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A modi6cation to Broyden s method for obtaining stable and computationally efficient conver-

gence in self-consistent calculations is developed and discussed. The method incorporates the ad-

vantages of two schemes proposed by Srivastava and by Vanderbilt and Louie without any increase
in complexity. Its improvement over their methods is discussed. The present method is compared
with two other widely used convergence methods, simple mixing and Anderson's method, for the
case of the disordered binary alloy Nio 35Feo 6& on the verge of a magnetic instability and is shown to
be much improved in stability and rate of convergence.

I. INTRODUCTION

The self-consistent solution of coupled, nonlinear equa-
tions is a treasured topic in numerical analysis. We dis-
cuss an improved algorithm, primarily in the context of
electronic-structure calculations, for obtaining stable and
computationally efficient convergence for iterative solu-
tions.

In electronic-structure calculations, it is necessary to
determine the charge density by solving the Kohn-Sham
equations self-consistently. For density-functional-based
calculations, the charge density n(r) is given in terms of
the one-electron wave functions, which depend nonlinear-
ly on n(r) through the effective one-electron potential
V(r). The prescription for obtaining V(r) from n(r) is
given within density-functional theory via Poisson s equa-
tion plus a many-body contribution, e.g., in the local ap-
proximation. The self-consistency condition for this
type of calculation can be written as F(n)=n, „,(n)
—n=0, where n is the input density. Therefore, in
essence, one is just solving a system of simultaneous non-
linear equations F(n }=0. Note, it is equally valid to con-
sider convergence of V(r), since both the charge and the
potential convergence are equivalent when they are treat-
ed symmetrically, except that the total energy need not
converge as rapidly when the potentia1 convergence is
used.

In an iterative procedure, convergence can be defined
as continuously minimizing the "distance" between the
input and output charge densities. When this distance is
zero, i.e., input and output densities are equal, we say the
system has converged to the fixed-point solution. The
simp1est definition of distance between the input and out-
put densities, using Dirac notation, is

D[n,„„n]=—((n,„, n~n—,„, n&}—'

= (F(n ) ~F(n ) &''2, (I)
i.e., the norm of the vector F.

Typically, instabilities occur while solving systems of
nonlinear equations by straight iteration. In the
electronic-structure case, this feature is exhibited by the
development of charge oscillations during the iterative
cycle, which if left unchecked would cause divergence of
the algorithm. To obtain convergence, D~O, various
methods are used to damp these oscillation during the
iterative process.

In the next section, we discuss three methods used to
damp these oscillations and obtain convergence, each
successively more sophisticated. This brief survey is use-
ful for the sake of comparisons to be made with the
modified method to be presented in this paper. In Sec.
III, the algorithm which is based on Newton-Raphson
techniques is developed. A discussion of the modification
will follow in Sec. IV. And, finally, in the last section, re-
sults and a comparison with the other methods will be
presented.

II. BRIEF SURVEY OF CONVERGENCE
ALGORITHMS

A. Simp1e mixing

The most simple-minded method to damp charge oscil-
lations during the iterative process is to use a linear com-
bination of input and output densities as the input charge
density to the next iteration, i.e.,

+"&=(I—a}ln™&+a~n,™t'&=~n' '&+alF'
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where the superscript m denotes the particular iteration.
In most cases, by a suitable choice of aE[0,1], conver-
gence can usually be achieved. However, there are many
instances where this is not true, or convergence proceeds
very slowly with an excessive number of iterations, such
can be the case with the onset of magnetism, for example,
where +~0.01 is not unusual. Realistically, a better
iterative method is necessary. A formal study of simple
mixing in electronic-structure calculations near conver-
gence was performed by Dederichs and Zeller which
gave constraints on a for various types of calculations.

