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In the orientational glass KBr:KCN, we provide a natural explanation for the plateau in the
thermal conductivity, which is a universal feature of all amorphous insulators. We show that the
angular oscillation modes of the CN ions have a sharply peaked density of states in the THz range.
These modes, in addition to contributing to the specific heat, resonantly scatter the thermal pho-
nons in the plateau region. We discuss the possibility of localization of phonons in a narrow band
due to this strong scattering. We speculate about the applicability of these ideas to structural
glasses.

I. INTRODUCTION

Crystals and glasses have very different thermal prop-
erties at low temperatures. ' Below 1 K, glassy materials
have a specific heat that grows linearly with the tempera-
ture T and a thermal conductivity A ~ T; these proper-
ties may be understood in terms of two-level systems
(TLS). Between 1 and 10 K, glasses have two other
"universal" properties which have thus far resisted a
convincing theoretical explanation. These are (1) a
temperature-independent thermal conductivity, often
called the "plateau, " and (2) an excess specific heat over
the Debye T contribution, best seen as a bump in C/T .

Recently, we have proposed a common explanation of
these two features in the orientational glass KBr:KCN, in
terms of harmonic excitations in the THz region. Subse-
quently, Grannan, Randeria, and Sethna (GRS) have ana-
lyzed a model glass consisting of randomly located
elastic-dipole defects interacting via their strain fields.
This has led to a quantitative understanding of the "inter-
mediate" temperature properties of KBr:KCN. Howev-
er, the GRS analysis requires an extensive numerical
simulation to determine the density of states of the defect
modes. In view of this, we consider it especially impor-
tant to have a simple intuitive picture of the physics un-
derlying the thermal conductivity plateau and the excess
specific heat. This is what we aim to provide in the
present paper.

There have been several recent suggestions linking the
plateau in the thermal conductivity with localization of
short-wavelength normal modes in amorphous materials
either due to strong scattering from structural disor-
der, ' or to the postulated fractal nature' of glasses. All
these approaches need to introduce a new characteristic
length scale which is roughly ten times the lattice spac-
ing. The fraction theory needs to assume that amorphous
materials are self-similar below this correlation length, an
assumption for which there is little direct evidence in

bulk glasses. Certainly no such length is plausible" in
KBr:KCN. The localization proposals require a match-
ing of length scales between the structural disorder and
the thermal phonon wavelength in the plateau region, as
shown below. We do not believe that there is any in-
dependent evidence for, say, density fluctuations, on such
a length scale.

In our model the strong scattering required for the pla-
teau is due to a matching of energy scales, rather than
that of length scales, i.e., resonance between the phonons
and additional vibrational excitations in a glass. Argu-
ments similar in spirit to ours, but considerably different
in detail, have recently been given by several authors'
who have postulated the "extra" modes without a micro-
scopic identification. There is also mounting experimen-
tal evidence for the existence of localized harmonic exci-
tations in glasses, in addition to the acoustic phonons,
primarily from the neutron-scattering work' of
Buchenau and collaborators on vitreous silica.

In this paper, we focus on the orientational glass
KBr:KCN, whose low-temperature properties' are indis-
tinguishable from those of structural glasses, but whose
structure is sufficiently well understood to enable us to
make a simple model and to estimate the parameters
needed in our theory. In this material we identify the
harmonic resonant modes as the small angular oscilla-
tions, or librations, of the individual CN molecules. In
the remainder of this paper we will first estimate the den-
sity of states for these excitations. After a brief review of
the known phonon-scattering mechanisms in glasses, we
discuss the resonant scattering of phonons from libra-
tions. We show that the thermal phonons in the THz fre-
quency region are so strongly scattered that they do not
contribute significantly to thermal transport. This, to-
gether with a temperature-independent scattering rate for
the low-frequency phonons, leads to a plateau in the
thermal conductivity. We also discuss the possibility of a
narrow band of localized phonons within our harmonic
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model. We conclude with some remarks on the applica-
bility of these ideas to "real" (i.e., structural) glasses.

II. LIBRATIONS: DENSITY OF STATES

0

Q
I

180

FIG. 1. Double-well potential for a cyanide, sketched as a
function of the libration coordinate 0. The barrier height is V,
the asymmetry is c, and 0 is the small oscillation frequency in
each well.

