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The infrared-absorption spectrum of a-SiO, is analyzed in terms of its transverse-optic (TO) and
longitudinal-optic (LO) vibrational modes. It is shown that the independent-oscillator model for the
a-Si0, dielectric function fails to yield a consistent value of mode strength for the optically active
oxygen asymmetric stretch (AS;) TO mode at 1076 cm™' (in-phase motion of adjacent oxygen
atoms) when different but equivalent methods of measurement and analysis are used. This incon-
sistency is resolved by introducing disorder-induced mechanical coupling between the AS, mode
and the relatively optically inactive oxygen asymmetric stretch (AS,) mode (out-of-phase motion of
adjacent oxygen atoms) into the oscillator model. Coupled AS,- and AS,-mode LO-TO frequency
pairs are experimentally observed as peaks at approximately 1256-1076 cm~' and 1160-1200
cm™!, respectively, in oblique-incidence p-polarized absorption spectra of thin a-SiO, films grown
thermally on c¢-Si wafers. Additionally, two other LO-TO-mode pairs are observed in these spectra
as absorption peaks at approximately 820-810 cm~' and 507-457 cm~'. The simplest form of the
coupled-mode model consistent with experiment is found to be one in which the AS;-mode LO-TO
frequency splitting is due to the AS, transverse effective charge and the AS,-mode LO-TO splitting
is due to the mechanical coupling between these two modes and not to the AS, transverse effective
charge, which is negligibly small. The AS, TO and the AS, LO modes found at approximately 1200
and 1256 cm ™!, respectively, are shown to be consistent with experimental mode strengths and with
the analytic requirements that all LO and TO modes be interspersed and that, as a result of lying be-
tween the AS;-mode LO-TO pair frequencies, the AS,-mode LO-TO frequency splitting be inverted.
Comparison of these experimental LO-TO-mode pair frequencies with the vibrational density of
states (VDOS) spectrum of a-SiO, shows that the TO absorption peaks correspond quite well with
the VDOS spectral peaks, whereas the LO absorption peaks do not appear to exhibit any such
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correspondence.

I. INTRODUCTION

This paper is concerned with the quantitative interpre-
tation of the infrared absorption of silica or amorphous
silicon dioxide (a-SiO,). There has been a great deal of
research directed toward interpreting the features in the
infrared spectrum of @-SiO, in terms of the local vibra-
tional modes associated with this tetrahedral glass.!
With the discovery of the longitudinal-optic—transverse-
optic (LO-TO) frequency splitting of the vibrational
modes in tetrahedral glasses and a-SiO, in particular,?
certain inconsistencies arose concerning a-SiO, as to the
frequency assignment of its highest-frequency LO
mode?*? and as to the correct determination of the ab-
sorption strength of the associated TO mode.* This pa-
per shows how a reinterpretation of the infrared spec-
trum to include an additional LO-TO frequency-split
mode can remove these inconsistencies in frequency as-
signment and allow the correct determination of TO-
mode strengths in a-SiO,.

Figure 1 shows a typical infrared TO absorption spec-
trum for a-SiO, as obtained from a 100-nm-thick oxide
film grown thermally at 1000 °C on (100) silicon. Each of
the three major TO absorption bands shown in the figure
can be characterized in terms of a particular vibrational
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mode of the oxygen (O) atoms with respect to the silicon
(Si) atom pairs which they bridge. Rocking (R) of the O
atom about an axis through the two Si atoms character-
izes the vibrational behavior of the lowest-frequency TO
band centered at ~457 cm™!. Symmetrical stretching
(SS) of the O atom along a line bisecting the axis formed
by the two Si atoms characterizes the vibrational mode of
the middle TO band centered at ~810 cm~!. The
remaining TO band and its high-frequency shoulder are
due to an asymmetrical stretch (AS) motion in which the
O atom moves back and forth along a line parallel to the
axis through the two Si atoms. The AS motion actually
gives rise to two vibrational modes: (1) an AS; mode in
which adjacent O atoms execute the AS motion in phase
with each other, and (2) an AS, mode in which adjacent
O atoms execute the AS motion 180° out of phase with
each other.>® The AS, mode is characteristic of the vi-
brational behavior of the TO band centered at =~1076
cm™! and it will be shown that the AS, mode typifies the
behavior of the shoulder centered at ~1200 cm™'.