B. Anderson's mixing

Anderson's method, as proposed by Hamann for
electronic-structure calculations, is an extension of the
simple mixing scheine of Eq. (2). The relationship of the
mixed input (output) density is assumed linear in the true
input (output) density, i.e.,

ln, „(.„,) ) =(1—p) ln,'„('.„,) ) +pin(, „(.„I)) ) . (3)

The aim is to obtain the "best" p value for the current
iteration with which to minimize the distance between
these two "average" densities. By setting
BD[n;„,n,„,]/()p=0, we obtain for p

(F(m)lF(m) F(m —1))
D2[P(m) F(m —1)]

(4)

Finally, to obtain the new guess for the next iteration, we
simply mix the average input and output densities, as in
Eq. (2), where the mixing parameter a is again chosen
empirically,

ln' +")=(1 a)ln ';—„')+aln,'„,') . (5)

This is necessary so that the new iterate does not become
mired in a subspace spanned by the old iterates only, and
D remains at some nonzero value. This method was in-
dependently proposed by Pulay, who used it for molecu-
lar calculations.

[For the case of spin-polarized (magnetic) calculations,
there are two possible vectors that can be constructed in
order to use Anderson's method as described in Eqs.
(3)—(5). While above the vector n is the total charge den-
sity, this vector can be replaced either by a vector corn-
posed of the majority and the minority charge densities
or by a vector composed of the total charge and magneti-
zation densities for the spin-po1arized calculations. If one
writes down the distance D for these two definitions of
the vector, it will be evident that there are different cross
terms which appear, and, therefore, they are not
equivalent. In fact, the former definition is always more
stable than the latter. The latter definition of the vector
is sometimes more useful, however, when the vector is far
from convergence. Please keep in mind that in the results
to be given for the case of a magnetic instability
Anderson's method will refer to the method which uses
the first, more stable, definition. ]

[A final point about the spin-polarized case. When
performing the simple mix as required by Eq. (2) or Eq.
(5), the magnetization density may be mixed with a

different mixing parameter than the charge density, re-
gardless of the definition of the vector. That this is useful
can be seen as follows. Since the magnetization density is
less susceptible to long-wavelength charge fluctuation
than is the total charge density, it may always be mixed
with a larger mixing parameter, and, therefore, it may
converge more rapidly. ]

It should be noted here that the values of p can vary
dramatically, and in some cases become negative. This is
quite different than what is a typical value of a in Eq. (2),
a E [0,1]. Moreover, it is usually very beneficial for P to
take on negative values, as long as (3 D /() p & 0.

Our experience has been that using this method but in-
cluding a third-iteration density is more beneficial and
less unstable. The counterpart to Eq. (4) in this case is
the solution of a matrix equation for a. This method is
much improved over Eq. (2); it can obtain convergence in
some cases where Eq. (2) is useless and Eqs. (3)—(5) are of
questionable benefit. One might be tempted, therefore, to
continue this process, including more input-output densi-
ties, to speed up convergence further. However, it should
be fairly obvious that as the iterative process approaches
convergence, linear dependencies develop and the matrix
solution of p diverges, and no solution is possible. From
experience, we find that keeping three or four iterations
of input-output densities is best, typically three is op-
timal.

A final point, as in Eq. (2), the Anderson method of
mixing only updates the density at each r point in a one-
to-one correspondence. That is, no information from
other r points is allowed to affect a particular r point dur-
ing the mix. This is the major shortcoming of this
method. If, for example, there is a large amount of
charge transfer, an r-dependent mixing scheme should
greatly improve convergence. In this case, a more so-
phisticated scheme is necessary.

C. Broyden's method

Of several iterative methods available to solve systems
of nonlinear equations, the most sophisticated procedure
for constructing a new input quantity is Broyden's quasi-
Newton-Raphson (Jacobian update) method. This tech-
nique has been used in electronic calculations on a variety
of systems, always with a significant reduction in the
number of iterations necessary for convergence as com-
pared to the simple mixing procedure. However, a
shortcoming of the method is the prohibitive storage re-
quired in keeping the updated N XN Jacobian, where N
is the length of the vector (in this case, the number of r
points) to be updated, and the necessity of large matrix
multiplications. N can be a large number, on the order of
10000 or more, depending on the problem.

