
PHYSICAL REVIEW B VOLUME 38, NUMBER 17 15 DECEMBER 1988-I

Calculation of the thermal expansion of metals using the embedded-atom method
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The linear coefticient of thermal expansion of the fcc metals Cu, Ag, Au, Ni, Pd, and Pt are corn-

puted using the semiempirical embedded-atom method to determine the energetics. The results are
in good agreement with experiment. The importance of including the equation of state in the deter-
mination of the empirical functions is discussed.

The calculation of the atomic structure of complicated
defects in metals requires a computationally efficient ap-
proximation for the total energy of the system. The re-
cently proposed embedded-atom method (EAM) due to
Daw and Baskes' is a semiempirical approach which fills
this need. It has been applied to date to a variety of
problems in pure metals and alloys. In particular, it has
been used to study phonon dispersion, liquid-metal struc-
ture, surface relaxations, ' and reconstructions, point
defects, dislocation motion and fracture of pure metals,
and has been applied to segregation of alloys at inter-
faces. ' A similar approach proposed by Finnis and Sin-
clair (FS) has been used by various workers' ' to study
defect properties in bcc metals.

The accuracy of the FS potentials has recently been
challenged due to the observation by Marchese, Jacucci,
and Flynn' that the thermal expansion of the metals pre-
dicted from these interactions is too small and in many
cases negative. The thermal expansion of the pure metals
provides a test of the anharmonicity of the interactions
since a truly harmonic crystal has no thermal expan-
sion. '

In this note the results of the calculation of the thermal
expansion of the fcc metals Cu, Ag, Au, Ni, Pd, and Pt
using the EAM will be presented. The results are in good
agreement with experiment. First, the EAM and FS in-
teractions will be briefly reviewed. Then the results of
the thermal expansion will be presented and compared
with experiment.

In the EAM the total energy of the system is given by
the sum of two contributions, the interaction of each
atom with the local electron density associated with the
remaining atoms of the system, called the embedding en-
ergy, and a pair interaction reflecting electrostatic in-
teractions between the atoms. In particular, the total en-
ergy is written

&„,=gF;(p, )+ —,
' g P„(R;, ) .

In this expression, F; is the embedding energy of atom i,
p, is the electron density at atom i, and P; (R, ) is the
pair interaction between atoms i and j separated by the
distance R, -. The electron density at each site is comput-
ed from the superposition of atomic electron density, i.e.,

p, = gp,'(R„) .

Here pj(R) is the atomic electron density at a distance R
from the nucleus of atom j. The embedding energies and
pair interactions are then determined empirically by
fitting to the sublimation energy, lattice constant, elastic
constants, vacancy formation energy, and the zero-
temperature equation of state of the pure metals. The re-
sulting functions are describe in detail in Ref. 4 and are
used here without further modification.

The FS interactions have a form similar to the EAM,
though the physical motivation behind this approach is
different. In the FS case, the energy of the d bands is
modeled by the square root of the bandwidth which is as-
sumed to be determined by the sum of the overlaps with
surrounding atoms. This bandwidth term is supplement-
ed by a pair interaction. In particular, the energy is writ-
ten as

EFs = —AQ gf (R, ) '~2+
—,
' g V(R, . ) .

The function f (R) represents the overlaps and V(R) is
the pair interaction. In practice, the constant A and the
function f and V are determined empirically to fit the lat-
tice constant, heat of sublimation, elastic constants, and
vacancy formation energies. The EAM and FS models of
the interatomic interactions are very similar in practice.
In both cases, the pair interaction is supplemented by a
term which is a function of a sum over surrounding
atoms.

The thermal expansion for the EAM interactions have
been computed in a quasiharmonic approximation. ' For
a given lattice constant and temperature, the free energy
is computed from the sum of two terms. The first is the
energy of the ideal lattice at that lattice constant comput-
ed using Eq. (l). The second term is the free energy asso-
ciated with the vibrational modes of the solid. The vibra-
tional density of states required to compute this free ener-

gy is determined at each lattice constant from the dynam-
ical matrix of the solid as described in Ref. 2. The op-
timum lattice constant for a given temperature is then
determined by minimizing the total free energy with
respect to the lattice constant. The coefficient of thermal
expansion at room temperature is then computed from
the temperature derivative of these lattice constants.
(The thermal expansion can also be computed from con-
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stant pressure Monte Carlo simulations. ' However, that
approach does not account for the quantum effects which
are important for temperatures less than or near the De-
bye temperature. '

) The results for the coefficient of
thermal expansion, evaluated at room temperature, are
presented in Table I along with experimental values. '

The agreement is good indicating that the average anhar-
monicity of the interactions in the EAM is reasonable.

The origin of the difference between the quality of the
computed thermal expansions for the EAM and for the
FS interactions may be associated with the details of the
empirical procedures used to determine the functions in
the two techniques rather than with intrinsic differences
between Eqs. (I) and (3). In the determination of the
EAM functions in Ref. 4, the total energy of the fcc lat-
tice under uniform compression and dilation was re-
quired to obey the universal equation of state proposed
by Rose et al. ' For the case of the FS potentials, the
functions were only required to fit the elastic constants,
in particular the bulk modulus. Therefore, no informa-
tion about the higher derivatives of the energy is included
in the fitting in the FS case. The universal equation of
state, though, provides a good description of the anhar-
monic contributions to the total energy for uniform dila-
tion. Thus this aspect of the anharmonicity is built into
the EAM functions discussed here. For the FS potentials
only the harmonic part of the energy is required to be
correct. It is worth noting that the EAM functions deter-
mined in the earlier work of Daw and Baskes for Ni and
Pd were also only fit to the elastic constants but not the

TABLE I. Comparison of the linear coefficient of thermal ex-

pansion at room temperature computed using the EAM and ex-
perimental values.

Element

Cu
Ag
Au
Ni
Pd
pt

a{EAM)
{10 K ')

16.4
21.1

12.9
14.1
10.9
7.8

a(expt)
(10-' K-')

16.7
19.2
14.1

12.7
11.5
8.95

full equation of state. Like the FS potentials, these func-
tions yield poor values for the thermal expansion; 4.0 and
7.6X10 K ' for Ni and Pd, respectively. This sug-
gests that the difference in the ability to predict the
thermal expansion is not due to the differences between
the energy expressions in Eqs. (I) and (3), but rather to
the amount of information about the equation of state of
the solid used in the determination of the functions.

In summary, the thermal expansion predicted by the
EAM using functions that reproduce the zero-
temperature equation of state of the solid is in good
agreement with experiment. The failure of the FS poten-
tials to describe the thermal expansion may be due to the
fact that these functions were not required to reproduce
the equation of state.
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