The glassy crystal (KBr)& „(KCN), , for x between 0.1

and 0.6, is known to freeze into an orientational glass
state at low temperatures with the cyanides frozen in ran-
dom orientations. We focus on the case x =0.5 which
has been studied experimentally in most detail. We shall
use data from the dielectric loss experiment of Birge
et al. ,

' to estimate the density of libration modes.
The local potential for a cyanide has a double-well

structure as a function of the angular displacement from
its frozen orientation (see Fig. 1). There are two local
minima 180' apart, which are more or less degenerate in
energy, to the extent that one may neglect' the weak
effects of electric-dipole interactions and crystal-field
effects relative to the elastic interactions between the
cyanides. The very wide log-normal dielectric-loss peak
in (KBr)o,(KCN)o ~ is thought to arise from individual
cyanides reorienting by 180 via thermal activation over a
range of barriers. A Gaussian distribution of barrier
heights, with a mean Vo=660 K, and a standard devia-
tion o. v=212 K provides an excellent fit" to the data,
and has also been subsequently obtained within a simple
mean-field theory. ' Given this distribution, only a very
small fraction of the cyanides have sufficiently small bar-
riers that they can reorient by 180' via quantum tunnel-
ing on experimental time scales. These have been
identified' as the tunneling centers, or TLS, in
KBr:KCN. In this paper, however, we shall use for sim-
plicity the standard TLS distributions, since our main in-
terest here is not the rare (few ppm) cyanides which are
tunneling, but rather the typical cyanides and how they
affect the intermediate temperature properties.

We will find that the parameters of the double-well po-
tentials are such that the majority of cyanides cannot
reorient by 180', on experimental time scales, either via

quantum tunneling or via thermal activation in the tem-
perature range of interest (T ~ 10 K). The only impor-
tant degree of freedom for these cyanides is then small
angular oscillations' about their frozen orientations.
Now, in the real material, the librational motion of
different cyanides would be coupled to each other and to
the phonons (see below). We make the simplest possible
assumption and model each cyanide as an independent
Einstein oscillator, ' with a distribution of frequencies to
be determined below.

We further make the simplest choice for the form of
the potential energy of a single cyanide molecule, namely,

Q=(2V/I„)' ", (2)

where I,ff is the effective moment of inertia of the libra-
tional oscillator. We expect I,ff to be of the same order of
magnitude as the moment of inertia of an isolated CN
embedded in a lattice. We shall, however, treat I,ff as our
only free parameter, lumping our ignorance of the real
normal modes into an "effective mass. "

A peaked distribution of barrier heights now directly
translates into a peaked density of states for the libration
modes p(iriQ). We approximate ' p(fiQ) by a Gaussian
with mean Qo = (2 Vo /I, a )', standard deviation
0 =a VQO/2VO, and normalized to the total density of
cyanides 7. 1 X 10 ' cm '. We have chosen
I,~=14.6X10 gcm, roughly 2—5 times larger than
the single-cyanide value, which gives a mean libration
frequency 00=3.5 X 10 rad/sec —30 K and
cr=5.6X10" rad/sec-4 K. This choice of I,ii (or
equivalently Qo) gives the thermal conductivity plateau
at the right temperature. We will discuss in the following
section the sensitivity of the plateau to the value of O,o.

A peaked density of states will surely make its presence
felt in the specific heat of the material. Note, however,
that these excitations exist in addition to the usual acous-
tic phonons. Given the rather soft elastic constants of
KBr:KCN, and correspondingly large Debye density of
states, the effect of the librations on the specific heat is
not dramatic. The bump in C/T in KBr:KCN is con-
siderably weaker than in structural glasses. As discussed
in detail in Ref. 6, the simple analysis presented here is
unable to fit the C/T' data quantitatively; while the
choice of 00 given above leads to a bump at the correct
temperature, its magnitude is too high. From the de-
tailed study of GRS, where the librational density of
states is obtained from a numerical simulation, it be-
comes clear that the C/T plots are highly sensitive to
the exact shape of the density of states. The GRS
analysis takes into account two important features: first,
the interaction between the cyanides and hence the col-
lective motion of the librations, and second, the
modification of the phonon density of states due to their
interaction with the librations. By numerically including

E(8)= Vsin 0,
where V is the barrier height and 8 is the angular
dispacement from its frozen orientation. The small oscil-
lation frequency 0, within each of the wells is then related
to the barrier height by
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these two features, GRS obtained quantitative agreement
with the experimental specific heat as well as the thermal
conductivity. In the simple model presented here, the
first effect is crudely modeled by an "effective" moment
of inertia for our independent Einstein oscillators, and
the second is ignored altogether. We shall find below
that the thermal conductivity plateau is rather insensi-
tive to details of the librational density of states, and is
essentially due to its peaked nature.

