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Negative resistances are a signature of four-terminal resistance measurements. We construct a
simple model of a localized impurity state in a four-probe conductor. A recently proposed mul-
tiprobe resistance formula is combined with the multichannel Breit-Wigner formalism to describe
tunneling between edge states via the localized state. Deviations from the quantized Hall resis-
tance are discussed and the symmetry with regard to magnetic field reversal is investigated. The
model permits negative longitudinal resistance fluctuations which have been observed in recent ex-

periments.

Hall resistances and longitudinal resistances are mea-
sured in a four-probe setup with two contacts used as car-
rier source and carrier sink and two contacts used as volt-
age probes. Four-probe resistances are not simply related
to the diagonal and off-diagonal elements of the conduc-
tance tensor. As a consequence these resistances do not
exhibit a simple symmetry with respect to magnetic field
reversal "2 and need not be positive.> Here we are con-
cerned with negative resistances in small conductors in
very high fields. Ideally, the “longitudinal” resistance is
zero when the Hall voltage is quantized. In narrow sam-
ples, isolated impurities can bring about the transfer of
carriers from one sample edge to the other,*> and under
certain circumstances this leads to fluctuations in the Hall
resistance (deviations from exact quantization). As ob-
served by Chang eral.,® at a resistance minimum both
positive and negative resistance fluctuations are possible.

We use a Landauer approach’ which emphasizes that
voltage differences are determined by the equilibrium
chemical potentials of Fermi baths connected to the con-
ductor.!3 Figure 1(a) shows a conductor with four leads
connected to electron reservoirs at chemical potentials u;,
i=1,2,3,4. Inelastic events occur only in the reservoirs.
Scattering in the conductor is elastic and described by a
scattering matrix s of dimension (M, +M,+ M3+ M,).?
M; is the number of quantum channels in reservoir i. For
a carrier incident in channel »n in lead i and reflected into
channel m in lead i the reflection amplitude is denoted by
riimn. A total reflection probability for carriers incident
in lead i is introduced, Ri=X,ur|riimn|?>=Tr(riry).
Here Tr denotes the trace and 1 stands for the Hermitian
conjugate. The transmission of carriers incident in chan-
nel n in lead j to channel m in lead i is described by the
amplitude t;; ms,. The total transmission probability is
Ty -Tr(t,}ti,-). The current I; incident from the reservoir
at contact i is

Ii-% (Mi—Rii)“i_Z Tjjuj] . (1)
j=i

Equation (1) is strictly applicable only to the case where

carriers move from one reservoir to another without ex-

periencing inelastic events. However, even in the presence
of inelastic events Eq. (1) remains correct if we replace

38

the probabilities for coherent transmission and reflection
by more general expressions which invoke both a coherent
and an incoherent contribution.>® In a configuration
where reservoirs m and n are used as a source and sink
and contacts k and / are voltage probes, the resistance is
Renn.t =ux —us)/el, where I =I, = —1I, is the current
impressed on the sample. At the voltage contacts, there is
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T
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2

FIG. 1. (a) Four-probe Hall conductor with localized impuri-
ty state. T is the total decay width of the localized state due to
coupling to lead i. (b) Quantum dot coupled to four leads with
the same states at the Fermi energy as in (a).
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zero net current flow, Iy =1, =0. These conditions on the
currents determine the resistance

Ron .kt =h/e®) (TimTin — TinTim)/D . )

Here D is a subdeterminant of rank three of the matrix
formed by the coefficients in Eq. (1), which multiply the
chemical potentials. All subdeterminants of rank three of
this matrix are equal and independent of the indices m, n,
k, and I. Microreversibility, the symmetry of the s matrix,
implies

Tij(H)"'Tji(_H), Rii(H) -Rii("H) .

Using this in Eq. (2) gives rise to the reciprocity of four-
terminal resistances, R/ mn(H) =Rpn 1u(—H). The re-
ciprocity of the resistances is related to the Onsager-
Casimir relations for the (global) conductances of a four-
probe conductor. 3