Recently, Srivastava derived Broyden's second (in-
verse Jacobian update) method in a manner which avoids
the N XN matrix storage problem as well as N XN ma-
trix multiplications. Only storage of m vectors of length
N are required, where m is the number of iterations. This
method is a computationally efficient scheme and has
been used successfully for both bulk and surface calcula-
tions. There is, however, a drawback to this method. In-
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formation from the current iteration is allowed to update
the inverse Jacobian, but is also allowed to override infor-
mation from previous iterations.

In this procedure, one approximates F(n) at the mth
iteration by

lF(n)&=lF(n -')&+J™(ln&
—ln™&).

the update of the Jacobian, we determine the update of
the inverse Jacobian, 6™~1), by a least-squares minimi-
zation of an "error function, " where a weight w„ is asso-
ciated with each previous iteration and a weight wo as-
signed to the error in the inverse Jacobian. Thus, with
the error function defined as

ln™'11&=ln' '&+G' 'F' '&=In' '&+lg™&, (7)

where G' = —(J' ) '. However, it is most often the
case that lF™+I))is not zero, and we may recast Eq. (6)
as

lan™)+G' 'lbF' ') =0, (8)

(One should keep in mind that for the present discussion
n is the density; however, n may represent any vector
variable which is to be iterated. ) For F +" to equal
zero, the right-hand side must vanish. This leads to an
update equation for the vector n' +", i.e.,

E=w llg™+II—G'

and

g {m+1)=w2g™)—m w2lgn(n)) (iI)F(n)l
n=1

W2l lan(n))+G(m+1)li)F(n)) l2

n=1

we set BE/BG +') =0, which gives

g(m+1) g {m+l)(g(m+))) —1

where

(1 la)

where it is both convenient and an advantage numerically
to work with scaled vectors defined as follows:

(m+1))
l

(m))
gn (m) )—

l
lF(m+1)) lF(m))

(9)

and
l

AF' ') is defined by replacing n with F. Note, us-

ing this definition, ( AF' '
l

b,F™) —= l.
In Broyden's second method, G' ' fails generally to

satisfy Eq. (8). So, G' +' is updated by requiring
llG' +"—G' 'll to be minimized subject the constraint
of satisfying Eq. (8). This procedure results in the follow-
ing update of 6:
g(m+1) g(m)

(
l

g {m) ) + g(m) gF(m) ) )( i( F(m) 110)

It is noted readily that G' + "—6' ' is a matrix of rank
1, hence this is known as a rank-1 updating procedure.
As a consequence of this, G of Eq. (10) does not satisfy
Eq. (8) for all previous iterations (n (m ), as it should.
Thus, information from previous iterations has been
overridden arbitrarily by information from the current
iteration.

III. MODIFICATION OF BROYDEN'S METHOD

Vanderbilt and Louie (VL) have suggested and used
successfully a modified version of Broyden's method in
which they incorporate information from all previous
iterations during the updating procedure. They noted an
improved convergence over the standard Broyden's
method, as well as convergence of the Jacobian to its true
value; however, the storing and the multiplications of
N XN matrices remain as a shortcoming of their method.

We now show that it is possible to use the
modifications of Vanderbilt and Louie within Broyden's
second method and obtain a similar computational
scheme to that of Srivistava. Thereby, the advantages of
both algorithms are obtained.

As VL argued, an update which disregards previous in-
formation results in too severe an alteration of 6'
and, therefore, G' +" should be forced to satisfy Eq. (8)
as best as possible. Thus, following their suggestion for

B +"=w{)1+g w lbF'" )(bF'"'l .
n=1

(1 lb)

m

=(wo) I— g w„wkpk„
l

hF'"')(bF'"'
l

k, n =1
(12)

with

pk„=(w()I+a) 'k„, a; =w;w lbF' ')(i()F"l, (13a)

see the Appendix. Note that the matrices in Eq. (13a) are
small m Xm, not large N XN, matrices. Then, using this
result in Eq. (11), it follows that

g(m+1) g(m) ~ p (g(m)lg F(n))
kn

k, n =1

+lb, n'"'))(hF'"'l .