Paired with each of theése four TO modes is a LO
mode. In general, the LO vibrational motion is not the
same as its paired TO mode, and their frequencies are
different, the LO mode being the higher. The splitting of
a vibrational mode of a material into an LO-TO pair is a
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FIG. 1. Infrared TO absorption spectrum for a-SiO, obtained
from a 100-nm-thick oxide film grown thermally at 1000°C on
(100) silicon showing the local vibrational motions of rocking
(R), symmetrical stretching (SS), and asymmetrical stretching
(AS) of the oxygen atoms (O) with respect to the silicon atom
(@) pairs which they bridge that are associated with the three
major features of the absorption spectrum.

direct result of the interaction of the vibrational motion
of the mode with the material’s electromagnetic field
through the electric charge on the vibrating atoms. LO
modes are not observed in normal-incidence infrared-
absorption spectra such as that shown for ¢-SiO, in Fig. 1
since they do not interact directly with light. However,
they can be observed in oblique-incidence absorption
spectra’® due to the Berreman effect.’

According to classical optical-dispersion theory'® the
infrared-absorption spectrum for a-SiO, shown in Fig. 1
can be interpreted and modeled in terms of a collected set
of independent harmonic electric-dipole oscillators, each
oscillator being characterized by the strength and the
density of a different TO mode.!' =13 Basically, there are
two ways in which to determine the mode strength of an
oscillator: either by direct measurement from an infrared
spectrum or by calculation from the measured LO and
TO frequencies of all of the LO-TO-mode pairs. Either
way the strengths should be the same. In practice, how-
ever, this has not proved to be the case. As described in
Sec. ITII C, reported strengths for the 1076-cm ! mode of
a-Si0, measured directly from infrared spectra are lower
than those calculated from the reported LO-TO-pair fre-
quencies of a-SiO, by 30-40 %, depending on the refer-
ences used. This inconsistency is further aggravated by
the fact that there is a disagreement in the literature as to
the frequency of the LO mode to be paired with the AS,
TO mode at 1076 cm~!.%3

It is the intention of this paper to show how these
discrepancies can be resolved in a relatively simple
manner. This will be accomplished by introducing mode
coupling into the classical oscillator model for optical
dispersion described above. Discrepancies in the deter-
mination of the 1076-cm~! TO-mode strength of a-SiO,
and in the frequency of the associated LO mode will be
shown to be due to a failure to take into account the cou-
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pling that is proposed to occur in a-SiO, between the AS,
and AS, modes.

This paper is organized as follows: In Sec. II we de-
scribe the optical properties of the classical independent-
oscillator model of a dielectric. Measurement and
analysis of the absorption spectrum of a thin oxide film
grown on a silicon substrate are described in terms of this
model. The strength of the film’s 1076-cm ! vibrational
mode is defined and calculated and comparison is made
to mode strengths obtained by other workers using
different methods of measurement and analysis and
different forms of SiO,. In Sec. III coupled-mode dielec-
tric theory is developed for two modes. In Sec. IV we de-
scribe both the experimental procedures for making and
measuring thin films of a-SiO, and the analytical pro-
cedures for obtaining the experimental results used to test
the coupled-mode dielectric theory. In Sec. V the
coupled-mode dielectric theory developed in Sec. III is
applied to the analysis of the absorption spectra of thin
oxide films on silicon. Section VI is a discussion as to
how mode coupling explains and resolves the discrepan-
cies associated with the measurement of the a-SiO, 1076-
cm™! TO-mode strength and the frequency of its paired
LO mode. Conclusions drawn from this infrared study of
LO and TO modes in thin a-SiO, films are described in
Sec. VII.

