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Hot-electron transport through thin dielectric films: Boltzmann theory and electron spectroscopy
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The transport problem of hot quasifree electrons through thin planar dielectric films of thickness
d is considered by solving the steady-state Boltzmann equation for the electron current density

J(E,p, x), 0 x d, within the film. The current density of injected electrons at x =0, J"(E,p),
evolves to J(E,p, d), the current density of electrons escaping the layer at x =d, which is calculated.
In our approach, electron transport is assumed to be controlled simultaneously by energy-dependent
elastic and inelastic scattering with scattering rates y "(E) and y'""(E), respectively. For inelastic
scattering, one single inelastic scattering process with energy loss AE is assumed. With this assump-

tion, the Boltzmann equation transforms into a set of coupled integro-differential equations which
describe the cascading down of hot electrons in discrete energy steps bE during solid-state trans-

port. The resulting cascade problem is then solved analytically in the two-Aux approximation. The
transport of zero-energy-loss electrons in the topmost energy interval AE at the maximum energy
Eo is considered separately. In this interval, no in-scattering from higher energies occurs and the
Boltzmann equation for J(Eo,p, x) becomes energy decoupled. An exact formal solution of the
zero-energy-loss transport problem is presented and exact and approximate results for the two limit-

ing cases of pure elastic and pure inelastic scattering are compared. Our theoretical results are then

applied to typical electron transmission experiments such as internal photoemission for transport
analysis (IPTA), low-energy electron transmission (LEET), and x-ray photoelectron spectroscopy
(XPS) in the substrate-overlayer configuration. It is shown that energy-dependent elastic and inelas-

tic scattering rates in wide-band-gap insulators can be extracted from IPTA and LEET experiments
with our theoretical analysis. Using these results, the experimentally determined J(E,p, d) can be
reconstructed. Our analysis also allows for a rigorous definition of XPS escape lengths in terms of
scattering rates.

I. INTRODUCTION

The determination of electron scattering rates (or
lengths) is a crucial problem in solid-state transport of
nonthermalized carriers. In particular, hot-electron
transport in wide-band-gap semiconductors and insula-
tors has attracted much attention in the last few
years. ' " Energy-dependent scattering rates can be cal-
culated, ' ' but a full theoretical description of all
relevant scattering processes and of their energy depen-
dence is extremely involved and often not necessary for
the evaluation of application-relevant quantities. In the
case of Si02, such calculations lead to quite controversial
results for the scattering rates. ' In many materials of
technological importance such as organic polymers, reli-
able calculations are at present not feasible at all.

Instead, hot-electron transport can frequently and con-
veniently be described with energy-dependent overall
elastic and inelastic scattering rates per unit length,
y"(E) and y'"'(E). For example, in Si02 it is well estab-
lished now that considerable carrier heating occurs under
high-field conditions in the MV/cm range. Electrons
can reach a steady-state distribution with a mean kinetic
energy as high as 3—6 eV without imminent destruction
of the insulator. Such a behavior can be explained if the
energy dependence of inelastic (LO-phonon) scattering
and quasielastic (acoustic-phonon) scattering of hot elec-
trons up to kinetic energies of several eV are properly in-
cluded in the description of high-field transport. '

Another problem of interest is dielectric breakdown in
wide-band-gap insulators. Recently this phenomenon has
been successfully explained in terms of the avalanche
breakdown model in solids. ' Within this concept the
crucial material specific parameters required for the pre-
diction of hot-electron energy distributions, electron mul-
tiplication rates, and breakdown fields are again the
energy-dependent elastic and inelastic scattering rates of
hot electrons up to the ionization threshold.

A direct experimental determination of energy-
dependent scattering rates in wide-band-gap insulators is
obviously of considerable importance and electron spec-
troscopy in the so-called substrate-overlayer configura-
tion is extremely suitable for this purpose. ' In electron
spectroscopic techniques developed to probe surfaces of
solids, the excited electrons are subjected to solid-state
transport from the excitation site in the subsurface region
before vacuum emission takes place and electron-energy
distribution curves (EDC's) can be measured. In most
cases, the scattering during solid-state transport is not of
interest for the spectroscopists and merely complicates
the interpretation of the recorded EDC's; inelastic
scattering leads to loss peaks and considerable back-
ground intensities, whereas elastic scattering involving a
change in particle momentum might complicate the in-
terpretation of angle-resolved studies. ' On the other
hand, it is evident that these experiments contain useful
information on solid-state transport of energetic electrons
in the material under investigation. In order to extract
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y"(E) and y'""(E) from electron spectroscopic experi-
ments in the substrate-overlayer configuration, an ade-
quate theoretical treatment of hot-electron transport in
the conduction band of thin planar insulating films is
necessary. The interpretation of the quantities which are
directly obtained from the experiments (damping length,
escape depth, information depth) in terms of scattering
parameters (elastic and inelastic scattering rates) is not
well established yet. At high energies in the keV range
an important step towards a more profound interpreta-
tion of escape depths was performed by Tougaard, Sig-
mund, and Tofterup. " These authors showed that it is
not justified in general to interpret the measured escape
depth as an inelastic mean free path due to plasmon exci-
tation. For insulators at energies below the band-gap en-

ergy (typically 10 eV), where electronic excitations are
impossible and electronic transport is predominantly con-
trolled by hot electron-phonon interaction, very little is
known, both theoretically and experimentally.

The main objective of this work is to give a general
description of the hot-electron transport in the conduc-
tion band of thin insulating films in terms of the (energy-
dependent) elastic and inelastic scattering rates. For this
purpose, we will solve the corresponding Boltzmann
equation by various methods, then evaluate and compare
some of our exact and approximate results for special
cases. In order to obtain an analytically tractable model,
we choose a fairly simple scattering probability function
based on energy-dependent quasielastic scattering and
energy-dependent inelastic scattering with one dominant,
well-defined energy loss per inelastic scattering event. In
the second part of the paper, we will apply our theoreti-
cal results to substrate-overlayer experiments in typical
large-band-gap insulators such as saturated long-chain
hydrocarbons14-16 and rare-gas solids 16-18 We do not
give a detailed discussion of these recent experimental re-
sults but we intend to demonstrate the applicability of
our analysis for real cases. It will be shown that our sim-
ple scattering probability function is a good description
for the microscopic scattering processes in insulators at
low energies where electron transport is controlled by
electron-phonon interaction. The formalism will be used
to extract energy-dependent elastic and inelastic scatter-
ing rates from the experimental data. Furthermore, it
will be shown that the energy relaxation of hot carriers
can easily be calculated within our formalism if the
scattering rates are known. Finally, we will shortly com-
ment on the interpretation of information depths extract-
ed from x-ray photoelectron spectroscopic experiments.