III. THERMAL TRANSPORT

k~x e

2n v (e"—1)
(4)

where x =%co/k~T. The total scattering rate r(co, T)
in (3) is approximated by Matthiesen's rule of adding the
rates due to independent scattering mechanisms.

We shall begin by briefly reviewing various known
phonon-scattering mechanisms in glasses and the regimes
in which they dominate, and emphasize their inability to
explain the plateau in the thermal conductivity. While
this inadequacy has been recognized (see, e.g. , Refs. 23
and 24) for a long time, there is still some controversy
about whether the plateau can be understood in terms of
the traditional scattering mechanisms.

For temperatures below 1 K, the dominant scattering
mechanism is resonant scattering' from TLS. Assuming
a broad distribution of TLS, with a constant density of
states P, this scattering rate is given by

We now turn to the calculation of the thermal conduc-
tivity A( T). We shall assume that acoustic phonons, with
a Debye density of states, are responsible for thermal
transport. The relaxation-time approximation to the
phonon Boltzmann equation gives

A(T) = J de C„„(co,T)v'r(to, T), (3)
0

with v the speed of sound and coD the Debye frequency.
C „ is the specific-heat contribution of the phonons given

by

Equation (6) is an interpolation formula between two re-
gimes: the first term represents the low-temperature
scattering rate where the TLS are relaxing slowly com-
pared with the incident phonon frequency, and the
second term dominates at high temperatures when the
TLS relax fast on the phonon time scale.

Finally, we consider Rayleigh scattering from density
fluctuations. While there may be some questions about
the validity of various estimates of Rayleigh scattering in
structural glasses, for KBr:KCN, at least, the microscop-
ic nature of the density fluctuations is clearly well under-
stood. Here the scattering is simply due to substitution-
al disorder in the anion sublattice, and is given by

rs„,(co) '=(r;„+I/Rto ) (8)

The Rayleigh term is

Rto =aoFto /4nv with F= g f;(AM;/M)

where hM, is the deviation from the average mass M in a
cell of "type" t occurring with probability f, , and ao is
the volume of the primitive cell. In (8) the Rayleigh cross
section is cut off at very short wavelengths by a minimum
phonon lifetime r;„- a/ovso that the mean free path
cannot become smaller than roughly a0.

For (KBr)o 5(KCN)o „we use' the density p=2. 2

g/cc, the Debye temperature 8D =135 K and the speed
of sound v =1.48 X 10 cm/sec. We also use the TLS pa-
rameter values given in DeYoreo et al. (Ref. 14), which
have been estimated from specific heat and ultrasound ex-
periments. For the TLS resonant interaction we obtain
A =4.8X10 [see Eq. (5)] and for the relaxational
scattering parameters [Eq. (7)] a =7X10 cgs units and
b = 3/2. Using a primitive cell volume a0 =72 A and
estimating F=0 08 [from E. q. (9)], the Rayleigh scatter-
ing rate is Rco =1.5X10 co sec '. We take the max-
imum scattering rate to be (r,„) '=3.7 X 10' sec

We can now compute the thermal conductivity using
(3) taking the total scattering rate to be

7„„'= 2 co tanh(A'co/2k& T), 2—:m y P lpv (5) '=r„„(co,T) '+r„,(to, T) '+r„„,(co) (10)

where

a =~ Py k~/8p fi v and b =A/2 . (7)

where y is the coupling of the strain field to TLS and p
the density of the material. As is well known, ' this
leads to a T temperature dependence of the thermal con-
ductivity at very low temperatures.

