64 (2y,3x) 2.37 3.35
(1x,3x) 0.09 (2x,4x) —0.01 —0.08
(1y,3y) 0.16 (2y,4y) 0.20 0.28
(1z,3z) 2.75 (2z,4z) 1.63 2.24
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principles calculations are only computationally feasible
for surface wave vectors at the zone center or high-
symmetry points in the SBZ.

Calculations for successive displacements in three or-
thogonal directions [x, (1—10); y, (001); z, (110)] deter-
mine the force-constant matrices coupling the surface
layer with the neighboring layers. Diagonalization of the
dynamical matrix yields all the vibrational modes of the
slab with wave vector q;. Surface-phonon and surface-
resonance modes can be determined by analyzing the
eigenvectors looking for modes with big amplitudes at
the surface.

III. RESULTS

In Table I, we present the results of our calculated
force-constant matrices coupling the first and second sur-
face layers to other layers for surface wave vectors at the
center T and the X, Y, and § points of the SBZ. The
asymmetric force-constant matrices indicate that the
forces acting at the surface are noncentral in character.
Shown in the third column are the corresponding bulk
force-constant matrices obtained from the measured
bulk-phonon dispersion curves.? For the wave vectors T
and Y, we have calculated the interplanar force constants
coupling the fifth layer of our 15-layer slab to its neigh-
bors. The results, shown in column 4, are very close to
the values obtained by using bulk force constants. For
most of the important matrix elements, there is a trend
for an enhancement in magnitude for force constants
coupling the surface layer to its neighbors and a decrease
in magnitude for the coupling of the second layer to the
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inner layers when compared with the bulk force-constant
matrix elements. The physical origin of this effect is the
large multilayer relaxation present on the Al(110) surface
which brings the topmost surface layer inward and the
second layer outward.

Our results for the surface-phonon frequencies are
summarized in Table II. The displacements of the sur-
face layer for the surface modes are also listed. The sub-
script 2 included with the surface polarization indicate
that the displacement of that mode is zero in the first lay-
er and localized instead on the second layer with the
given direction. Results are presented considering
changes in surface force constants coupling the top and
second surface layers and for changes in only the topmost
layer.! Inclusion of changes in second layer couplings
has insignificant effects on almost all the modes, except
for the y modes at q,= Y which are pushed up due to a
strong stiffening of the intralayer coupling at the second
layer and a slight shift of the y mode at q;=S into the
bulk-phonon continuum. Since the changes in force con-
stants are oscillatory because of the oscillatory pattern of
the surface relaxation, we expect the real answer to lie
somewhere between the two sets of numbers. Also shown
for comparison in Table II are the results obtained with
bulk interplanar force constants. The most dramatic
effect of the changes in surface force constants is the
stiffening of the two horizontal shear modes at ;=X and
q, =Y. These modes are highly localized on the top layer
because the displacements on the second layer are re-
stricted to zero by symmetry. Thus, they are extremely
sensitive to any changes in force constants at the surface.

To facilitate comparison with experiment, we have cal-

TABLE II. Results of surface-phonon frequencies obtained from the present calculations. The first
column shows the results obtained using bulk interplanar force constants deduced from the experimen-
tal bulk phonon-dispersion curves. The second shows the result obtained by considering changes in the
force-constant matrices coupling the top surface layer to the inner layers, and the third column shows
the results when changes in force-constant matrices for the topmost and second surface layers are con-

sidered. Units are in meV.

Surface interplanar

Bulk interplanar force constants Expt.
force constants 1+2 (Ref. 6)
q=X
z 15.1 17.3 17.2 14.8
x 17.3 16.9 16.7 not measured
y 16.2 22.8 22.8 not measured
z 24.6 25.3 not measured
¥y, 26.2 26.9 not measured
X 324 31.7 31.8 not measured
z 349
q=Y
z 13.3 14.1 13.9 13.5
y 8.6 . 10.4 9.3
x 10.2 14.8 14.9 not measured
y 24.6 24.6 25.8 not measured
q=5
z 13.9
y 14.6 15.8
X 33.0 33.1 32.9 not measured
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FIG. 1. The surface-phonon density of states is given for the
T point for different polarizations. X denotes the (110) direc-
tion, § the (001) direction, and Z the (110) direction perpendicu-
lar to the surface.
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FIG. 2. Surface-phonon density of states for the X point.
The surface modes are clearly visible. For the meaning of X, ¥,
and Z see Fig. 1.
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culated the surface-phonon density of states for the
Al(110) surface:

= — e (2
un,a(w) 2':,5((0 w,,)lu,,q” R

where q, is the surface wave vector, €, denotes the direc-

tion X, §, or Z, and Ung, denotes the displacement of the

surface atom for the nth normal mode of the slab with
wave vector q;. The results are displayed as histograms
in Figs. 1-4. Inelastic helium beam scattering experi-
ments (Ref. 6) have been performed to measure the
surface-phonon dispersion curves of Al(110). Results
have been reported for two surface modes at Y and one
surface mode at X. While there is satisfactory agreement
between the measured and calculated results for the sur-
face modes at Y, there is a big discrepancy for the mode
at X. The reason for this discrepancy is not precisely
known. It may be due to the poor quality of the Al(110)
surface used in the experiments,?? or due to surface
anharmonicity—since the surface force constants are
very sensitive to the surface relaxation, if the magnitude
of the surface relaxation is strongly temperature depen-
dent, then the surface phonon at room temperature can
be different from that calculated at T'=0. It is unfor-
tunate that the horizontal shear modes, which we pre-
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FIG. 3. Surface-phonon density of states for the ¥ point.
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FIG. 4. Surface-phonon density of states for the S point.

dicted to be the most surface sensitive, have not been
measured because of the geometry selected for the
scattering experiment.

Recently, there has been a report’s of calculations of
the surface-phonon dispersion curves for Al(110). These
workers employed a different approach from what is used
in the present calculations. Focusing on the electronic
screening matrix at the surface, they were able to calcu-
late the surface-phonon dispersion curves over the whole
SBZ. However, their approach assumes a weak interac-
tion between the ions and electrons which can be treated
by perturbation at the Al(110) surface. This is a relative-
ly untested assumption which may account for the
difference between their reported results and the present
calculation at high-symmetry points in the SBZ.

tl2

IV. CONCLUSIONS

Accurate first-principles self-consistent total-energy
and interatomic force calculations have been carried out
to determine the surface force constants coupling the sur-
face layers at the Al(110) surface. The multilayer relaxa-
tion for this surface produces big deviations of the sur-
face force constants from the bulk values particularly for
the shear horizontal modes at the surface. The sensitivity
of the surface force constants to surface relaxation for
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this surface should make it interesting for future studies
of surface anharmonicity.
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APPENDIX: CALCULATION OF THE
HELLMANN-FEYNMAN FORCES FOR BASIS SETS
WITH LOWDIN FOLD-DOWN

In electronic structure calculations, it is often advanta-
geous to improve the convergence of the chosen basis set
by including the influence of a larger basis through
second-order perturbation.?? Such a procedure can be ex-
pressed mathematically as a folding down of the larger
Hamiltonian matrix into a smaller one:

k S_Hkk

Here H;; indicates the Hamiltonian matrix elements for
members of the small basis set. The summation in k runs
over the extra basis set functions included with second-
order perturbation and £ is an estimate of the average ei-
genvalue.

While this folding-down procedure reduces the time
spent in matrix diagonalization, it does introduce addi-
tional modifications in the calculation of Hellmann-
Feynman forces. The details are described below. Fol-
lowing the derivation in an earlier paper'’ the expression
for the Hellmann-Feynman force can be written as

I:“:Fion_’_Fel ’
_ 8 Ewald
Fion_ - S5t s
8€n SUHX
F., = — + 3
el % 5t fp or d’r ,

where 8¢, is the change in eigenvalue due to the atomic
displacement &7, the summation is over all occupied
states n, Svyy indicate the change in screening potential
caused by the displacement, and ¥ g4 is the Ewald ener-
gy which measures the ion-ion interaction. We can then

write
)

Fe1: 2 l(ll’n

n
where [, ) is the wave function of the nth eigenstate.
For atomic displacements, the only changes in the Hamil-
tonian come from the change in ionic potential 8¥;,, and

Sv

HX
8t

s
&t

>

o)+ (v,
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the change in screening potential dvyy. Thus,
—d ion 1,[’,, >

vV

ot
—8(H—H)
ot

Foy= % [<¢n

’

+(v. )
the first term is the result obtained before in Ref. 17 and
when V,, is the Coulomb interaction, it reduces back to
the classical Hellmann-Feynman result.!® The second
term is an additional small contribution to the electronic
force coming from the fold-down procedure. For surface
calculations where there are large cancellations between
F,,, and F,, inclusion of the second term improves the
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accuracy of the force calculation.

While the first term requires no knowledge of dv,, the
second term involves 8V =8V, +8vy,. In our calcula-
tions 8V is calculated as follows:

Sv=e8V,, ,
where € is the dielectric matrix for electronic screening.
In surface calculations, it is sufficient for our accuracy to
include the screening only for the lower Fourier com-
ponents of the potential, e ! being very close to identity
for the higher Fourier components. In our calculations
the dielectric matrix is usually calculated as part of the
procedure in iteration to self-consistency?* so actually no
extra calculation of € is required.
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