II. THEORETICAL ANALYSIS

A. General description

Consider the incoherent transport of hot, quasifree
electrons through a thin planar dielectric film of thick-
ness d, let E =

—,'m *U denote an electron's kinetic energy
and p =cose the cosine of the angle between its propaga-
tion direction and the positive x direction (Fig. 1). The
current density of injected electrons at x =0, I"(E,p),
then evolves to I(E,p, d), the current density of electrons
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FIG. 1. Experimental geometry of substrate-overlayer experi-
ment.

,
' f d—p'f dE'[ W(p'~p, E'~E)I (E',p', x)

—P'(p~p', E~E')I(E,p, x)]

+J"'(E,p)5(x —0 )

g (p~p', E~E') denotes the scattering proba-
bility function and where J"(E,p) =pI"(E,p) is the in-

jected current density per unit surface area. If we assume
that an electron cannot reenter once it has left the dielec-
tric layer (either at x =0 or at x =d), the appropriate
boundary conditions are

I(E,p, 0)=0, p) 0

I(E,p, d)=0, p, &0 .

(2a)

(2b)

Equations of the type of Eq. (1) have been investigated
in various contexts, e.g., in connection with radiation
transfer' nonequilibrium electron distributions, '

and electron-energy-loss experiments. "' ' In or-
der to obtain an analytically tractable model for the
specific problem considered, most investigators have in-
troduced a number of simplifying assumptions and ap-
proximations.

In our calculations we shall assume that the scattering
processes are isotropic, and we shall further restrict our-
selves to the case of a single inelastic scattering process
with energy loss hE. The scattering probability function
then becomes

escaping the layer at x =d. Our aim is to express
I(E,p, d) as a function of I"(E,p) and of the scattering
processes within the dielectric. To this end we consider
the steady-state Boltzmann equation for the electron
current density I (E,p, x), 0 ~ x ~ d, which in the absence
of an external field becomes
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W(p~p', E~E')=y"(E)5(E'—E)
p

+y'""(E)5(E' E—+b E), (3)

where y"(E) and y'""(E), respectively, denote the
energy-dependent (quasi)elastic and inelastic scattering
rates per unit length. The energy-loss processes occur in
a discrete cascade,

E, =E,—k AE, k =O, l, 2, . . . ,

where Eo is the topmost energy of the hot electrons un-

der consideration and k describes the number of energy-
loss events. In Eq. (3), a term describing energy-gain
events of the electrons is neglected, i.e., we assume low
temperatures (k2l T « b,E). With the abbreviations

yel yel(E ) yinel yinel(E

I(, (p, x) =I(Ep,p)x), Ji, '(p) =J'"(E(,,p),

+Jo"(p)5(x —0+) . (10)

T(oo fftdx -approximation

We first discuss a simple and widely used' ' '

approximation method, originally introduced by Schus-
ter and Schwarzschild. In this so-called "two-Aux ap-
proximation" the angular dependence of the electronic
Aux is approximated by only distinguishing between a
forward and a backward fiux. For Io(p, x) we therefore
write

Io+(x), 0&p&1 (1 la)

Analytical expressions for Jo(d) and Jo(p, d) can now be
obtained by different methods.

Eq. (1) is then transformed into the following set of cou-
pled integro-differential equations:

I(l (x), —1&p&0 (1 lb)

()Ik (p, x)
(yl—'+y7")I (p, x)

+y'k' ,
' 1 d O' I—l,(p', x)

+pk i~ dp Ik i p, x

+Jl, '(p)5(x —0 ), k =0, 1, . . . , (5)

and integrate Eq. (10) over the appropriate p regions. In-
dependently of the angular distribution of the injected
electrons this leads to the following two coupled linear
differential equations,

dI =y "(I0 I0+ )
—2y—'""Io+ +4Jo'5(x —0+ ), (12a)

with I l (p, x)—:0, and with boundary conditions

Ik(p, 0)=0, p & 0

Ik(p, d) =0) p &0 . (6b) I(l (0)=I(l (d)=0 .

dID —yel(I — I+ )+2 melI—
X

and the boundary conditions are given by6a)

(12b)

(13)

The injection of electrons, finally, is assumed to be homo-
geneous over the surface x =0 and either isotropic or
perpendicular to the film, so that

Jk"e(p) for isotropic injection
J(l)( )— (7)

Ji,"5(p —1) for perpendicular injection

These equations are easily solved by standard tech-
niques, and for the current density of escaping electrons
in the elastic channel (topmost energy interval) we finally

obtain

eff

J(l(d) =J(l', (14)
I 0+exp(2yo d) —I 0 exp( —2yo d)

where e(p) denotes the Heaviside unit step function.
The quantities to determine are

Jk(p, d)=pIk(p d) p&0 (8)

where

I;+=y"+2@'""+ay"

and

(15)

the current density per unit surface area of particles of
energy E& that escape the layer under a direction cosine

p, and

Jk(d)= J dp Jk(p, d),

the total current density per unit surface area of particles
of energy Ez escaping the layer.

eff [ inel( inel+ yel)]1/2 (16)

The physical significance of the effective scattering rate

yo will be discussed in Sec. III. We already point out,
however, that we do not in general obtain a simple ex-
ponential decay for J„(d).In the limits of very thin and
very thick films we have

B. Analysis of the zero-energy-loss electrons

In the topmost energy interval, i.e., at E =ED, no in-

scattering from higher energies occurs [I l(p, x)—=0].
The Boltzmann equation for Io(p, x), Eq. (5) with k =0,
is accordingly simplified and becomes energy decoupled:

d «1/p ff

J (d) 1+(yo +2] (l )d

J ( $ ) 4y eff

exp( —2yo d), d »1/yo
0

(17a)

(17b)
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and for two limiting cases y0""=0 and y0'=0, respective-

ly, the two-flux approximation yields

where Po(x) is determined by the integral equation

)t)o(x) =E, ((yo'+ yo"")x )e(x —0+ )

and

J (d)=J' 1 (yine) 0)'1+ "dy0
(18) el

+ dx' 0
x' E& yo+yo x x', 24

Jo(d) =Joi'exp( —2yo""d) (yo'=0) . (19) and where E„(z)denotes the exponential integral

Jo()Lt, d) =2)MJG(d) . (20)

We shall see below that the two-flux approximation
predicts the behavior of Jo(d) rather well. The factor of
2 in Eq. (19) arises from the integration over )Lt and is ab-
sent in an angular-resolved detection (see discussion in
Sec. III C). The angular dependence of the escaping elec-
trons, however, is only very crudely represented by the
simple two-flux result

E„(z)=f dt'
„

(2&)

Our transport problem is now reduced to the solution
of the integral equation for Po(x), Eq. (24). In the case
yo'=0 (inelastic scattering only), this is of course not
necessary, and Eqs. (22) and (23) immediately reduce to
the exact results

Finally, we remark that the two-flux approximation
can easily be extended to the case of anisotropic scatter-
ing probabilities. and

