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Ferromagnetic spin waves in quasiperiodic superlattices
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A formulation of ferromagnetic spin waves in quasiperiodic superlattices at low temperature is

given. The spectra, wave functions, and some related physical quantities of these systems are dis-
cussed and specified extended states are found. Numerical results are carried out to exhibit the
effect of quasiperiodicity on these systems.

I. INTRODUCTION

Since the discovery of icosahedral point-group symme-
try in Al-Mn alloys, ' a new class of ordered structures
(quasicrystals) with quasiperiodic translational order
have been extensively studied. These structures are in-
termediate between the completely periodic perfect crys-
tals and the random or disordered amorphous solids.
The electronic and vibrational properties of these struc-
tures have been investigated in considerable depth both
numerically and analytically in one dimension (1D) (Ref.
3) and numerically in higher dimensions. Many interest-
ing features such as exotic band structures and critical
wave functions have been found. In this paper, we start
to study another kind of low-temperature excitation, spin
waves, in a new kind of material, a quasiperiodic super-
lattice, which was made in laboratory originally for semi-
conductor studies. In the following, we first give the for-
mulation of this problem in Sec. II, and then discuss the
spectra, wave functions, and some related physical quan-
tities of this new system in Secs. III, IV, and V, respec-
tively.

II. FORMULATION

Now consider a quasiperiodic superlattice consisting of
two kinds of single atomic planes A and B, arranged in
the form of Fibonacci sequence described by the recur-

sive relation S +&=[S,S &] for j ) 1 with So= I A )

and S, =
[ AB ). This structure we consider is still

periodic along the direction parallel to the atomic planes
(layers) but quasiperiodic perpendicular to them. The
Heisenberg Hamiltonian for the present system can be
written as

H = —g g J(n, i;m, j)s(n, i) s(m, j),
m, n

(2.1)

J~ for both sites eA

J(m,j;n, i)= J„ for both sites e8 (2.2)

J~z for one site eA and the other E'B .

In this paper, we only consider the ferromagnetic case
with J(mj; n, i) )0 and s(n, i).s(n, i) =s (s + 1) for all
sites.

The ground state of the system considered is, like the
periodic system, all spin parallel. Now let us consider the
excitation of this system at low temperature. We first ap-
ply to H the Holstein-Primakoff transformation and only
take quadratic terms in K, then we have

where m, n are indices of atomic planes and i,j sites in
atomic planes n and m, respectively. The interaction
constant J(n, i;m, j) is nonzero only when the sites are
nearest neighbor and take the following value:

H =Ho+s g Q J(n, i;m,j)[a (n, i)a(n, i)+a (mj )a(m, j)]—s g Q J(n, i;mj)[a (n, i)a(m, j)+a(n, i)a (m, j)],
n, m &j n, m ij

(2.3)

where Ho is the ground-state energy. In order to diagonalize Hamiltonian (2.3), we take advantage of the periodicity in
the layers and take the corresponding Fourier transformation. We then introduce the following further transformation:

c k =(I/&N ) g f (n)b(n, k),
n

c „=(I/v'N ) g f'(n)b (n, k),
(2.4)

where N is the number of total atomic planes, k the wave vector parallel to the layers, and f (n) is a wave function to
be determined by

(J„„+&+J„„&+J„„)f(n) —J„„,f (n —1)—J„„+,f (n +1)=w t, f (n)/2s (2.5)
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for all n .Here J„,b (n, k), and b (n, k) are the Fourier
partition of J(n, i;m, j), a(n, i), and a (n, i), respectively.
For layers of simple cubic structure normal to the (001)
direction, we have

J„„=[4—2cos(k„d) —2cos(k d)]

XJ(n, i;n, i+1)=r&J„.
(2.6)

III. SPECTRA

Now we begin to study the spectra of spin waves of a
simple cubic structure for which Eq. (2.6) is valid. Other
cases can be treated similarly. Since Eq. (2.5) is similar to
1D quasiperiodic models, we can use the method of Ref.
3 to calculate the structure of the energy band. In the
present case, the related transfer matrix of block S,
denoted by M&, satisfies the following recursive relation:

With the above transformations, the Hamiltonian (2.3) is
finally diagonalized in the form

H =Ho + g g LUpi Cpi Cpi,.
k p

(2.7)

where w k is the excitation energy of the spin waves in

the quasiperiodic superlattice at low temperature, which
can be obtained from the eigenvalues in the solution of
Eq. (2.5). We will study it in the next section.

M =M &M &
for j&2,

with

M] = T„~„Tq„q and Mq = Tqq„T~ „~T

where

(3.1)

2 —x —1A

0 ~ TBAA

1+(1—xq )/A. —1/A,

1 0

TABA

2 —X —1B

0 ~ TABB

1+k—xq —A.

and

x„=—w rI,. A, , xs=ttt —r&/3k, —P=J&/J„, w =w~i, /2sJ„&, A, =J„/J„s. (3.2)

With the above expressions and the periodic approximation, we calculated the allowed energy of the system for some
values of j, the results are shown in Figs. 1 and 2. We see from Fig. 1 that the number of subbands at step j is equal to
the Fibonacci number F (with Fo= 1 and F, =2) for j ) 2 and related to the value of rz for j 2. The band structure
in Fig. 1 is dift'erent from that of a transfer-phonon model of 1D quasicrystals as well as that of an on site electronic
model and has nonuniform scaling depending on values of w in a more complicated way. The dependence of the band
structure on parameter rk is shown in Fig. 2. As rk increases in value, the bandwidths become narrower, the gaps are
enlarged, and energy bands themselves are shifting upward to a degree depending also on the value of P.

