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Comparison of calculations of dynamical screening at jellium surfaces
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We compare recent computations of dynamical screening at jellium surfaces. Both published re-

sults from different groups and new calculations are plotted in a common fashion to exhibit their ex-

tent of agreement about qualitative features and quantitative values. A physical picture for a
surface-driven Friedel oscillation in the induced density is presented. This particular oscillation is

especially strong near the resonance in the d parameter.

There has been a recent resurgence of interest in corn-
puting the screening response of metal surfaces to optical
fields. In this paper we compare the results found by
several groups, ' who claim to have reproduced and ex-
tended the pioneering calculations of Feibelman. ' We
believe that such a comparison is useful because each
group has formulated the computational task in different
ways. By plotting their separate results together, one can
readily see what features they have in common and get a
sense of the numerical uncertainties.

We discuss here only results for a jellium model whose
density in bulk is parametrized by r, =3. The basic quan-
tity of interest is the induced screening charge density 5p
at a single, flat surface in response to a uniform electric
field at frequency co, applied normal to the surface. We
restrict co to be less than co, the bulk plasma frequency.
Many of the physical consequences of this screening
response do not require the full 5p, but instead only the
ratio of its first to zeroth moment:

di(to)= f dx x 5p(x) f dx 5p(x) .

Here the integrations run along the coordinate normal to
the surface, x, and we have introduced Feibelman's d pa-
rameter notation for the ratio of the moments. ' ' ' '
The other d parameter for a jellium surface, d

~~,
has been

made to vanish by choosing the origin for x at the edge of
the jelliurn, which occupies the half-space x ~ 0.

We begin by showing in Fig. 1 results for both the real
and imaginary parts of di(co) as calculated in the
random-phase approximation (RPA). Four separate cal-
culations are illustrated, of which three are in reasonable
quantitative agreement where they overlap in frequency,
while the fourth has significant differences. The three
calculations that essentially agree are each done quite
difFerently. The method used by Kempa and Schaich is
largely developed in wave-vector space, while those used
by Feibelman ' or Liebsch are based in real space.

These latter two differ in their numerical treatment of the
long-ranged Friedel oscillations in 5p. Only Liebsch s
calculations give stable results over the whole range
0 a&co . Feibelman's points do not go below 0.6',
while the small absolute errors in the results of Kempa
and Schaich make their predictions for the imaginary
part of di(co) increasingly unreliable as co~0.

The fourth set of results shown in Fig. 1 is taken from
Ref. 2, and to be fair, does not quite correspond to the
same physical model numerically solved by the first three.
Specifically, they (i) treat a slab geometry of width 70 A
rather than a semi-infinite substrate, (ii) use infinite bar-
riers outside the slab in order to make the one-body
eigenstates for motion normal to the surface all have
discrete eigenvalues, and (iii) introduce a broadening in

energy denominators which amounts to Ace /20. The
first and third of these changes are the source of the no-
ticeable differences in Fig. 1. We return to this point
below, but note here that we confirmed our claim by set-
ting up a code analogous to that of Ref. 2 and varying the
extra constraints.

Almost the same general comments apply to the results
in Fig. 2, which show three separate calculations of di(co)
done in the time-dependent local-density approximation
(LDA). These evaluations include the effects of exchange
and correlation in the same (approximate) way for the
ground state and for the dynamic response. This exten-
sion of consistently treating exchange and correlation
represents the recent formal improvement over
Feibelman's random-phase-approximation (RPA) calcula-
tions. It makes the results merge with the static response
calculated by Lang and Kohn' and ensures that certain
sum rules will hold. ' The quantitative differences be-
tween the various calculations are somewhat larger than
in Fig. 1, which may in part be due to the fact that each
group used a different functional form for the exchange-
correlation energy. Gies and Gerhardts used the equa-
tions of Gross and Kohn, ' together with those of Vosko,
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Wilk, and Nusair. ' Liebsch used the Wigner interpola-
tion formula, ' and Kempa and Schaich use the parame-
trization of Hedin and Lundqvist.