Jo(p, d) =Jo"exp( —yo""d/)Lt) (26a)

as the inhomogeneous part of an ordinary linear differ-
ential equation. ' ' With the definition

1

Po(x) —= ,' f d—p'Io(p',x), (21)

the formal integration of this differential equation then,
in the case of isotropic injection, leads to

Jo(p, d)
J(i) =exp

0

y +y'"0 0

JM

el+ inel

+ ,'yo f —dx Po(x)exp — (d —x)

2. Method offormal integration

An exact formal solution of the transport equation (10)
is obtained by considering

dp'I p' x +J" p x —0+

Jo(")=Jo' E2(yo ' d) (26b)

Except for an asymptotic expansion in the limit of very
thin films, however, the integral equation (24) cannot be
solved analytically if yo'&0. A numerical method'to
solve Eq. (24) has been proposed by Schneider. 3 In his

direct approach, Po(x) and E, (z) are expanded in terms
of appropriate Fourier series, and Eq. (24) then leads to a
system of linear equations for the unknown Fourier
coefficients of ))I)o(x). The accuracy of the corresponding
approximation for i)I)o(x) therefore only depends on the

number of Fourier coefficients that are taken into ac-
count.

An approximate analytical solution of the integral
equation (24) can be obtained by approximating E, (z) in

terms of exponential functions. A frequently used substi-
tution is

and
(22) E, (z ) =2 exp( —2z)

which transforms Eq. (24) into

(27)

JG(d) =E,((y +y,'"")d)

el

+ f dx it)o(x)E2((yo'+yo"")(d —x)),
2 0

i)I)o(x) =2 exp[ —2(yo'+ yo"")x]

+y,"f de (ox') exp[ 2(yo)+—yo"")~x —x'~] .

(28)

(23) Equation (28) is easily solved and leads to

I

(yo'+ I o )exp[2yo (d —x)]—(yo'+ I o )exp[ —2yo (d —x)]
I o+exp(2yo d) —I o exp( —2yo d)

(29)

with I o and yo as defined in Eqs. (15) and (16). The cor-
responding analytical approximations to Jo()tt, d) and
Jo(d) are then obtained by inserting Eq. (29) into Eqs.
(22) and (23), respectively. As the resulting expressions
become rather lengthy, we shall present them explicitly
only for the limiting case yo"'=0 for which they reduce

to

J(i)
Jo(p, d)=, [)M( 1+2)Lt)+(1—2p)(1+)Lt+yo'd)

y0

Xexp( —yo'dip)] (30a)
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and J(i)
JG(d)=, [—,'+(1+yo'd)Ep(yll'd)1+y(,'d —(1+2y~'d)E, (yo'd) —2E4(yo'd)] .

(30b)

If E2(z) in Eq. (23) is approximated by exp( —2z),
which is consistent with Eq. (27), then Eqs. (23) and (29)
lead to the same expression for Jo(d) as the two-flux ap-
proximation, Eq. (14). We note, however, that for
different angular distributions of the injected electrons
the method of formal integration yields different expres-
sions for Jo(d) and Jo(p, d), in contrast to the two-flux
approximation.

3. Numerica! evaluation of exact and approximate results

In the following, we evaluate and compare some of our
exact and approximate results for the two limiting cases
yo'=0 and yo""=0. In the case yo""=0 we shall also
compare our results with Monte Carlo simulations. The
quantities we shall consider are the angularly resolved
current density, Jo(p, d), the total current density, Jo(d),
and the average direction cosine,

ppJO p,
(iM),(d) = (31)

J dP Jll(P, d)

of the escaping electrons in the topmost interval k =0.
The quantities Jo(d) and (p)o(d) are plotted in Figs. 2

and 3 versus the normalized film thickness y~'d for purely
elastic scattering (yll""=0). Figures 4 and 5 show the an-

gle dependence of Jo(p, ,d) for yo =0 and yo""=0, respec-

4.0!
JG(d)

g(t)
0

0.6

0.4

.8
(p &o

0.7

0.6

0.5'-

yet p0

FIG. 3. Average direction cosine of the escaping electrons vs
normalized film thickness. Case yo""=0 (pure elastic scatter-
ing). Comparison of two-Aux approximation ( ———) and for-
mal integration method (approximate evaluation, ) with
Monte Carlo simulations (O ).

tively. The simple two-flux approximation leads to
reasonably accurate results for the total current density
Jo(d) of escaping electrons in both limiting cases, yo""=0
(Fig. 2) and yo'=0 [where the exact result E2(yll""d) is
approximated by exp( —2yo""d). It has the advantage
that it can easily be generalized to more complex situa-
tions. The angle dependences, however, are only crudely
represented by the two-flux approximation, and only if
the thickness of the layer is not too small. The approxi-
mate evaluation of the formal integration method, on the
other hand, leads to a surprisingly accurate description of
Jo(d) as well as of the corresponding angle distributions.

So far we have restricted our analysis to the fastest
electrons in the topmost (k =0) energy interval which
does not receive any intensity contribution from electrons
down scattered out of higher-energy channels. In the fol-
lowing, we now also consider the electron current densi-
ties Jk(d) in lower-energy channels (k =1,2, . . . ).

C. Cascade calculations
We return to our general cascade problem defined by

Eqs. (5)—(7), and restrict ourselves to the two-flux ap-
proxirnation. This leads to a set of recursively coupled
pairs of linear differential equations,

dI,+
yel(I — I+ ) 2yinelI++ inel (I+

X

0.2
+4J "5(x —0+ ), (32a)

dI~
=yk(Ik Iq+ )+2y'l,"."Ik ——y'i,"',(Ik+, +Ik, ),

8x

'0 2

yeL d0

FIG. 2. Damping of the total current density Jo as a function
of normalized film thickness. Case yo"'=0 (pure elastic scatter-
ing). Comparison of two-flux approximation (

———) and for-
mal integration method (exact numerical, and approxi-
mate —- —- —evaluation) with Monte Carlo simulations ( o ).

with boundary conditions

Ii,+(0)=Ik (d) =0 . (33)
A similar set of equations, with energy-independent

(k-independent) scattering rates, has recently been solved
by Mahan. In our problem, the inelastic cascades down
the energy axis can be calculated for arbitrary y&' and
y'k"". The cascade starts at k =0 (with I:l——0), i.e., in
the topmost energy interval analyzed in the previous sub-
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Jo(p. , d)
(&)

l3 p

1.0-

Jo(p, d)
(&)Jo

1.Q

0.5 0.5

0
0.5

FIG. 4. Angle-resolved current density as a function of
p=cosL9 for various film thicknesses. Case yp'=0 (inelastic
scattering only). Comparison of two-flux approximation
( ———) with the exact result, Eq. (26a) ( ).

section. The bottom of the cascade (k =E) is reached
when the electrons have been scattered inelastically until
their kinetic energy Ez is lower than the characteristic
energy loss b,E (so that yx"=0). To solve Eqs. (32) and
(33), we introduce the quantities

F„(x)= —,'[I„+(x)+I„(x)]
for which we obtain the recursion

and

yeff [yinel(yinel+
yel )]i/2 (35e)

Because of Ik (d)= 0, the elec-tron current densities Jk(d)
in the different channels are then simply given by

Jk(d) = 4Iq+(d)=Fk(d) . (36)

i Q.5 iu. Q

FIG. 5. Same as Fig. 4. Case yo""=0 (pure elastic scatter-
ing). Comparison of two-flux approximation (

———) and for-
mal integration method (approximate evaluation, exact
asymptotic expansion ———.) with Monte Carlo simulations
(o and histogram).