The integral density of state I (w) for the spin waves of the quasiperiodic superlattice in the periodic approximation is
expressed by

I (w) =I, ( w) = g I„'(w—),
k

IJ(~)=I d~ e(2 —lx, (~')I) lx,'(~')I/(2~[1 —[x (w')/2] j' ),

where

1, x&0
e(x)= 0' „,0

tions for the value of w with given k to lie in the gaps of
energy bands at an infinite value of j', there exists a value
of I satisfying

Bx, (m)
x '(m')—:

Bw

and

(3.3)

lxi-z(~)1~2, lxr i(~)l)2, and lxl(u)1~2,

since x (w) is then unbounded.

IV. %'AVE FUNCTIQN

(3.4)

When j~ ~ in Fig. 1, we expect to observe the
"Cantor-set" spectra for fixed k, and the sufhcient condi-

We now turn to study the wave function of the spin
waves in the infinite quasiperiodic superlattice. Since
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the system retains periodicity along the direction parallel
to the atomic planes, the spin waves must be extended in
this direction. The study of the properties of the spin
waves along the direction perpendicular to the atomic
planes is reduced to the analysis of Eq. (2.5) resulting
from a 1D problem. Recently, Kohmoto and Ostlund
et al. have confirmed that the wave functions of their
1D quasiperiodic model are always critical, namely, they
are either self-similar or chaotic. Since Eq. (2.5) is an ei-

genvalue equation of a generalized 1D Fibonacci lattice
system, the wave functions of Eq. (2.5) should be charac-
terized by critical states. However, we will show in the
following that some specified extended states, apart from
the critical states, can also exist in the present quasi-
periodic system.

From relations (3.1) and (3.2) it is easy to see that if
x~ =x~=2, which is true when w~& 4$J&p under the
condition rI, =0, then we have

—1 0
(4.1)

0

2 3 4 1 2 3 4

(b)

FIG. 1. The al1owed energy m for j =1, 2, 3, 4 and 5 with (a)
k=2, rk =0, and P= 4; (b) k= 1, rk =2, and P= 4.

That means that block S, is transparent for the wave
with energy w&A. Since the quasiperiodic system is con-
structed by two building blocks S, and S2, or more gen-
erally by S and S, +, for j & 1, then if w A. is also in the
energy band of the regular system constructed by block
Sz, that is ~A,

—
1~ 1, the quasiperiodic system can have

an extended state with energy w k. In general, if for
some values of j the following conditions are satisfied for
a value of w:

(4.2)

15
there may exist an extended state with energy w in the
quasiperiodic system. Since extended states play quite a
different role from that of critical states in physical pro-
cesses such as transport process, so the fact might be im-

portant that there exists some special extended states in

quasiperiodic systems.

V. PHYSICAL QUANTITY

FIG. 2. Variation of band structure with parameter
r„—=4 —2cos(k„d) 2cos(krd) for j—=3, A, =2, and P= 4.

In order to manifest some effects of quasiperiodicity on
physical quantities, we calculated the deviation of magne-
tization hM ( T)=s —M ( T)Iglj~ —and the magnetic
specific heat C, for the quasiperiodic superlattice with a
finite number of atomic planes F» as well as a periodic
superlattice constructed by successive repeating of build-
ing block AS. We see from our calculational results that
quasiperiodicity decreased the value of C„due to the in-
crease of gaps in the quasiperiodic system, but the depen-
dence of C, on temperature T appears not to be
effected by quasiperiodicity at su%ciently low tempera-
ture, as shown in Fig. 3. Similar results are also obtained
for b,M ( T). As the temperature increases, the discrepan-
cy between the slopes of the two curves in Fig. 3, howev-
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-0 5 VI. SUMMARY

2 ~ 5

Xn{C )

-4o 5

-6, 5
~ 5 -0.5 0.5

1n{y )

1.5 2. 5

FIG. 3. Magnetic specific heat c,, vs temperature T„ for X=5
and P= l. The upper curve stands for the periodic system and
the lower for the quasiperiodic system.

On the basis of our formulation of the problem of fer-
romagnetic spin waves in quasiperiodic superlattices at
low temperature, we have discussed the spectra of spin
waves and found some new global structures of energy
bands different from that of a transfer-phonon model as
well as an on-site electronic model of 10 quasicrystal sys-
tems. An expression for the integral density of states of
the spin waves is given. The study of wave functions in-
dicates that along the direction parallel to the atomic
planes (or interfaces) the wave functions are extended,
and in the direction perpendicular to the interfaces, in
addition to critical states characterizing mainly the wave
function, there can also exist some states which are ex-
tended in this direction. The numerical calculations car-
ried out by us for the magnetization and the magnetic
specific heat at low temperature exhibited the effect of
quasiperiodicity on them. It appears that the T law is
good enough at sufficiently low temperature.

er, becomes noticeable due to the effect of large gaps.
For higher temperature, Eq. (2.3) is no longer valid, we
will pursue the proper treatment for this case in our fur-
ther study.
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