We next discuss four different structures that are of in-
terest in the curves shown in Figs. 1 and 2. Begin with
the limit co~co, where, in the absence of any bulk damp-
ing, we expect the real part of d~, Re(d~ ), to diverge since
it becomes possible to excite a bulk plasmon, initially of
infinite wavelength. A rapid increase above 0.9coz is evi-
dent in the results of Liebsch or of Kempa and Schaich
but one does not have enough points to determine its
functional form. In simple hydrodynamic models' ' '

d~
grows as (co~

—co) ', which determines the plasmon's
penetration length. However, since any reasonable bulk
damping will cause both this length and dj to saturate,
the results of Gies and Gerhardts near co may be closer
to what one should expect experimentally.

A similar difficulty arises at the opposite extreme,
co~0, where the quantity of interest is the limiting slope
of the imaginary part of d~, Im(dj ). There is about a fac-
tor of 2 difference between the LDA slope predicted by
Liebsch and that by Gies and Gerhardts, and a similar
discrepancy exists for other choices of r, . We feel the
difference is not due to numerical errors in either calcula-
tion but instead is a consequence of distinct physical

models. As co~0 the discrete spectrum of states for nor-
mal motion used by Gies and Gerhardts would in the ab-
sence of damping lead to a discrete absorption spectrum
in response to a uniform field. One can suppress the re-
sulting spiky structure in Im(d~ ) by replacing co~cu+i y,
but this mathematical step also introduces new (bulk)
mechanisms of energy absorption which can either add to
or subtract from (in the sense of interference ) the con-
tributions already present. In the low-frequency limit
these changes are apparently significant. The clearest
evidence of the quantitative influence of y is in RPA cal-
culations for the infinite barrier model, where Im(d~) is

positive for N &Mp if yao, while one can prove that
Im(d~) must be negative over this range for any jellium
model with no bulk damping. The open question of
what precise value of y to use should wait at least until
the incorporation of band-structure effects into the
response calculations.

The next structure we briefly consider is, like the limit-
ing slope of Im(d~), also below the range of Feibelman's
original calculations. It is associated with the threshold
for photoemission, and appears as a slight dip in Re(d~ )

and a weak shoulder in Im(d~). When r, =3 the struc-
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FIG. 1. RPA calculations of d, in angstroms vs frequency
for r, =3. Both real and imaginary parts of d, are shown. The
solid curve is from Ref. 5, the dashed curve from Ref. 2, the +'s
are from Ref. 8, and the dots are new calculations from the code
of Ref. 6. The arrow on the abscissa locates the threshold for
photoemission.
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FIG. 2. LDA calculations of d, in angstroms vs frequency
for r, =3. Both real and imaginary parts of d, are shown. The
solid curve is from Ref. 5, the dashed curve from Ref. 4, and the
dots are new calculations from the code of Ref. 6. The arrow on
the abscissa locates the threshold for photoemission.
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ture is fairly weak and is not even obvious in the calcula-
tion by Gies and Gerhradts, being smeared out by y.
For smaller r, the threshold is a smaller fraction of co&

and the structure is more evident; ' while for larger r, it
disappears in the strong structure near 0.8' . Since the
rise in Imd~ starts below threshold it cannot be attributed
solely to photoemitted electrons, but must also have a
significant contribution from absorption into final states
that propagate into the bulk of the metal.

The last structure in d~ we discuss is the largest and
has provided a notable success in comparisons with ex-
periment. It consists of the sharp peak in Im(d~ ) for
co near 0.8', and the associated rapid switch of Re(dj )

from outside to inside the jellium edge. All of the calcu-
lations illustrated in Figs. 1 and 2 show evidence for this
structure, although those of Gies et al. ' have it
broadened somewhat more than one would expect from
the size of their bulk damping term, y=0. 05co . The
physical origin of this structure is still under debate.
Various interpretations have been suggested and we refer
the reader to the original calculations' as well as to
other papers ' and their references for further discus-
sion. Here we just note that the inclusion of exchange
and correlation at r, =3 in the dynamic response only
slightly shifts and sharpens the structure. Hence the ex-
istence of the structure can be usefully discussed at the
RPA level. On the other hand, the resonance at 0.8'
does depend very sensitively on the detailed profile of the
ground-state electron distribution at the surface. It is re-
markable that there is no evidence for the structure in
calculations at the same bulk r, for either the infinite bar-
rier model ' or a finite potential step barrier model. '