Fk(x)= Qi, (d —x)Jk"
Si,.(d)

+rk ) PRk xP Fk
0

where

Sk(x) = I „+exp(2y'„x)—I k exp( —2y'kffx ),
Qk (x) =Sk (x )+2yk'sinh(2y'k x ),

eff

~k(»y) =, [ I'k exp[2y'k'(d —~x —
yl )]

Yk

+ I „exp[—2y'„(d—~x —
y~ )]

—2y'k'cosh[2yek (d —x —y)] ),
~k —=r"+2r'""+2r"

(34)

(35a)

(35b)

(35c)

(35d)

For k =0 [with F,(x)—:0], Eqs. (34) and (36) reduce
to the explicit expression of Eq. (14) for Jo(d). At least
numerically, we can then successively generate the entire
cascade, J, (d), Jz(d), . . . , Jz(d), from Eqs. (34) and (36).
A corresponding calculation with realistic scattering
rates is presented in Sec. III.

Here we consider a simple, analytically solvable exam-

ple, namely, the case of negligible elastic scattering
(yk'=0), energy-independent inelastic scattering (y'k"'
=y ), and monochromatic electron injection ( J&'
=JO5&o). In this case, the generating function for the

Fk(x),

4(t, x)= g t"F„(x),
k=0

can be determined explicitly:

(1+s, )exp[2ys, (d —x)]—(1—s, )exp[ —2ys, (d —x)]
4(t,x) =2Jo

(1+s, ) exp[2ys, (d —x)]—(1—s, )2exp[ —2ys, (d —x))
(37)

where

s, —=Vl t—(3g) so that

1 a"e(t,x)
gtk t=0

(39)

Fk(x) is then given by

J (d)
1 8 4(t, d)

(40)
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yd =1.0

yd =1.5

III. ANALYSIS OF EXPERIMENTS

In the following we will present typical experiments to
which the theoretical results of Sec. II can be directly ap-
plied. As we shall see, the correct interpretation of the
scattering probability function defined by Eq. (3) in terms
of microscopic scattering processes in the energy range of
interest is the key issue for a physical understanding of
experimentally measured quantities such as the damping
length or the escape depth. %'e will also emphasize some
implications of the actual experimental boundary condi-
tions as well as of given experimental limitations such as
energy resolution or detection conditions on the applica-
bility of our theoretical results.

yd = 2.0

A. The internal photoemission
for transport analysis (IPTA) experiment

1. General description

yd = 2.5

8 6 4 2 0

The general situation sketched in Fig. 1 can be practi-
cally realized by internal photoemission. The principle of
IPTA is shown schematically in the lower part of Fig. 7.
The experiment is based on low-energy electron transmis-
sion through insulating films of various thicknesses. A
broad energy distribution J'(E) of a width

a=%co„»«„(E,EF—) is p—hotoinjected at the metal-
dielectric interface and the energy distribution J(E,d) of
vacuum emitted electrons is measured after solid-state
transport. Here, E, denotes the conduction-band edge of
the insulator, and EF is the Fermi energy of the metal. It
is important to keep in mind that the injected distribution
has a sharp cutoff at the maximum kinetic energy

FIG. 6. Emission spectra for monochromatic electron injec-
tion at E =Eo, negligible elastic scattering ( yk' =0), and
energy-independent inelastic scattering (y'I,""=y), calculated
from the cascade recursion for various normalized film

thicknesses.

LEET
I

Jpe I.ast ic

inelastic

Jp

F ginji

—~E --Ep

(41)

Equation (40) is valid for k =0, 1, . . . , K —l. At the bot-
tom of the cascade (k =K), where y'"" vanishes, we have

d
Js.(d)=y f dx FK )(x),

0
v (E)

Ec J(E,d)

Ep

where F~, ( )ixs determined by Eqs. (39) and (37).
Corresponding emission spectra, i.e, Jl, (d) versus k

plots, are shown in Fig. 6 for different values of the nor-
malized film thickness yd. To generate these plots, the
expressions for Fk(x) and Jk(d), Eqs. (39) and (40), re-
spectively, have been evaluated with MACSYMA.

The foregoing calculations have been restricted to the
case of a single energy-loss channel. If several inelastic
events contribute, we may assume that they do not inter-
fere and that a superposition of the different cascades will
be observed. In particular for the case of a mono-
chromatic injection of electrons the corresponding exten-
sions of our calculations are straightforward. In this con-
nection we note that an alternative way to include any
number of inelastic events, the Fourier-transformation
method of Michaud and Sanche, can only be applied if
the scattering rates are energy independent.

METAL

~FFFFFFFFFFFFFFFz

INSUL ATOR VACUUM

FIG. 7. Schematic comparison of the low-energy electron
transmision (LEET) experiment with the method of internal
photoemission for transport analysis (IPTA) in an energy-level

diagram. In LEET, electrons are injected from vacuum with an
electron gun and the transmitted current is collected from the
metal to ground. In IPTA, electrons are injected from the metal
by photoeffect and the current transmitted into vacuum is ener-

gy analyzed.
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positive electron affinity conduction electrons cannot be
emitted and analyzed from the region below the vacuum
level, but the part of the EDC above the vacuum level
can still be recorded.

2. Topmost interval analysis
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Ep =EF+A'c0 E and that Eo can be varied via the pho-
ton energy Ace. The zero point of the kinetic energy scale
is at the bottom of the conduction band of the insulator.
In practice we use a broadband uv source in conjunction
with an uv monochromator or vacuum uv lines of a rare-
gas discharge lamp for injection. '

Figure 8 shows typical energy distribution curves
(EDC's) of hot electrons escaping liquid long-chain al-
kane films, n-C44H9Q of various thicknesses after photoin-
jection and solid-state transport. ' The photon energy
Ace=5. 7 eV yields a maximum kinetic energy Ep=1.7
eV. The scattering events during solid-state transport
manifest themselves by changing the EDC's drastically as
described in Sec. II. The overall intensity decreases due
to electrons transported back to the metal substrate by
both inelastic and elastic scattering. In addition, the
spectral distribution drastically changes with thickness,
the strong energy relaxation of the hot carriers being due
to inelastic scattering with significant energy loss. At
large thicknesses most of the carriers are completely scat-
tered down in energy and pile up at the bottom of the
conduction band. Since the electron affinity of long-chain
alkanes is negative (Eo lies above the vacuum level), car-
riers with energy E=k&T at the bottom of the conduc-
tion band are spontaneously emitted ' and the EDC of
thermalized carriers can be measured. In materials with

4
ENERGY ABOVE EF(eV)

FIG. 8. Energy distributions of hot electrons after transport
through liquid n-C44H9o films of various thicknesses obtained
with the IPTA technique.