Relaxational scattering is another mechanism by
which the TLS can scatter phonons, and has been well
tested in ultrasound experiments when the resonant pro-
cesses are saturated by a large acoustic intensity. While
it is well known that this scattering is much too weak to
affect the low-temperature thermal conductivity, we shall
show below that there are circumstances under which it
plays an important role. An approximate expression for
the phonon lifetime due to the relaxation of TLS is

r„)-(aT ) '+(bto)

The result is compared with experiment in Fig. 2. Low
temperature ( T (1 K) resistance is determined by reso-
nant scattering from TLS, and at higher temperatures
Rayleigh scattering is dominant in this calculation; these
results are essentially unaffected by relaxational scatter-
ing. While the very-low-temperature T behavior is well
accounted for by the TLS model, the calculated thermal
conductivity in the plateau region is much too high.
Clearly, much more scattering is required for phonons in
the 1—10 K range.

As noted by a number of authors, if one increases, by
hand, the magnitude of the Rayleigh scattering term by 2
orders of magnitude, then that alone is sufficient to give
the plateau. This is, in fact, related to the postulated ex-
istence (see e.g. , Ref. 9) of a new "structural correlation
length" R0 in glasses, which is several times larger than
the microscopic length scale a0. If the density fluctua-
tions are on the scale of R0, then it is R0 that enters in
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FIG. 2. Thermal conductivity of (KBr)0,(KCN)o 5. Data are
from De Yoreo et al. (Ref. 14). The calculated curve includes
TLS resonant and relaxational scattering and Rayleigh scatter-
ing from density fluctuations (see text). Libration scattering is
not included.

IV. PHONON SCATTERING FROM I.IBRATIONS

We will now show that the resonant scattering of the
acoustic phonons from the libration modes leads to the
thermal conductivity plateau. Note that we are assuming
that the librations are localized and do not contribute to
thermal transport, rather they degrade the heat current
by scattering the phonons. Since the phonons and the li-
brations are both harmonic oscillators, the simplest cou-
pling between them is bilinear in their displacements,
namely,

Eq. (9), and one easily obtains a dramatic increase in the
Rayleigh scattering.

A related issue is the connection between the Ioffe-
Regel localization criterion and the length scale Ro.
Let k =su/v be the magnitude of the phonon wave vec-
tor. For very-long-wavelength phonons (kRO «1) we
have the Rayleigh cross section o -Ro(kRo) . The mean
free path is then given by 1 =(n;cr) ', where n, is the
density of impurities. But this means that the Ioffe-Regel
criterion, kl —1, can never be satisfied for kRO « 1, since
kl —[n, RO(kRO) ] '))1. Similarly, for very-short-
wavelength phonons (kRo &) 1) we are in the "geometri-
cal optics" limit with cr-Ro and kl-kRO/(n;Ro) &)1.
Thus the only phonons which can be strongly scattered
(kl = 1), and possibly localized, are those whose wave-
length matches the scale Ro of the density fluctuations,
so that kR0=1.

However, as stated in the Introduction, there is no in-
dependent evidence for such a length scale in glasses. In
any case, we have microscopic knowledge of the density
fluctuations in KBr:KCN and we do not find enhanced
scattering from density fluctuations a viable explanation
for the plateau in this material.

1 4nv' co'I'(co)
Co; 0

L 3 2 (g2 2)2+~21 2(~)
(12)

where L is the volume of the system. The width of the
resonance is determined by the broadening of the libra-
tion oscillator

I (cu)=Ahorse /4', pI,sv

We ignore here the shift in the resonance frequency from
the "bare" libration frequency resulting from the cou-
pling to the acoustic phonons. The bare frequency is un-
known in any case, so we write the result in terms of the
physical ("renormalized") 0 which has been determined
using an effective moment of inertia for the cyanides. It
is interesting to note that the scattering rate is tempera-
ture independent due to the harmonic nature of the libra-
tion mode.

The interacting phonon-libration system, although har-
monic, is random and thus has a finite thermal conduc-
tivity, since the phonon momentum is not a conserved
quantity in a system without translational invariance.
We assume, to begin with, that the scattering from
different libration oscillators is incoherent, so that a
Boltzmann equation approach is valid. (We discuss local-
ization effects below. ) The total scattering rate for a pho-
non mode of frequency co, from all of the libration modes,
is then given by the convolution of the density of libra-
tion states with the line shape for a given libration oscilla-
tor. We thus obtain

ri(co) '= f d (fiQ)p (fifl)ri(co;0)
L 3

3
(14)

The factor of —,
' arises because we have assumed above,

for simplicity, that a given libration mode couples only to
phonons of a single polarization. We thus avoid a com-
plicated average over polarizations of the phonon
modes.