Let us next consider how the quantum Hall effect is es-
tablished. A discussion of the quantum Hall effect based
on Egs. (1) and (2) has been proposed independently by
Beenakker and van Houten,® Peeters,'® and by the au-
thor.!' In a clean conductor, in a high magnetic field, car-
rier flux occurs via edge states, 12 the quantum-mechanical
equivalent of skipping orbits. The resulting carrier paths
are indicated in Fig. 1(a) with thin solid lines. Let us first
disregard the motion along the broken path via a localized
impurity state which we study later on. The carriers that
transmit through the contact from the reservoir to the
lead propagate without reflection to the next-nearest con-
tact in a clockwise fashion. For simplicity let us assume
that each carrier which reaches a reservoir leaves the con-
ductor (no internal reflection'!). Each edge state provides
a path along which carriers can traverse the conductor
without backscattering. If each of the incident edge states
carries a unit current (is full), all outgoing edge states
carry also a unit current (are full). Given NV edge states,
the total transmission probabilities in the conductor of
Fig. l(a) are T4| "N, T34"N, T23 -N, and le-N. All
other Tj; are zero. The total reflection probabilities in the
absence of internal reflection are R; =M; —N. The Hall
resistance #1342 is determined by T'4;T23 — T43T 3, which
is equal to V°. Evaluation of the subdeterminant yields
D =N3. All Hall resistances of the conductor of Fig. 1(a)
are quantized and yield *h/e?N. The “longitudinal”
resistances are zero. The important feature of this discus-
sion of the quantum Hall effect is that it invokes only the
states at the Fermi energy. It is remarkable that a single
and simple expression for the resistance, Eq. (2), is applic-
able both at low fields' ~>® and at high quantizing fields.

Even if the conductor is disordered, the situation de-
scribed above prevails as long as scattering from one set of
edge states near one side of the sample to another set of
edge states near another side of the sample does not
occur.!! The notion®>°~!! that the resistance is deter-
mined by carrier flow along a few edge states has received
some experimental support. Washburn etal. and Haug
etal. > observed quantized four-terminal resistances in
gated narrow constrictions which are closely related to the
quantization of point-contact resistances observed by van
Wees et al. and Wharam et al. '

In the absence of a magnetic field, a long-lived state
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leads to transmission and reflection probabilities of the
Breit-Wigner'>!® form. We extend this approach to high
fields and to the multiprobe conductors of Fig. 1(a). Con-
sider first the conductor in Fig. 1(b). A small disk (quan-
tum dot), recently investigated by Sivan and Imry,!” is
weakly coupled to four leads. The conductor of Fig. 1(b)
is equivalent to the conductor shown in Fig. 1(a) in the
following sense: The topology of the current-carrying
states is the same. The edge state, which in the conductor
of Fig. 1(a) describes transmission into lead 2 of carriers
incident in lead 1, reappears in the conductor of Fig. 1(b)
as a state describing carriers incident in lead 1 and
reflected back into lead 1. The Breit-Wigner formalism is
applicable since a unitary transformation U; of the current
amplitudes in lead i leaves the incident and the outgo-
ing current invariant. Equations (1) and (2) are invari-
ant under the transformations U =U;XU,xU3XxU,,
since Tr[(U;_lr,-,-U,-)T(U,-_lr,-,-U,-)] and Tl‘[(U,'_It,'jUj)T
x (U 't;U;)] are invariant. Consider, as a starting
point, the case where coupling between the leads and the
localized state in Fig. 1(b) is switched off. In this scatter-
ing matrix only the reflection amplitudes are nonzero.
There exists a unitary transformation U which makes the
scattering matrix diagonal. The scattering matrix can be
diagonalized since s =5 +is, leads to Hermitian matrices
si=(s+s%)/2, s,=—i(s —s1)/2, which commute [s,,s,]
=0 because s 's =1. Hence, there exists a set of channels
for which the reflection amplitudes are of the form
exp(2i¢; ,). Here, 2¢; , is the phase a carrier incident in
lead i and channel n accumulates during reflection. The
interaction of these channels with the localized state is
taken into account with the ansatz, !>

r Qij,mn

. i m+0;0)
YE—E, +ir)2 - O

Sij,mn = 8ij.mn -

Here, E, is the energy and I is the total width of the local-
ized state. Q is a matrix which remains to be determined.
Since s is unitary, differing rows of the s matrix must be
orthogonal. This yields a set of equations which can only
be satisfied identically for all energies if Qi’}‘,m,, = Qi nm-.
Using this, these equations imply that Q is equal to its
own square. Since Q is Hermitian, it follows that the ei-
genvalues of Q are either 1 or 0. The remaining part of
the derivation is as in Refs. 15 and 16 and yields
| Qijimn | 2 =T m[jn/T. Here T, is the partial width due
to decay into channel n in lead i. The total width is the
sum of all the partial widths, T =3, T; =3, ,T"; ,. The to-
tal transmission and reflection probabilities are

S,'j -Tr(s,-}s;j) "F,'Fj/A , (4)
S,',' -TI'(SJS,'[)" |s,-,-| Z-N—l";(l"—l“,-)/A. (5)

Here we have introduced the resonant denominator
A=(E —E,)*+T?/4. Equations (4) and (5) are correct if
all four leads are characterized by N edge states. The dis-
cussion given above can be generalized to treat leads with
a differing number of edge states, and can be generalized
to describe the decay into reservoir states instead of a
small number of edge states. Note, in the Breit-Wigner
limit, the resulting matrix of transmission and reflection
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probabilities is symmetric S;; =S;;. Using Eqs. (4) and
(5) in Eq. (2) and taking M; =N yields a vanishing Hall
effect. This result is a consequence of the asymptotic va-
lidity of the Breit-Wigner formulas. Suppose the decay
widths I'; are of order & Terms of order & in the nomina-
tor (and denominator) of Eq. (4) are neglected. An “‘ex-
act” analysis shows indeed that the asymmetry S;;(H)
—Si(H) is of order £°. These subtleties are unimportant
for the problem [the conductor of Fig. 1(a)] which is of
interest here.