The final feature we discuss is also associated with the
0.8' structure, but is not apparent in Figs. 1 and 2. It
concerns the strength and frequency of the Friedel oscil-
lations of 5p. These become quite pronounced there as is
evident in plots ' of 5p versus x for various co. We show
in Fig. 3 the results at co=0.8' for r, =3. The oscilla-
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(x xo) /5
5p(x )-e

which implies for 5 &(L that
—( 5)/45p(q ) -cos(qxo )e

(2)

(3)

where Xo =xo+L.
From Fig. 3 we see that xo is roughly 8 A while 5 is

less than 2 A. The dependence of Eq. (3) is crudely evi-
dent in Fig. 4, but of greater interest are the deviations
from this simple behavior, since they give information on
the Friedel oscillations. In particular there is a rapid
variation in the transformed 5p for wave vectors just
above what we denote by q, . This critical wave vector
may be written as

A'q, = &2m V —&2m ( V —A'ro ), (4)

where V is the total height of the surface potential-energy
barrier. For V —EF (Ace( V with EF the Fermi energy,
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tion frequency is quite different from its static value of
2kF, where kF=1.21 A ' is the Fermi wave vector, and
the decay of the oscillation amplitude into the bulk is
very slow.

To examine the source of these oscillations in real
space, it is useful to study 5p in Fourier space, which for
some of the computer codes is where, in fact, it is origi-
nally determined. ' ' ' We show in Fig. 4 plots of
the cosine Fourier transform of the same 5p shown in
Fig. 3. The origin for the cosine transform is L =7.9 A
outside the jellium edge where 5p(x) is negligible. To
have a sense of what to expect from the main peak of the
reduced density, imagine that 5p(x) is a real-valued
Gaussian,
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FIG. 3. LDA calculation of the induced charge density vs
normal coordinate at co/co~ =0.8 for r, =3. The jellium lies in
x )0. The real (imaginary) part of 5p(x) is drawn with a solid
(dashed) line.

FIG. 4. Cosine Fourier transform of the induced charge den-
sity shown in Fig. 3. Both real and imaginary parts of 6p(q ) are
shown. Along the abscissa we note the location of the critical
wave vectors q, and q, .
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q, is a solution of

iri k'/(2m )+iris'=vari (k+q, ) /(2m )= V

subject to

0(/k/(k (6)
0

For the case shown in Fig. 3, q, =0.71k~=0.86 A

corresponding to a. wavelength of 7.3 A. The physical in-

terpretation of these equations is that A'q, (and Ace) are

the momentum (and energy) transferred to an electron
which jumps from an occupied orbital to an unoccupied
one at the vacuum level. The orbitals here are for motion
normal to the surface; the plane-wave character of the

eigenstate for motion parallel to the surface is unchanged

by the transition. There is a second positive solution of
Eqs. (5) and (6) which we write as

A'q, = &2m V + &2m ( V fico ) . — (7)
0

For the case of Fig. 3, q, =1.83k+=2.21 A '; but the

corresponding k is negative and there is only a slight jit-
ter in the transform near q, which does not significantly

affect the oscillations in real space.
The code of Ref. 6 is written to specifically allow for

possible singular structure at q, and q„as well as at other
wave vectors associated with the (bulk) Fermi sur-
face, ' ' e.g., the boundary points in q at fixed m of the
electron-hole pair continuum. For co near 0.8' the
strongest structure is associated with q, for reasons that
are not clear. Still it is interesting that the surface-
sensitive resonance in d~ and the amplitude of the
surface-driven Friedel oscillations are coupled. Perhaps
future analysis will be able to establish whether this
correlation is causal or accidental.
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