5E"«hE (5E'"" AE hE (42)

If there are several inelastic processes which satisfy Eq.
(42) all these enelastic processes will remove the carriers
from the interval in one single event. yo"" is then simply
the sum of all possible inelastic scattering rates y~""',
which yields

inel ~ lnel, i
Yo ~ Fo (43)

One nice aspect of the topmost interval method is furth-
ermore that the directional scattering characteristic
which is known to be strongly energy dependent for
scattering with longitudinal-optical phonons (LO pho-
nons), for example, is irrelevant for the topmost interval

Before using the theoretical results of Sec. II for the
determination of scattering rates we first comment on the
validity of a series of assumptions made in our theoretical
analysis.

(1) Coherent elastic scattering in the thin overlayer
films was not considered in our analysis. In principle,
well-defined diffracted electron beams as in LEED (low-

energy electron diffraction) can occur in transmission ex-

periments through very thin, well-ordered films. Under
favorable conditions, low energy electron transmission
(LEET) experiments can even be used to probe the band
structure of the overlayer films. In our case, however,
the substrates in practice were polycrystalline and the
overlayers either polycrystalline or amorphous. Further-
more, coherence is quickly lost as soon as the electrons
undergo phonon collisions. At T =300 K, we do not
expect a coherent scattering contribution to Jo(p, d) in
our experimental situations. Indeed, angle-dependent
electron reAection studies did not give any indication of
LEED-like spots.

(2) The topmost interval bE at Eo has to be defined
first. In practice hE cannot be chosen to be smaller than
the overa11 energy resolution AE„, in the experiment
which is typically 100 meV. Since the analysis of the top-
most interval implies that carriers are lost from this inter-
val of width AE ~ AE„,after one single inelastic scatter-
ing event, only inelastic processes with losses oE'"")b,E
are properly treated as inelastic events. On the other
hand, a11 electrons appearing experimentally within hE„,
of the topmost energy Eo are treated as elastically scat-
tered. In reality, these electrons undergo not only pure
elastic collisions, but also inelastic collisions with small
losses, 5E &&4E„„.Hence, yo' has to be considered as a
quasielastic scattering rate rather than a purely elastic
one. It is clear that the two rates can only be properly
defined under the assumption that the scattering events
can be divided into two groups according to the relation
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method since carriers are in any case lost from the inter-
val after one single scattering event. The topmost inter-
val analysis can still be used if there are several quasielas-
tic processes which satisfy Eq. (42). In analogy to Eq.
(43), the elastic scattering rate determined in the experi-
ment is then given by

~el y ~el, r (44)

(3) Next let us consider the validity of Eq. (42) and of
our definition of the scattering probability function given
by Eq. (3) for the case of saturated long-chain hydrocar-
bons. From high-resolution electron-energy loss studies
in long-chain alkanes, it is known that the dominant
energy-loss processes for carriers of a few eV kinetic ener-

gy are due to excitations of molecular vibrations centered
around 5EP" =369 meV and 5E2""-160 meV. The
losses centered at 5E'&"" involve the stretching modes
U(CH3) and U(CHz) of the alkane molecules while the loss
band 5Ez"" is due to bending and twisting modes 5(CHz),
5(CH3), and t(CHz) and the C—C stretching mode. If we
choose the topmost interval DE=150 meV, all inelastic
processes discussed above satisfy Eq. (42) and yo"" ap-
pearing in Eq. (3) has to be interpreted according to Eq.
(43) as the total LO-phonon emission rate. The omission
of an energy-gain term in Eq. (3) is certainly justified for
the description of room-temperature experiments for
which k~ T is much smaller than the optical phonon ener-
gies involved in such processes. All other scattering
events (deformation-potential scattering, disorder scatter-
ing, nonpolar optical phonons) are thus considered to
contribute to yo'. Hence, yo' is again an overall quantity
as defined in Eq. (44) and cannot be split into the different
contributions by the experiment.

(4) As shown in Sec. II B 3, the simple two-flux approx-
imation leads to reasonably accurate results for the total
current density Jo(d) of escaping electrons, whereas the
angle dependences are only crudely represented. We
therefore measured Jo(d) instead of Jo(d, p)b, p, where
6 p is the aperture of the analyzer. Experimentally this
can be realized by using a hemispherical retarding poten-
tial analyzer with an acceptance angle of 2m. Unfor-
tunately, the sensitivity of the retarding potential method
is fairly low since a collector current is measured instead
of counting single emitted electrons. Therefore, spectra
can only be taken over a limited thickness range. For
these reasons we mostly used an electrostatic deflection
analyzer in combination with an acceleration voltage of
typically 5 V between the emitter and the analyzer en-
trance slit in our experiments. By this procedure a large
fraction of the low-energy electrons are accelerated into
the analyzer and Jo(d) is reasonably well represented by
the measured fraction of electrons, as can be easily
checked by comparing experimental results obtained by
the two techniques.

(5) The angular distribution of injected electrons does
not enter in the two-flux approximation but can be ex-
pected to be somewhere between the two limiting cases
given by Eq. (7). In order to determine the influence of
the angular distribution, one has to go beyond the two-
flux approach, using, for example, the method of formal

integration discussed in Sec. IIB2. However, choosing
an appropriate angular distribution for the injected distri-
bution, J"(E,p, 0), for real cases is by no means trivial.
A good choice might actually be a cosine angular depen-
dence which is known to be a good approximation for the
angular distribution of vacuum emitted photoelectrons.
We will comment on this difficulty in Sec. III C in more
detail.

(6) In our analysis we neglected the (energy-dependent)
electron reflection at the overlayer-metal and at the
overlayer-vacuum interface. In the case of hydrocarbons
with negative electron affinity, this choice is certainly
justified for the overlayer-vacuum interface. For the
metal-dielectric interface this choice is more question-
able. Unfortunately, very little is known about electron
reflection at such interfaces and the corresponding
reflection coefficients at the metal-vacuum interface are
frequently used instead. Within the two-flux approxima-
tion reflection coefficients can be easily included. In prin-
ciple, the reflection coefficients could be treated as addi-
tional parameters which are then determined from the
experiment. In practice, however, this procedure fails be-

cause the reflection coefficients and the scattering rates
cannot be easily separated in the theoretical expressions
[see Eqs. (45) and (47) in Sec. III B].