The point of our digression to the conductor of Fig.
1(b) is the following: The transmission and reflection ma-
trix of the conductor Fig. 1(a) is obtained by a permuta-
tion of the transmission and reflection matrix of the con-
ductor of Fig. 1(b). The role of the reflection probabilities
in the conductor of Fig. 1(b) is taken by the transmission
probabilities of the conductor in Fig. 1(a). Hence the
Breit-Wigner formulas corresponding to Fig. 1(a) are

Tij=Sij+3 Ri=Sii+3. 6)

The second index of S is taken to be mod4. The four-
terminal resistances are determined by Eq. (2) with the
help of Eq. (6). A little algebra yields for D,

A’D=(NA)}— X IiT;(NA)?

i<j

=4
2!

i=1

+ MO0 TC(VA) + 0 D02, (7)

Let us first consider the Hall effect. We consider the
symmetric component J = (R 34,+ R42,13)/2 and the an-
tisymmetric component, A =(R342— R42,13)/2. Using
Egs. (2) and (6) gives

I =(h/e)[ (T3 —Tr) NA+T (4T, —T3)
+I,3(Ty—T1))1/DA?,
(®)
A=(h/e?)IN?A?+D,NA+(D,/2)1/DA?. 9)

Here D; and D, are the coefficients in Eq. (7) multiplying
(NA)? and NA. To elucidate the content of these equa-
tions we discuss below some special cases.

For I'; =I'y =0, the edge states in lead 2 of the conduc-
tor of Fig. 1(a) are connected by impurity scattering. J
stays at zero and A is quantized and given by h/e’N. As
shown in Ref. 11, two nonadjoining leads can exhibit
impurity-induced transitions between their edge states
without effect on the quantum Hall resistance. For
I, =04, =0, there exists a “diagonal path” across the Hall
bar junction. The Hall voltage acquires a symmetric part,

J=(h/e*)T\I3/N(NA—T"T3) .

The antisymmetric part remains quantized, A =(h/e?)
x(1/N). The symmetric part can be quite large. For
N =1, and maximum resonant transmission through the
impurity state, ie., for I'j=I;, the symmetric part
diverges when E =E,. If all the decay widths are equal
the symmetric part is zero, but the antisymmetric part
falls below the quantized value.
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FIG. 2. Negative resistance peak as a function of Fermi ener-
gy with arbitrary energy unit A wo for the four-probe conductor
shown in the inset.

Consider the “longitudinal™ resistance 7423 propor-
tional to T, T34 — T24T3;. The net transport is from con-
tact 1 to contact 4 and contacts 2 and 3 are voltage
probes. The inset of Fig. 2 shows a conductor which is
equivalent to the conductor of Fig. 1(a) with I'; =0. For
this resistance to be negative 7473 must exceed T3;7 34.
This cannot be achieved simply by redirecting nonin-
teracting edge states; the path from lead 1 to lead 3 and
the path from lead 4 to lead 2 necessarily cross. In our ex-
ample, the intersection of these paths occurs at the local-
ized state. Equations (6) and (2) give

Ria3=(h/e?)(Try) (NA—TT3)/DA%. (10)

Using the definition of A, we find that Eq. (10) describes a
positive resistance peak if 4I'; < NT and a negative resis-
tance peak if 4I';> NT'. Our model allows for negative
resistances if N < 4. In samples where the spin degenera-
cy is not lifted by the magnetic field, our model allows for
negative resistance fluctuations at the minima associated
with a Hall resistance #/6e? and the higher plateaus. In
the experiment of Chang et al. ¢ the most pronounced neg-
ative resistance fluctuations occur at the minimum associ-
ated with the h/4e? Hall “plateaus.” Figure 2 shows an
example for I'j =0, ', =Ty =0.02 A wo, and I'3; =0.14A wo.
For N =1 the negative peak height is of order h/e?. As N
increases the peak height decreases sharply, for our exam-
ple it is approximately 260 Q@ for V=2 and 50 @ for
N =3. These fluctuations provide yet another example of
huge conductance fluctuations® far exceeding k/e?. Since
AG=—AR/R? where AG and AR denote the mean-
square deviations from the average values G and R, and
since R==0 at a minimum AG can be expected to be very
large indeed. Real conductors are likely to be more com-
plex then the simple model studied here. Our model, how-
ever, gives insight on how negative resistance fluctuations
appear in these conductors.
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