The result of (14), using the Gaussian density of states
determined earlier, and a coupling constant A,O=1.0 eV
(which is the experimental value o for KBr:KCN, and
also characteristic of phonon-defect couplings in glasses),
gives the librational scattering plotted in Fig. 3. We find
that phonons in the THz frequency range are very

H;„,= g A, i,qi, &,
k

where qk is the displacement of the phonon mode with
wave vector k, and 0 is the angular displacement of a li-
bration mode. Further, kk-k, ok, in the long-wavelength
limit, where A.o is directly related to the (experimentally
measured) elastic dipole moment of the cyanide mole-
cule; thus (11) is the coupling of the phonon strain field to
the libration coordinate 8.

In the case of resonant scattering from TLS, the homo-
geneous broadening of the TLS distribution made it un-
necessary to compute the exact line shape; only the area
under the curve was relevant. Here we have a peaked
density of libration states and a more careful treatment is
required. The line shape for phonons of frequency co

scattering off a libration mode of frequency 0 is given
b 6, 31
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FIG. 3. Total phonon-scattering rate from librations for
(KBr)o,(KCN)o „plotted as a function of the phonon frequen-
cy.

V. THERMAL CONDUCTIVITY PLATEAU

We now wish to understand the physics of the process-
es that give rise to the plateau. For temperatures T &1
K, very low energy phonons transport heat. There are
essentially no libration modes at such low frequencies and
thus this regime is dominated, as in the usual TLS

-I
IO

strongly scattered as a result of their resonant interaction
with the librations. If we incorporate this scattering in

the thermal-conductivity calculation, in addition to the
three mechanisms discussed above, we find that we are
able to fit the data rather well; see Fig. 4.

description, by resonant scattering from TLS. The onset
of the plateau corresponds to the dramatic increase in the
libration density of states, and thus in the scattering of
phonons on resonance with these modes. In fact, thermal
phonons, i.e., those with Ace-k&T, are so strongly scat-
tered [cur-O(1)] that they transport essentially no heat.
It is then the low-frequency phonons, with Aco&&k~T,
which dominate thermal transport. Thus one can see
that the often used "dominant-phonon approximation, "
which amounts to replacing fico by kiiT, breaks down
completely in the plateau region; see also Ref. 23.
Different phonon modes act like parallel channels for
thermal transport, as is apparent from Eq. (3); when cer-
tain channels are blocked, due to strong scattering, it is
the others that carry the heat current.

Now it turns out that it is not resonant scattering by
the TLS which limits thermal transport by these low-
energy phonons. To see this most clearly, let us make
some simplifying assumptions to understand the onset of
the plateau (not worrying about temperatures above the
plateau regime, for the moment). Assume, for the sake of
argument, that phonons with energy greater than
fico, =k&8, are so strongly scattered by the librations
that their contribution to thermal transport is strictly
zero. This amounts to cutting off the thermal conductivi-
ty integral in Eq. (3) at a frequency co, roughly 2 orders of
magnitude smaller than the Debye frequency. Thus very
low-frequency phonons transport heat even for tempera-
tures T &1 K.

The resonant interaction of these low-frequency pho-
nons with the TLS becomes very weak for temperatures
much larger than the phonon frequency, or equivalently,
the TLS level splitting; see Eq. (5). Physically this arises
due to an equalization of the populations in the two lev-
els. We can estimate the effect of this weak resonant
scattering on the conductivity from

e/T 3 x
A(T)-T f dx coth(x/2)-T

0 (
~ 1)2
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FIG. 4. Thermal conductivity of (KBr)o &(KCN)o & calculated
with librational scattering, in addition to the TLS resonant and
relaxational contributions and the calculated Rayleigh scatter-
ing included in Fig. 2. The dashed curve is the same as in Fig.
2.

where, as usual, x =ArolkeT. This clearly shows the
need for an additional scattering mechanism for low-
frequency phonons, since even if the librations scatter the
dominant phonons as strongly as they possibly can, all we
get is a T to T crossover in the thermal conductivity in-
stead of a plateau, i.e., a T to constant crossover.