It is useful to put 6™+I) in terms of 6'". This is easi-
ly accomplished by induction, and we obtain

g(m +1) g(1) y lZ(m) ) ( gF(k)
l

k=1

where

m —1lz™)= y p l

'"'&+ ' y p lz'"-")

and

n =1 n =1

lii'") ) =G"'l+F'") )+ lan "'& . (13b)

This equation for G' +" is no more complicated than
the similar one obtained by Srivastava and just as easy to
implement. However, for wo small, we obtain a very sim-
ple equation for the update of G, i.e.,

At this point, we choose a di6'erent approach than VL.
By expanding (B™+1~)' to infinite order in terms of the

vector AF, then resumming, it follows that no explicit
matrix inversion ever needs to be performed and

(g(m +1)
)
—

1
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m

G' +"=G "—g Pj,„~u'"')(bF'"'~+O(tc ) .
k, n =1

(14)

IV. DISCUSSION

Several comments are necessary before proceeding
with an example. First, from Eq. (15), it follows that
only m vectors of length N need be kept to renew the
guess of vector. No storage or multiplications of N XN
matrices are necessary. Second, as VL noted, the weights
associated with each iteration add considerable flexibility
to the convergence process. For example, more recent
iterations may be given greater influence than earlier
iterations, where, say, Brillouin zone integrals or basis
sets are less than optimal. If the vector is composed of
the charge density, one physically appropriate choice of
the weights would be w = (F' '

~

F' ') ', i.e., the in-

verse of the rms difference of the charge density. So, as
convergence is approached, the larger the weights associ-
ated with that iteration become. It is found in practice
that the weights should not be less than 1.

Third, when the initial density is very far from conver-
gence, one might expect the performance of any

In this limit, we are only minimizing ~~G'
+"—G'"~~.

Moreover, if we also take the limit m„&&1 for n & m and
the weights are independent of the iteration number, we
obtain the standard Broyden's second method. In this
limit, the update to ~n' ') now follows directly from Eq.
(7) and is relatively simple, i.e.,

m —1

~n' +")=~n' ')+G'"~F' ') —g tc„y „~
'"')

n=1

(15a)
where

m —
1

g ci, gf, l and cl, =wl, ( bF '~F' ') . (15b)
k=1

Equations (13) and (15) constitute all the information that
is required for the updating of the vector. One must save
only the current vectors

~

n ) and
~

F ), the vectors
~

u )
and ( AF

~

from all previous iterations, and, for
efficiency, the matrix a, . This results in a storage of one
m X m matrix and of mN vectors, as in Srivastava's algo-
rithm. If the weights are chosen to be iteration depen-
dent, as will be discussed, then m weights must also be
stored.

It only remains to choose an appropriate G'". Al-
though G can be related to the dielectric kernel in the
case of electronic-structure calculations, it is more
straightforward to choose it as a diagonal constant ma-
trix, i.e., G'"=aI. In this case, we see that the first two
terms of Eq. (15) just give us the linear mixing of Eq. (1),
and the last term is the correction to this. According to
Powell, ' the appropriate choice of o. should be such that
(F' '~F' ') ((F"'~F"');however, experience has shown
that a may be chosen rather large compared to that in
the simple mixing and Anderson mixing schemes. Other
choices for the functional form of G'" may be envisaged,
however, the choice must lead to a charge-conserving
guess for the new vector.

Broyden's method to suffer since they are linear methods.
In order not to sustain a memory effect and obtain faster
convergence, it is sometimes beneficial to restart the
Broyden's method after a few iterations. In fact, it may
be even beneficial to redefine the vector when one restarts
the method. This is illustrated in the example to be dis-
cussed.

Fourth, by choosing the initial guess of the vector ~n )
to be charge conserving, it is easily shown from Eq. (15)
that the algorithm remains charge conserving (see com-
ment, Ref. 11). Fifth, the vector to be updated need not
be simply the charge density or the potential. The vector
may be composed of several elements that are interdepen-
dent, although not necessarily directly so. For instance,
the total individual charge densities and the individual
magnetization densities may be put contiguously together
to compose the vector. Or, as suggested by Bendt and
Zunger, ' the Coulomb and exchange-correlation poten-
tials may be mixed separately in order to obtain faster
convergence.