Within the limitations (1)—(6) discussed above, we can
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FIG. 9. Thickness dependence of the transmitted intensity
Jo(d) in the elastic channel (topmost interval in the IPTA ex-
periment) measured in liquid n-C44H9O on Pt substrates. The
solid lines correspond to the theoretical solution of the trans-
port problem in the films according to Eq. (14), yielding directly
the inelastic and elastic scattering rates shown in Figs. 10 and
11.
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FIG. 10. Inelastic scattering rate per unit length, yo vs

electron kinetic energy, Eo, in liquid n-C44H90 (Ref. 31). ficoc H

indicates the energy of the dominant vibrational excitation (C-H
stretching mode). The solid line shows the energy dependence
of the corresponding LO phonon scattering rate calculated from
optical data.

now apply the two-flux results to the topmost interval
data in liquid n-C44H9p Figure 9 shows a semilogarith-
mic plot of the zero-energy-loss intensity versus the
dielectric overlayer thickness at various energies Ep.
These results were extracted from EDC's similar to those
shown in Fig. 8 with DE=150 meV and by varying Ep
via the photon energy. We then determine yp"" and yp
by fitting Eq. (14) to the experimental data yielding the
solid lines shown in Fig. 9. It is important to see that it is
actually the deviation from an exponential damping law
at small thicknesses which allows for the simultaneous
determination of yp"" and yp'. Therefore, perfect film
growth at small thicknesses is crucial for the IPTA exper-
iment. ' Finally, in Figs. 10 and 11 the resulting inelastic
and elastic scattering rates per unit length are shown.
These results are discussed in detail in a separate publica-

15

liquid n —$44 HgO
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FIG. 11. Same as Fig. 10 but for the elastic scattering rate
per unit path length, yo'. The rapid increase above 1.8 eV kinet-
ic energy is attributed to acoustic-phonon scattering, whereas
the divergence at about 150 meV is attributed to the existence of
a mobility edge in the liquid (disordered) state (Ref. 31).

tion. ' We simply mention that the results are in agree-
ment with what is expected from electron-phonon in-
teraction theory. This can be seen most clearly in Fig.
10. The solid line shows the LO-phonon scattering rate
calculated from Frohlich's theory for polar scattering by
using experimentally determined optical constants and an
effective electron mass of 2m„where m, is the free-
electron mass. The strong increase of yp at small and
large energies (Fig. 11) can be explained by disorder
scattering in the liquid and by deformation-potential
scattering, respectively,

In summary, the topmost interval analysis is a power-
ful tool for the experimental determination of energy-
dependent elastic and inelastic scattering rates in wide-
band-gap insulators. We recently applied the IPTA
method to SiOz (Ref. 38) and obtained results which are
in good agreement with scattering rates calculated by the
electron-phonon interaction theory.

3. Cascade analysis technique

In order to use the cascade formalism as actually
developed in Sec. IIIC, we should restrict ourselves to
one single well-defined energy loss only. This condition is
not fulfilled in long-chain alkanes as discussed before:
The total scattering cross section 0, for the loss modes
centered around 6E'&""=360 meV, was shown to be of
the same order as e2 (loss modes around 160 meV).
Nevertheless, to exemplify the application of the cascade
analysis technique, we shall neglect the losses at 5E2""
and use the recursion formulas for the electron current
density in the different channels according to Eqs.
(34)—(36) for the determination of scattering rates by set-
ting b.E:=5EP". This would then yield y'k"" and y'I,

' at
many energies below Ep from one single set of experi-
ments as the one shown in Fig. 8, while the experiments
would have to be redone at various photon energies
(yielding various Eo values) in the topmost interval ap-
proach. For k =0, Eqs. (34)—(36) reduce to the topmost
interval result given by Eq. (14) and yield yo' and yo"".
These values are then used to determine y", ad y',"",and
so on. Unfortunately, the errors in yk', and y'k"", are
progressively transferred to yj,.

' and y'I,"", leading to in-
creasingly large uncertainties in the scattering rates at
smaller energies.

In order to check the reliability of the y(E) values
determined by the foregoing procedures, one may recon-
struct the experimental EDC's J(E,d) from the initial
function J'"(E) and from the scattering functions y "(E)
and y'""(E). This constitutes a self-consistency check of
our analysis method. Using the EDC of pure Pt given in
Fig. 8 as a starting spectrum, we reconstructed the
EDC's at larger thicknesses by using Eqs. (34)—(36) and
the scattering rates shown in Figs. 10 and 11. The result
is shown in Fig. 12. By comparing Fig. 12 and Fig. 8, it
can be seen that the overall decrease of transmitted inten-
sities as well as the downscattering of hot electrons are
well reproduced. In order to increase the number of data
points in the calculated spectra, we used two independent
cascades denoted by k =0, 1, . . . and k =0', 1', . . .
The reconstruction of the low-energy peak at small ener-
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FIG. 12. Reconstruction of the IPTA spectra shown in Fig. 8

with the cascade formalism according to Fqs. (34)-(36). The
scattering rates shown in Figs. 10 and 11 were used (see text).

varied and the total transmitted current Jo(d) is detected.
Hence, the experiment is not energy dispersive on the
detection side, but rather on the injection side. It is obvi-
ous that therefore our cascade formalism cannot be used
at all. In the topmost interval method there are problems
as well, since the current in the interval AE at Eo is
detected simultaneously with the contributions at E (Eo
(see Fig. 7). If, however, scattering is predominantly elas-
tic or quasielastic, the experiment is monoenergetic in the
sense that the injected carriers do not leave the topmost
interval b,E at Eo during solid-state transport. In this
case we can therefore directly use our topmost interval
results with yo""=0 given by Eq. (18).

In practice, rare-gas solids which are nonpolar can be
expected to be reasonable model substances for
(quasi)elastic scattering only. In Xe, for example, the
most energetic acoustic phonons have an energy of
5E =6 meV only. According to Eq. (42) we can therefore
use the quasielastic approach (b,E„,=100 meV). We
compared the LEET results in solid Xe measured by
Bader et al. ' ' to Eq. (18): As can be seen in Fig. 13,
the inverse of the transmitted current at each energy, Eo,
depends linearly on the film thickness as predicted by our
theoretical result and yo'(E) is easily obtained from the
data. For more detailed discussions of rare-gas LEET
data we refer the reader to the publications of Jay-Gerin,
Perluzzo, and co-workers, ""' and to Ref. 16. Here
we only comment shortly on the influence of electron
reQection at the interfaces. Let Ro, Ro, and Ro be

gies depends very strongly on the divergence of yo' at low

energies, and to obtain a reasonable agreement, we had to
reduce the values of yo' below the onset of the divergence.
There are many other reasons why a correct treatment of
the last channels is very diScult. In our model, electrons
with kinetic energy E & 5E',""=360 meV cannot lose fur-
ther energy. This, however, is not true in reality since
there are other loss channels with smaller energies which
are neglected in the reconstruction. In addition, low-
energy electrons ( ~ 500 meV) interact strongly with the
trap system in real materials, an effect which is not in-
cluded in the present;ed cascade formalism.