II. CLASSICAL INDEPENDENT-OSCILLATOR MODEL

A. Dispersion relations

The optical behavior of a dielectric material can be de-
scribed by Maxwell’s equations and the material’s dielec-
tric function €(v), where v is the optical frequency. From
dispersion theory, a dielectric material whose optical vi-
brational modes can be characterized as an assembly of
independent electric-dipole oscillators has an €(v) of the
form'*

4rF;

V=€ + 3 55— (M
7 VL=V —ivyy

where €, is the optical or high-frequency dielectric con-
stant due to the electronic polarizability of the material,
and Fj, vy;, and y1; are the strength, vibrational frequen-
cy, and Lorentzian width, respectively, of the material’s
jth-mode TO oscillator. These last three quantities serve
to characterize the poles of e(v) which give rise to the
TO-mode absorption lines. The mode strength of the jth
TO oscillator, defined by F > can be expressed in terms of

physical parameters of the dielectric material by the rela-
tion'

Fj=e!*/47°M;Q; , 2)

where ej‘ is the transverse effective dipolar charge, M ; is
the oscillator reduced mass, and ) j is the unit volume of
the jth TO-mode dipole oscillator. Despite its simplicity,
Eq. (1) often reproduces the ir reflectivity and transmis-
sion spectra of dielectric materials quite well.

Equivalently, the dielectric function can be expressed
in the alternative form'’
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Vi —vV2—ivyp;
e(v)=¢ mnvz—’—wﬁ, 3)

Tl"'V “"lV'yT]

where v;; and y; are the vibrational frequency and
Lorentzian width, respectively, of the dielectric’s jth
LO-mode oscillators. Accordingly, the LO modes are re-
lated to the zeros of the dielectric function. Since Egs. (1)
and (3) are equivalent, in principle, v ; and y; can be ex-
pressed in terms of F;, vr;, and yr;. The procedure for
obtaining these relationships requires factoring a polyno-
mial of degree 2N, where N is the number of modes, and
it is not practical to do so for a multimode system. How-
ever, in the limit of zero damping (y1;=v;=0), a rela-
tively simple relationship between the jth-mode oscillator
strength F; and the LO and TO modes of the dielectric
material can be found, of the form'®

N V _v2 .
drFi=e 0f =) T =, @
k () Tk —VT1j
G=1.", N)
which can be used to obtain estimates of the F;’s.

Strictly speaking, Egs. (1)-(4) apply only to crystalline
materials of orthorhombic or higher symmetry with a
discrete vibrational density of states (VDOS). The amor-
phous structure of a-SiO, can be accommodated within
the theoretical framework of Eq. (1) by changing each
(jth) mode of the discrete VDOS spectrum of a-quartz
into a Gaussian-like continuous frequency distribution of
Jjth-mode oscillators peaked about some center TO fre-
quency vy;. Accordingly, the dielectric function for a-
Si0, should be strictly of the type'!~!3

- 41rF()
e(v)=¢ +2f g g,<§ veydE (5)

where g; is the normalized frequency density distribution
of the jth-mode oscillators, and the jth integrated mode
strength is

(Fj)= [ "Fj(£)g;(§—vy)d§ . (6)

In general, the dielectric function € is complex and its
real and imaginary parts, € and €, respectively, are re-
lated causally through the Kramers-Kronig dispersion
equations,

fow _§£’1§_ 7

e’(v)—ew=
and

vy pe€le)—e,
ll P S ———
V)= T fo §-2_V2
where €' and €'’ are given by the real and imaginary
parts, respectively, of either Eq. (1), (3), or (5).

d¢ , (8)

B. Sum rules

Mode strength F; can be expressed in terms of the
dielectric loss function €”’(v) as a sum rule by making use
of Eq. (7). Upon taking v in Eq. (7) to be much larger
than some cutoff frequency v, such that €'’(v)=0 for
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v>wv, (i.e., there is no absorption due to the vibrational
modes for frequencies higher than v,), it can be deduced
that