Sixth, of whatever the vector is composed, it may be
important that the elements of the vector be chosen
somewhat judiciously, as far as relative magnitudes, for
example. That this may be necessary can be seen as fol-
lows. Broyden's methods are based on minimizing the
norm of the difference of two successive (inverse) Jacobi-
ans which were generated from the vectors

~

n ). No in-
formation of the second derivatives (the Hessian) is used;
therefore, the curvature of the solution space is not
known a priori, and, as in all Newton-Raphson tech-
niques, a "good" guess of the initial vector is important.
Suppose the vector has two sets of elements, say,

~

n ) =
~
n„n~). With (nz

~
nz) &&(n,

~
n, ), it is possi-

ble that the elements of n2 will be considered preferen-
tially in the update of the (inverse) Jacobian, even though
the relative importance of the elements n, may be
greater. This would be exhibited by convergence in the
elements n I and slow convergence, or divergence, in the
elements n 2.

In the simple model proposed by Vanderbilt and Louie,
it is possible to investigate what effect a poor choice of
the initial elements in the vector has. For some elements
much larger than the others, one obtains convergence
(divergence) in the elements "near" ("far") from their
correct solution. There can be borderline choices of the
magnitudes of the elments in which it is necessary to
make a prudent choice in the initial (inverse) Jacobian,
i.e., e. This results in convergence of the all elements, al-
though at a cost of increased number of iterations.

A more subtle example of this has been experienced in
FLAPW (full-potential, linear augmented-plane-wave)
calculations using Srivastava's algorithm. ' In the
FLAPW method, the vector was chosen to be composed
of many elements, including total charge densities within
a sphere about the site (TCD's) and a set of coefficients
which describe the interstitial charge densities (ICD's).
The elements of these two quantities are coupled in a
very nonlinear fashion. Each of the ICD's is actually a
bare Fourier coefficient scaled by the unit-cell volume
and can be 2 —3 orders of magnitude larger than the
TCD's. In various cases, although the bare Fourier
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coeScients were changing only slightly, the changes of
the ICD's relative to that of the TCD's were large. The
TCD elements converged, but the ICD elements contin-
ued to have crosstalk among one another and, thus, were
not converging. This is a case where some elements of
the vector, the ICD's, were chosen slightly outside the
solution space and were solely responsible for the lack of
convergence of the charge density within the unit cell,
which is described by both the TCD's and the ICD's. In
surface calculations, where the ICD's are essential in

describing the shape of the charge density at the surface,
a similar phenomenon has been experienced. '

However, by using the bare Fourier coeScients in the
vector, all elements of the vector converged. In effect,
this choice of the elements put the vector in the correct
part of the solution space —a judicious choice of the vec-
tor. Note, one cannot exclude these coeScients from the
vector since they describe the interstitial charge density
and make the vector charge conserving. So, the physics
of the particular problem should be a guide to the choice
of the elements in the vector, as we11 as a guide to placing
the vector in the correct region of solution space.

Seventh, in instances where simple mixing works very
well, there will probably be no increase in convergence.
This is a reflection of the complexity of the problem. If
the solution space of the problem is rather linear, then us-

ing a nonlinear mixing will not be highly beneficial. This
has been experienced when the method was applied to
Slater-K. oster, tight-binding coherent-potential calcula-
tions. ' In paramagnetic alloy calculations, where simple
mixing worked well, the new method did not improve the
convergence, although it did not worsen it. However,
when the same calculations were applied to complex lat-
tices with f-electron atoms, the convergence was im-
proved by at least a factor of 2.

Finally, the particular example and method used to
showcase this version of Broyden's technique is but one
type of electronic-structure calculation. The molecular-
dynamics (MD) electronic-structure approach, intro-
duced by Car and Parrinello, ' for the study of the
dynamical properties of low-symmetry, multiatom sys-
tems may also employ the present convergence method.
For example, Pederson' has applied the above method
by mixing the electronic potentials to improve the rate of
convergence in MD-based calculations which use a
Gaussian-orbital technique. The convergence was im-
proved by a factor of 2. Since there are a number of
input-output vectors that occur in the MD-type algo-
rithms, another possible application comes to mind; that
is, employ the present method to mix the wave-function
coefficients (such as the plane-wave coefficients or the
Gaussian-orbital parameters) instead of, or, perhaps, in
conjunction with, the mixing of the electron density or
potential. So, we emphasize that the improvement of
convergence in iterative calculations is of general interest
and the present mixing scheme may be applied to a
variety of computational physics problems with benefit.