In summary, the thickness dependence of EDC's re-
sulting from IPTA experiments can be reconstructed (or
predicted) by the cascade formalism if the energy-
dependent scattering rates determined by the topmost in-
terval method are used. This fact further supports the
applicability of our analysis for IPTA experiments and
confirms that reliable results for energy-dependent elastic
and inelastic scattering rates can be measured in large-
band-gap insulators such as long-chain alkanes (Ref. 31)
and SiOz.
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B. Low-energy electron transmission (LEET) experiments

Let us consider the applicability of our theory to LEET
experiments. The experimental procedure is sketched in
the upper part of Fig. 7. In LEET the energy Eo of a pri-
mary electron beam with constant current density Jo is

FIG. 13. Inverse of transmitted current [Jo(d)] ' vs over-
layer thickness d in solid Xe monolayers (ML) for various elec-
tron energies, Eo, as measured in the low-energy electron
transmission (LEET) experiment by Bader et al. (Refs. 17 and
18). [Jo(d)] varies linearly with film thickness as expected
from Eq. (18), which is valid for quasielastic scattering.
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the reflectivity coefficient of electrons with energy Ep at
the vacuum-overlayer, overlayer-metal, and overlayer-
vacuum interfaces, respectively.

Including electron reflection for the topmost interval
yields the following modified results for Eq. (18):

RDM
J (d)=J"

1 R—R +(1—R )(1—R ) "d

(45)

with

such a way that they cannot be separated by fitting Eq.
(47) to the experimental data.

C. X-ray photoelectron spectroscopy

Let us finally consider the interpretation of overlayer
experiments in x-ray photoelectron spectroscopy (XPS).
Usually, in these experiments the damping of a substrate
core level line intensity, Jo(d), at some energy Eo is mea-
sured as a function of overlayer thickness d. The infor-
mation depth (escape depth, damping length) A,o at energy
Ep is then usually defined by

J"=Jo(1 —R ) (46)
Jo(d)=Joexp( —d/Ao) (d )Ao) . (48)

Jp is the current density of the electron gun. Since the
electron affinity of solid Xe is only slightly positive we
may assume R o =0, which leads to

Jo(d) =J"' 1

ROM ) eld
(47)

By comparing Eq. (47) with Eq. (18) one can see that
including electron reflection at the overlayer-metal inter-
face simply leads to a rescaling of yo' in Eq. (18) by a fac-
tor (1 —R o ) '. If R o is approximated by the
reflection coefficient at the vacuum-metal interface Rp
which can be measured experimentally, yp' would be re-
scaled by a factor of 2. ' ' These considerations once
more demonstrate that the physics at the interfaces are
important. Unfortunately, Ro and yo are correlated in

M

8

6
0

I

50
I

300

FILM TH(CKNESS ($)
FIG. 14. Intensity of the Pt 4f 'x-ray photoelectron li—ne (ex-

cited with Mg-Ka) vs Si02 overlayer thickness. The electron
energy Eo is 1184 eV in this case. The solid line was calculated
by assuming forward detection, p= 1, and yo"'=-yo'.

Equation (48) describes the experimental results rather
well, but only in the thick-film limit. As an example, the
damping of 1184 eV electrons through Si02 films is
shown in Fig. 14. The interpretation of A,o values in

terms of elastic and inelastic scattering rates attracted
much attention in the last few years. " ' In the fol-
lowing, our theory will be used for that purpose and our
results will be compared with earlier theoretical con-
siderations. We restrict the discussion to the analysis of
zero-loss electrons as given in Sec. IIB. Again, the top-
most interval has to be defined first. The natural
linewidth of core level lines AE, and the experimental
resolution (EE„,=-1 eV) are comparable in XPS experi-
ments. Therefore, the topmost interval cannot be chosen
to be smaller than AE„which is of the order of a few eV,
depending on the XPS line considered. Such a large top-
most interval, hE =—AE„has severe implications on the
interpretation of yo"" and yo' given by Eqs. (43) and (44),
as can be immediately seen from Eq. (42). In our example
of Si02 overlayers on Pt (Fig. 14), the dominant LO pho-
non in Si02 has an energy of 153 meV, but hE =—4 eV had
to be taken to analyze the 1184 eV electrons emitted from
the Pt 4f core level. Then, according to Eq. (42), LO
phonon scattering (as well as acoustic scattering) contrib-
ute to yp' in contrast to the IPTA experiment where they
contribute to yo"". The major contribution to yo', howev-

er, in the energy range from 500 eV to a few keV results
from elastic scattering by single atoms (Coulomb interac-
tion). The inelastic scattering rate yo"" is, for XPS ener-
gies, mainly due to electronic excitations (excitons, inter-
band transitions, plasmons) with typical losses of the or-
der of or somewhat larger than the band-gap energy
(Fs =—9 eV in SIO2). For a more general discussion of in-

elastic scattering with respect to XPS energies, see, for
example, Ref. 43. As shown there, plasmon excitation is
the dominant inelastic process at high energies. There-
fore, (Ao)

' is often superficially interpreted as the
plasmon excitation rate, while the correct interpretation
of Ap is by no means trivial and depends on the details of
the scattering physics at the energy Ep under considera-
tion. Particularly, it is in general not justified to identify
the experimental damping lengths kp as defined by Eq.
(48) with the inelastic mean free path. '

In the following, we study the case of Si02, assuming
yo' and yo"" to be defined according to Eqs. (42) —(44) and
using the topmost interval analysis method for the inter-
pretation of the zero-loss features in XPS experiments. If
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inelastic scattering is dominant, then, and only then, Eq.
(48) can be compared with Eq. (26a) for angular-resolved
detection and with Eq. (26b) or Eq. (19) for angle-
integrated detection. If the transmitted intensity is mea-
sured angle resolved in forward direction (p=l) this
yields

inel
)
—

1

spinel

(
el 0 ) (49)

and for angle-integrated detection we obtain

—(2ymel)
—l i gmel (yel 0) (50)

(gmelgel)l/2
1

0 ~3 0 0 0 (52}

at large thicknesses. Equation (52) corresponds to Eq.
(51) in the limit y0""«y0' only. [The prefactor depends
on the details of the model; see, for example, Eqs. (49)
and (50).] The analysis of Tougaard and Sigmund is
based on the assumption that the electron motion is recti-
linear up to some characteristic transport time t„subse-
quently becoming and remaining diffusive. Difficulties
arising from this assumption have been discussed by
Dwyer and Matthew '

by introducing elastic scattering in
one-dimensional models via backscattering. They find an
attenuation given by Eq. (51) with a factor I/v'3 instead
of —,