2 o
’ — —_—_ " d . 9
) —ep=——= [ g ag (v ©)

Under the same conditions, viz., €''(v)=0; v>v,, the
dielectric function, as described by Eq. (1), becomes

e(v)_eﬁ_% S 4nF; (v>>v,) . (10)
The definition
€'(v)= 3 €/ (v) (11)
Jj

follows directly from Eq. (1), where €] is that part of the
dielectric-loss function €’ due only to the jth vibrational
mode. By combining Egs. (9)-(11), and then letting
&—v, a sum rule can be obtained, of the form

4rF; = % fowve}'(v)dv , (12a)
where the integrand involves only the dielectric-loss func-
tion due to the jth vibrational mode. This sum rule is im-
portant in that it allows the F;’s to be determined directly
from experimental data.

In a similar manner, the dielectric function for
Gaussian-broadened modes [Eq. (5)] gives rise to the sum
rule

2 ®© ”n
an(F)== [ “vej(vdv, (12b)
where again it is noted that the integrand involves only
that part of €''(v) arising from the jth vibrational mode.
While Egs. (12a) and (12b) are formally identical, numeri-
cal values for F; and (F I ) can differ due to differences in

e/ and Q; for {he crystalline and amorphous forms of a
material and, in the case of amorphous material, as a re-
sult of the convolution of these quantities with the distri-
bution function g](v) This distinction between F; and
(F ) as the respective mode strengths of crystalline and
amorphous materials really occurs with the choice of the
dispersion relation, Eq. (1) or (5), used in order to deter-
mine €. Accordingly, in the remainder of the paper the
symbolic distinction will not be made; F; will be used for
both types of mode strengths, relying on the reader to
make the distinction from the manner in which €} is

determined.

C. Mode strengths

Experimental determination of the F;’s in bulk materi-
als are usually made using either reflection or Raman
spectroscopy. In thin film materials, the F;’s can be
determined using either transmission or reflection spec-
troscopy.'>!” In the case of bulk materials, experimental

infrared-reflectivity spectra R are fitted using'*
R=|(Ve-1)/(Ve+1)|?, (13)
together with Eq. (1) or (5), depending on the crystallinity
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of the material, for a direct determination of the F ;s
For purely crystalline materials, Eq. (3) can be used in
conjunction with Eq. (13) to fit the reflectivity data and
the F;’s estimated subsequently using Eq. (4). Values of
F; can be estimated directly from the Raman spectra of
materials with the aid of Eq. (4), provided the LO and TO
spectral frequencies can be correctly identified.

Information concerning the F;’s of thin-film materials
is quite easily obtained from transmission spectra for
those oscillator modes whose absorption peaks do not
overlap or can otherwise be separated out. Maeda
et al.'”® have analyzed the problem of transmission
through very thin films on thick dielectric substrates.
They considered the case of a single film of thickness d
supported by a substrate of thickness much greater than
the wavelengths A of the incident radiation, of refractive
index n, and of negligible reflectance at the substrate-air
interface. They showed that in the limiting case of zero
film thickness, the film’s dielectric-loss function €''(v) is
related to the transmitted intensity through the film and
the substrate, I(v), by an equation of the form

Iy(v)
I(v)

1
27[2/(1+n))d

ve''(v)= lim In , (14)

d—io

where I;(v) is the transmitted intensity of the radiation
through the substrate alone.