V. RESULTS

Two separate tests were made of this algorithm. In the
first, the above method and Srivastava's method were
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FIG. l. A comparison of the convergence of the charge den-

sity vs iteration number for simple mixing, Anderson s method,
and the modified Broyden's method is presented. The ordinate
approaches zero as convergence proceeds. The arrow 3 (B)
marks where the total energy is converged for the Anderson
(modified Broyden) method. See the text for a description of
what defines convergence.

compared using the simple test case given in the paper of
Vanderbilt and Louie. We found similar results, as we
should since the comparisons are equivalent. The present
method always converged more rapidly than Srivastava's
method for all linear mixing parameters a and weights
tested. Also, it was noted that G converged to the correct
value in the present method, whereas in the standard
Broyden's method this was not the case. This should be
the case since 6 was required to satisfy Eq. (8) for all pre-
vious iterations, as does the true inverse Jacobian.

In the more substantial second test, we performed
Korringa-Kohn-Rostoker (KKR)-CPA coherent-
potential-approximation' calculations of the random,
binary, ferromagnetic alloy Nio 35Feo 65, which is on the
verge of magnetic collapse. For lattice constants near the
experimental value, a =6.60 a.u. , it is magnetic. Howev-

er, while minimizing total energies with respect to lattice
constant, it is found that a 5% reduction in volume re-
sults in a collapse of the local ferromagnetic moments.

As mentioned in the Introduction, this sort of instabili-

ty can cause divergence, or allow convergence, for many
mixing algorithms. Below we give a comparison of the
present method to both simple mixing and Anderson
mixing, which has been an extremely good algorithm for
convergence in many previous eases.

In Fig. 1, we demonstrate how the charge density con-
verges as a function of iteration. The ordinate is actually
the negative inverse of the natural logarithm of the rms
of the total charge density. For the case of perfect con-
vergence, this quantity should go to exactly zero. Of
course, in practice what we accept as converged happens
much earlier than this. From the figure, we see that the
current method approaches zero more rapidly than
Anderson's method. Evidently, both methods are superi-
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or to simple mixing in this respect.
In order to be as fair as possible in the comparison, it

was attempted to optimize a in the simple mix and the
Anderson methods. a was 0.04 and 0.15 for the simple
mix and Anderson methods, respectively. For a greater
than these, the calculations would diverge. In the
modified Broyden's method, a was chosen arbitrarily to
be 0.35. This value of e was rather large compared to
those values used in the other methods; as a consequence
of this, it did not satisfy Powell's criterion and resulted in
divergence for the first two iterations, where the vector is
just simple mixed. The weight wo was chosen to be 0.01.

It should be noted in these calculations that the
modified Broyden's procedure was carried out initially
for seven iterations in which only the charge density was
in the vector and the magnetization density was simple
mixed with a mixing parameter of 1.5. This had three
effects: (1) the magnetization density was rapidly reduced,
(2) the associated large charge oscillations were damped
by the modified Broyden's procedure, and (3) no memory
effect was left in since we stopped after seven iterations
and discarded the iteration history.

In iterations thereafter, if the charge and magnetiza-
tion densities were continued to be mixed in that way, the
energy and pressure would converge to the correct values
in about the same number of iterations, but with a rms
difference of the charge density no better than the Ander-
son method. Although the modified Broyden's is a more
stable method, a higher rms difference resulted because of
the fluctuations in the size of the moments, about
(10 —10 )p,s, due to the simple mixing of the magneti-
zation. However, after seven iterations, if the Broyden
vector was composed of both the total charge and magne-
tization densities of the Ni and Fe sites, a drastic drop in
the rms difference results, since the size of the moment
fluctuations is stabilized to 10 ps very quickly. (There
was no special reason to restart the calculation after
seven iterations, but that was enough to stabilize the
charge and magnetization fluctuation. )

Note that in Fig. 1 the large fluctuation in the fifth
iteration is due to a large drop in the local moments to-
wards zero, which in turn creates a "large" charge oscil-
lation. Note, however, that within two iterations the
modified Broyden's method has damped out the oscilla-
tion. The fluctuation in the rms in the eighth iteration is
due to the simple mix which occurs when Broyden's
method is restarted, since Powell's criterion was not used
in the choice of e. Note, this fluctuation is not as
dramatic as in the first few iterations because the calcula-
tion is closer to convergence.