' which was later on confirmed by Tofterup' in a
difterent treatment of the elastic scattering. For
y0""»y0' Tofterup' obtains Eq. (26b) which is our exact
result for pure inelastic scattering. If we introduce direc-
tional elastic scattering in the two-flux approximation, we
obtain the same forrnal results as for isotropic scattering
[Eqs. (14)—(19)]but with a renormalized elastic scattering
rate

y 0'=2(1 —a)y0', (53)

where o. is the fraction of forward scattered electrons.
For pure forward scattering (a= 1 ) y 0' becoines zero as
expected and the damping is exponential according to

If, however, elastic scattering cannot be neglected, Eq.
(48) has to be compared with Eq. (17b), in the case of
angle-integrated detection, which yields

(2yeff)
—l i [y&nel(yinel+. yel)]

—l/2

(d»1/y'0~) . (51)

From Eqs. (49) to (51) two important conclusions con-
cerning the interpretation of escape depth, A,0, in terms of
scattering rates can be drawn. First, the experimenta1 sit-
uation has to be properly taken into account. The accep-
tance angle of the analyzer especially is important and
leads to different prefactors in the equations. Secondly
only if elastic scattering can be neglected, the experimen-
tal damping law given by Eq. (48) yields directly the in-
elastic mean free path A,o"". In general, A.o depends on
both A,o"" and ko' according to equations of the form
given by Eq. (51). This has been pointed out by several
authors. " ' ' ' Tougaard and Sigmund' predict nonex-
ponential attenuation and in particular they find the at-
tenuation to be determined by the inelastic mean-free
path A0"" at small film thicknesses and by

Eq. (19). For weak but pure elastic backscattering (a=0
and y 0'«y0"") we obtain an exponential damping law
again but with

1 inel + el
)

0
(54)

(1) Isotropic scattering and isotropic injection but for-
ward detection, @=1. Forward injection enhances the
effect. So does forward elastic scattering.

(2} Isotropic scattering and 2m. detection but forward
injection. Forward elastic scattering enhances the effect.

In addition, the ratio of yo""/y~' is found to be impor-
tant, as one would expect. This ratio can be determined

as previously found by Dwyer and Matthews ' by a
different approach. Equation (54) simply states that
backscattering acts as an independent loss mechanism in
the case of weak elastic backscattering. These compar-
isons show that the interpretation of ko values in terms of
scattering rates within the two-flux approximation in the
limit d »A0 appears to be the same as the one obtained
with previously considered models [apart from prefactors
in Eqs. (49)—(54), which are of course important for an
absolute determination of scattering rates].

Even so, the two-flux approximation has some severe
drawbacks: (1) the angular distribution of the injected
electrons cannot be considered in detail, (2) directional
scattering can be treated in a very crude way only, and (3)
the angular dependence of the emitted electrons is only
crudely represented (see Sec. II B). The consequences of
these limitations are most clearly seen in the thin-film
limit, d ((A,o. For all models considered thus far in the
present paper, the damping was found to be either purely
exponential or stronger than exponential at small
thicknesses, in contrast to the result of Tougaard and Sig-
mund, ' where the damping was found to be less pro-
nounced at small thicknesses and also in contrast to the
one-dimensional models considered by Dwyer and
Matthews. ' These discrepancies are due to the different
treatments of boundary conditions (detection conditions,
source term in the transport problem, treatment of
reflection at interfaces, etc. ) and/or the different treat-
ment of directional scattering in the different models.
Dwyer and Matthews assumed the elastic scattering cross
section to be pseudoisotropic with an isotropic term and
a forward peaked term, whereas Tofterup used the P] ap-
proximation. In our two-flux approximation directional
scattering was introduced by splitting yo into a forward
scattered fraction ay&' and a backward scattered fraction
( 1 —a )y0' where a & 1.

The three limitations mentioned above can be over-
come if the transport equation [Eq. (10)] is solved by the
method of formal integration in which the various angu-
lar dependences are treated accurately. We considered
some special cases in which the integration could be per-
formed analytically by using simple approximations for
the exponential integrals [see, for example, Eq. (27)]. It
turns out that the damping at small thicknesses can be
weaker than exponential under the following assump-
tions.
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from experimental results such as shown in Fig. 14 if the
correct model is chosen. We consider case (1) above to be
more appropriate for the experimental configuration in

which the data shown in Fig. 14 was measured. In order
to obtain the solid line shown in Fig. 14, we had to
choose ) o"'/yo —= 1 (isotropic elastic scattering was as-

surned). A ratio of the order of 1 is reasonable for an
electron energy of 1000 eV and overlayers with low atom-
ic numbers, confirming the results of Ref. 41 and stress-

ing again the fact that elastic scattering cannot be

neglected in the interpretation of experimental damping
lengths.

In summary, the topmost interval method in the two-

fiux approximation yields satisfactory results for the in-

terpretation of the escape depth Ao obtained from x-ray

photoelectron experiments [defined by Eq. (48)]. Our re-

sults are consistent with previously published analyses.
We confirm that it is not justified in general to interpret
Xo as inelastic mean free path and that in the case of 1184
eV electrons in Si02 films the (quasi)elastic scattering rate
is of the same order as the total inelastic scattering rate
for electron-electron excitation. In the case of directional
scattering the two-Aux approximation still seems to hold
at large film thicknesses but cannot properly reproduce
the attenuation in the thin-film limit. In order to treat
directional elastic scattering, the method of formal in-

tegration is more appropriate since it yields exact results
for the energy-decoupled Boltzmann equation which de-
scribes the topmost interval [Eq. (10)].

energy dependent. The resulting cascade problem was
then solved in the two-Aux approximation. We separate-
ly considered the transport of zero-energy-loss electrons
(topmost interval analysis) for which the Boltzmann
equation becomes energy-decoupled and can be solved ex-
actly for special cases.

The topmost interval analysis turned out to be an ex-
tremely useful tool for the analysis of typical substrate-
overlayer experiments such as internal photoemission for
transport analysis (IPTA), low-energy electron transmis-
sion (LEET), and x-ray photoelectron spectroscopy (XPS)
in the substrate-overlayer configuration.

We showed that the simple scattering probability func-
tion which actually allows for an analytical solution of
the Boltzmann equation accounts for the microscopic
scattering processes in several real cases and furthermore
can be easily generalized if only the zero-energy-loss elec-
trons are considered.

We demonstrated that energy-dependent elastic and in-
elastic scattering rates of hot electrons in wide-band-gap
insulators can be extracted from IPTA and LEET experi-
ments and that the escape depths derived from substrate-
overlayer XPS experiments can be defined in a rigorous
way in terms of elastic and inelastic energy-dependent
scattering rates. The energy distribution of hot electrons
traversing dielectric layers of variable thicknesses can be
calculated within the cascade formalism developed in this
work.
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