By following Maeda, a limit relation between ve(v)
and the transmitted intensity affected only by the jth-
mode oscillators, I j(v), can be derived for the experimen-
tal film arrangement in this paper, which consists of a
thick (>>A) silicon substrate optically polished on both
sides and covered on each side with identical thermally
grown films of oxide. This relation can be shown to have
the form

Iy(v)

1
2r{(34nd)/(14+n})1d

ve}-'(v): lim
d—0

n

’

(15)

where I;(v) now refers to the transmitted intensity
through the bare silicon wafer and ng; is the silicon opti-
cal index of refraction. By combining Egs. (12) and (15)
to eliminate ve;(v), an expression for F; is obtained in
the limit form

1

Fj= lim 3 2 2
d—0 47T [(3+nsl)/(l+nsl)]d
w, | To(v)
1 dv, 16
x [ in T (16)
which relates F; to the apparent integrated absorbance of
the film’s jth TO-mode oscillators defined by

d"f(‘;"ln[l(')(v)/lj(v)]dv.

As Egs. (1), (4), (5), (12), and (16) suggest, experimental
determination of F; can be accomplished in a number of
ways. In accordance with Eq. (2), the values obtained
should be in reasonable agreement once differences in

density due to the different forms of the material are tak-

en into account, and assuming all other pertinent materi-
al parameters remain the same. Table I shows a compar-
ison of values of F,, the 1076-cm™' AS; TO-mode
strength for a-SiO,, either taken from the literature or
calculated from literature data using the equations for F;
described above. To facilitate comparison, values of F,
shown in Table I are scaled to the density of a-quartz.
From Eq. (2), this density scale factor is seen to be just
the ratio of the a-quartz density to the density of the par-
ticular form of a-SiO, being scaled. Values for the densi-
ty n of the various forms of SiO, pertinent to this paper
are given in Table 1.

Various methods are used to obtain the density scaled
values of F, listed in Table I. Spitzer et al.'* obtained
their value for F, (Ref. 19) by using Eq. (13) to fit Eq. (1)
to their reflection spectrum of a-quartz. The value of F,
attributed to Scott et al.?’ was calculated by this author
using Eq. (4) and their spectral data. Gaskell ez al.?""?
arrived at their value?® using a form of Eq. (12), the
necessary €''(v) spectrum being generated from a
Kramers-Kronig analysis of their reflection spectrum for
fused quartz. The value of F, given for Denisov et al.}
was calculated by this author using Eq. (4) and their spec-
tral data. The value listed for Galeener et al.? was calcu-
lated by this author using Eq. (4) and values of LO and
TO frequencies obtained from peaks in their dielectric-
loss spectra Im[ —e~!(v)] and Ime(v), respectively. The
value of F, associated with Pliskin et al.?* was found by
this author using Eq. (16) for the main 1065-cm™!
optical-absorption peak of their thin a-SiO, film shown
plotted in their paper.?®> Naiman et al.'> obtained their
value for F, by fitting a form of Eq. (5) to the AS,; TO
mode in the 1065-cm™! region of a transmission spec-
trum of their thin oxide film.

Numerically, the values of F; shown in Table I cluster
into three groups. The Spitzer and the Scott a-quartz
and the Gaskell fused-quartz values are in reasonable
agreement with each other despite the diversity of ma-
terial forms and methods for finding F,. Together they
form the first group. Scott’s value for a-quartz is some-
what higher than Spitzer’s because of the failure of the
Scott Raman spectrum to resolve the slight LO-TO split-
ting 1(2 or 3 cm™!) of the AS, quartz E mode at 1162
cm” .

The Denisov and the Galeener F,’s for fused quartz
form a second group whose values are significantly higher
than those of the Spitzer group. Both values were ob-
tained from a form of Eq. (4) using LO and TO spectral
data. These anomalously high values suggest a failure,
analogous to Scott’s, to resolve an optically weak AS,-
mode LO-TO pair whose frequencies lie in the range be-
tween the A4S |-mode LO-TO-pair frequencies and whose
LO-TO frequency splitting is significantly larger than the
2 or 3 cm™! associated with the high Scott quartz value
of F,.