The scattering of the low-frequency phonons comes
from two sources: from the relaxation of the TLS and
from the wings of the resonance scattering from libra-
tions. For the TLS, the situation is similar to that in ul-
trasound experiments. When the resonant interaction
with TLS is suppressed —by the high temperature in our
case or by saturation in ultrasound experiments —the re-
laxation process dominates. As might be expected from
the previous discussion, it is only the high temperature
form of the relaxational scattering rate (6), namely,
~„I —b co, that is relevant. In addition, there is the
scattering from the low frequency tail of the libration
scattering r, (co) '. Denoting the sum of these two
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temperature-independent terms as ro(co) ', the thermal
conductivity is given by

/7 3 x

A(T) —T f dx ro(xksT/A) .
(e —1)'

(16)

To estimate the integral analytically, notice that for any
power law ro(co) '-co", the integral ' goes as T ' (in-

dependent of n), for temperatures T &&8, . Thus A goes
to a constant value independent of T, i.e., a plateau in the
thermal conductivity.

These arguments make it clear that the onset of the
plateau, i.e., the crossover from a T regime to one in
which the thermal conductivity is roughly independent of
temperature, is due to a combination of two effects: the
strong resonant scattering of the thermal phonons and a
temperature-independent scattering rate for the low-
frequency phonons which dominate transport.

The upper edge of the plateau corresponds to a cross-
over from a regime dominated by the librations to one
where Rayleigh scattering is becoming important. The
density of libration states decreases and along with it the
scattering from these modes, thus leading to an increase
in the thermal conductivity. For sufficiently high fre-
quencies, scattering off density Auctuations, with a cross
section that grows like the fourth power of frequency,
will dominate. While the very concept of a phonon in
this regime might be questionable, we do find qualitative
agreement with the data in that the thermal conductivity
increases above the plateau value.

Note that we disagree with Karpov and Parshin (Ref.
12) on the origin of the thermal conductivity increase
above the plateau. These authors suggest that resonant
scattering of low-frequency phonons by TLS, weakened
by kI, T»A~, limits thermal transport above the plateau
and A- T [see Eq. (15) above]. As we have shown above,
TLS relaxational scattering dominates under these cir-
cumstances, so that this linear temperature dependence
will not be seen, and, further, that Rayleigh scattering
dominates aboue the plateau.

Finally, it may be useful to comment on the sensitivity
of the calculated thermal conductivity on the choice of
parameters. The only parameter that we have chosen in
the analysis above is the effective moment of inertia for
the libration mode I,~, or equivalently, the frequency
scale Op=3. 5X10' rad/sec of the density of states. If,
for example, we had chosen the mean frequency in the
Gaussian density of libration states to be Ap = 8 X 10'
rad/sec, the value obtained from using the dielectric loss
data with the single CN moment of inertia, we do not
find a plateau. The thermal conductivity in that case
goes from a T regime (dominated by resonant scattering
from TLS) directly to a regime dominated by the Ray-
leigh scattering. Thus librational scattering must become
important at sufficiently low frequencies if it is to play
any role at all. At higher frequencies all mechanisms are
swamped by Rayleigh scattering with a cross section that
grows as cu . We note that in the GRS analysis there is
no fit parameter corresponding to Op, since the density of
states is obtained from a numerical simulation which uses
only experimentally measured quantities as input.

UI. PHONON LOCALIZATION

We have found that, near the peak in the libration den-
sity of states, the scattering rate r, '(cu) (Fig. 3) is so large
that the Ioff-Regel criterion [cur&-O(1)] is satisfied.
Traditionally, this is taken to be a signal for localization.
Our aim, in this section, is to study, within our model,
how phonon localization would affect the thermal con-
ductivity. Localization of phonons has been studied in
simpler cases. In our model there are, however, several
complications: the scattering is not off static disorder,
rather off a libration oscillator with internal degrees of
freedom, and anharmonic interactions between the pho-
nons could also affect localization. To the best of the au-
thors' knowledge no rigorous treatment of the full prob-
lem exists. However, since the thermal conductivity re-
sults will turn out to be insensitive to the details, and, in
fact, to the existence, of localization, a rather simple
analysis will suSce; see Ref. 6 for details.