For the simple mixing and the Anderson method dur-
ing the first seven iterations, the magnetization was sim-
ple mixed with a mixing of 1.5, as was done in the Broy-
den method, to allow the moments to rapidly reduce their
magnitude; thereafter the magnetization's mixing was
0.95. Since neither method is a multi-r-point update, it
takes longer for the charge density and magnetization
density fluctuations to die down; this is evident from Fig.
l.

The stability of the methods is more indicative of their
value. In Fig. 2., we plot the deviation of the pressure
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FIG. 2. Convergence of the pressure relative to the con-
verged pressure iteration number is shown for the three
methods. A (B) refers to the same thing as in Fig. 1. Relative
errors in the pressures are less than +0.01 kbar.

VI. CONCLUSION

A modified version of Broyden's quasi-Newton-
Raphson method was presented which incorporates the
best qualities of two methods proposed previously by
Srivastava and by Vanderbilt and Louie. It was found to
always converge in fewer iterations than Srivastava's
method, which was due to the fact that the inverse Jaco-
bian converges much more rapidly to its true value in the
modified version. This method requires less computer
storage and fewer multiplications than the VL method
because only m vectors of length 1V need be kept, yet has
the added Aexibility of the weighting factors for each
iteration. Implementation of the method is no more
difficult than Srivastava's method, and, in reality, no
more difficult than Anderson's method which includes
three or four charge densities.

The stability of the method is its most important as-
pect. Noise levels in the calculations are reduced in some
instances by orders of magnitude. This results in rapid
convergence with extremely stable values. For extremely
sensitive electronic-structure calculations, such as, on
surfaces, Broyden's algorithm can obtain convergence

from the converged pressure versus iteration number.
The calculation was considered converged when the pres-
sure was in error by less than +0.01 kbars. The pressure
is a sensitive indicator of the efficacy of each method
since it converges linearly in the charge density of fluc-
tuations, unlike the total energy which converges qua-
dratically in the fluctuations. ' Except for the large fluc-
tuations in the pressure associated with the large choice
of a in the initial two iterations and with the damping of
the charge oscillation at the fifth iteration, the modified
Broyden's method is an extremely stable method due to
its multi-r-point updating. By following Powell s cri-
terion for the choice of a more strictly, the convergence
might have been faster, or at least the initial fluctuations
would have been less dramatic.
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where other methods fail. With the large amounts of
central-processing-unit time required for many
electronic-structure calculations, the associated benefit is
a large savings of computational resources.

where ~hF'"')—:(w„lwo)~EF "'). If the second term in

Eq. (Al) gives small corrections to each element of the

unit matrix, then the infinite expansion of (B' +") ' is
defined. Then, using implied summation, we have
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APPENDIX

x ( 5„k —a«+ a„;a;„— )], (A2)

where we define a; = ( AF 'i') b,F") .
By now resumming the infinite series in Eq. (A2), and

using the usual summation convention, we obtain

(B' +") '=w I+ g w„wk~AF'"')(5F'"'~
n, k=1

B' +"=w I+ g ibF'"')(bF'"'~
n=1

(Al)

Equation (12), the general form of the inverse of Eq.
(1 lb), is derived. There is a more rigorous derivation,
however, the following derivation is most straightfor-
ward.

From Eq. (11b),

X(wP+a) '„„ (A3)

where a,, =w; w(b, F' '~b,F"). Equation (A3) is the
same as Eq. (12) given in the text and the definition of P„k
is obvious.

This can be considered a generalization of House-
holder's modification formula.
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