The scattering of the phonons from the libration modes
is coherent; indeed, the coupled Hamiltonian is a quadra-
tic form, and our perturbative calculations below are sim-

ply estimates of the mobility edge for the true normal
modes of the system. (In principle, of course, we could
diagonalize the random harmonic phonon-libration Ham-
iltonian and determine whether the true normal modes
are extended or localized. ) We assume that anharmonic
effects are weak enough that they do not destroy localiza-
tion.

In localization theory it is customary to use the
diffusion coefficient which is related to the transport life-
time via D(co)= ~U 7(N) in the dc limit; it is precisely
this quantity that enters the thermal conductivity expres-
sion (3). Our earlier treatment of phonon scattering from
local libration modes is valid in the Boltzmann regime,
where co~ » 1. The renormalization of the diffusion
coefficient, due to weak localization corrections, can be
computed perturbatively in the parameter (kl)
—:(cur) . Using the self-consistent approximation of
Vollhardt and WolAe' we can study this renormalization
in the strong disorder regime. In keeping with the termi-
nology of the rest of this paper, we write the result for the
renormalized diffusion constant in terms of the corre-
sponding lifetime. We find that the self-consistent renor-
malized scattering rate is given by

r, (e)r„,„(~) '= (17)
1 [cx/cd i(Qrp)]

where o'. is a dimensionless constant of order unity, which
determines the precise location of the mobility edges.
Since our results are rather insensitive to this choice, we
have (somewhat arbitrarily) chosen a =1.

Given the peaked shape of the "bare" scattering rate
off librations, we find (see Fig. 5) two mobility edges, one
on either side of the maximum in ~l (co ) ', where
cur&(cu) =1. At each of the mobility edges, the renormal-
ized scattering rate diverges, or the corresponding
diffusion coefficient vanishes, i.e., the mobility edges en-
close a rather narrow band of localized phonons.

Inclusion of the renormalized scattering rate (17),
which explicitly takes into account phonon localization,
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FIG. 5. Scattering rate from librations. The "bare" rate (of
Fig. 3) obtained from lowest-order perturbation theory is given

by the dashed curve. The renormalized rate incorporating the
effects of phonon localization is given by the solid curve. The
two mobility edges are marked by the divergence of the renor-
malized rate and correspond to the intersection of the bare rate
with the ~ '=co line. The phonons are localized in the interval
enclosed by the two mobility edges.

in the thermal conductivity calculation does not substan-
tially change the agreement with the data. Since the bare
scattering rate itself was so large in the localized region,
any further enhancement of this rate due to multiple
scattering has no effect on the conductivity. In other
words, what seems to matter, for thermal transport, is the
very large amount of scattering that the libration modes
provide, rather than the narrow band of localized pho-
nons they give rise to. It should be emphasized that pho-
non localization is not the cause of the plateau and it is
quite possible that in some glasses which show a plateau
in A, there is no true localization, only strong resonant
scattering.

It is clear from the above considerations that thermal
conductivity measurements are not, at least for
KBr:KCN and probably for all glasses, a very useful way
to probe phonon localization. This is in marked contrast
to the electronic localization problem. The reason for
this is simply that heat is carried by a broad Planck dis-

tribution of phonons as opposed to electrical transport by
"monochromatic" electrons at the Fermi energy. How-
ever, monochromatic phonon propagation experiments in
the plateau region in glasses, if feasible, could be used to
study phonon localization.

VII. CONCLUSIONS

In conclusion, we have given a detailed analysis of the
thermal conductivity plateau (a universal glassy property)
in the orientational glass KBr:KCN in terms of the CN
libration modes. If this is to be an universal explanation,
then what are the corresponding resonant modes in
structural glasses? It is tempting to suggest that they are
the small oscillation modes of the tunneling center double
well, i.e., the "other levels" of the two level systems.
Naively, this would seem unlikely; in typical glasses at 1

K there is only one active TLS per million atoms, while
roughly one local mode per atom is seen. However, in
KBr:KCN the TLS's have been explained' as the tail of
a distribution of double-well CN potentials: the
cyanide orientations are the common origin of the TLS
and the local modes. Of course, this is not direct evi-
dence for a common origin in general, since the cyanide
orientations are the only glassy degrees of freedom in
KBr:KCN.

We have recently used our model of interacting de-
fects as a phenomenological model to study thermal
transport in structural glasses and have obtained en-
couraging results for vitreous silica. These results will be
published separately.
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