Pliskin’s value and Naiman’s value of F, for thin silica
films comprise the third group. Although significantly
smaller numerically than the bulk values of the Spitzer
group, the methods by which these values for F| were ob-
tained assure that they are correct for a-SiO, films.
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TABLE I. Comparison of density-scaled mode strengths F, associated with the 1076-cm~' AS; TO absorption mode of various
forms of SiO, as reported in the literature or calculated from data reported therein. Units are cm~' for v, and vy, the LO and TO
frequencies of the AS, vibrational mode, respectively, and cm 2 for F,. Units for the density 7 are g/cm>.

Spitzer Scott Gaskell Denisov Galeener Pliskin Naiman
et al. et al. et al. et al. et al. et al. et al.
(Ref. 14) (Ref. 20) (Ref. 21) (Ref. 3) (Ref. 2) (Ref. 24) (Ref. 13)
Material a-quartz a-quartz Fused Fused Fused Thin® Thin?
form: quartz quartz quartz film film
Spectral Reflection Raman Reflection Hyper- Reflection Transmission Transmission
method: (E mode) (E mode) Raman
€0 2.356 2.356 2.11 2.11 2.11 2.14 2.14
Vi 1235 1255 1260
VI 1072 1072 1076.3 1065 1065 1065 1065
7 2.65° 2.65° 2.20° 2.20° 2.20° 2.24° 2.24¢
F¢ 61300 63 100 61000 78 500 81500 50200 52 000

21000 °C oxides thermally grown on silicon wafers.
°H. R. Phillip, Solid State Commun. 4, 73 (1966).

°E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982), Table 14.3, p.

741.
9All values linearly scaled to the density of a-quartz.

Interestingly, the Gaskell bulk a-SiO, value for F, in-
cludes a contribution from the region of the high-
frequency shoulder near 1200 cm~! which constitutes ap-
proximately 15% of that value. By this author’s estimate
then, about 85% of the overall mode strength, or
~51850 cm ™2, resides in the 1076-cm~! AS, TO absorp-
tion band, in reasonable agreement with the Pliskin and
the Naiman a-SiO, film values for F,.

This paper demonstrates that one way to account for
the differences in the oscillator strengths of these three
groups in a self-consistent manner is to assume mode cou-
pling.2¢ Disorder-induced coupling?""?? between the AS,
mode and the optically weak AS, mode in going from
crystalline a-quartz to a-SiO, can give rise to increased
LO-TO splitting of the AS, mode and, thereby, explain
the anomalously high F, values attributed to Denisov
and to Galeener in Table I. In addition, this disorder-
induced coupling can bring about a reduction in TO
strength of the AS; mode and, as a result, account for the
low F, values attributed to Pliskin and to Naiman shown
in Table I. The sum of the AS, and AS, TO-mode
strengths for a-SiO, can then yield a value in agreement
with the Spitzer value for F, and, at the same time, ex-
plain the 85-15% apportionment of the Gaskell F,
value described above.

III. MODE COUPLING

In this section the necessary mathematics is developed
which will be applied in Sec. V to the specific case of cou-
pling between the AS; and AS, modes in a-SiO,. The ob-
jective here is to obtain analytic expressions for the imag-
inary part of the dielectric response of a material with
two coupled modes to an external field from which the
mode strengths and the LO and TO frequencies of the
coupled modes can be determined.

The analysis begins, in Sec. III A, with a description of

the equations of motion of two linearly coupled electric-
dipole oscillators driven by an electric field which are
used to model the coupled optical modes. Next, the
equation expressing the polarization of the coupled oscil-
lators in terms of the dipole moments of the oscillators is
introduced to complete the coupled-mode model. In Sec.
III B, the effects of geometric depolarization are con-
sidered that lead to a splitting of each of the mechanical-
ly coupled oscillator modes into a LO and a TO mode.
Then, two separate complex dielectric response functions
are defined and determined, one of which expresses the
TO response of the dielectric model to an external elec-
tromagnetic radiation field and, the other, the LO
response to an external electromagnetic radiation field.
In Sec. III C, separate expressions for the imaginary parts
of both the LO and TO dielectric response functions are
derived in order to obtain equations expressing both the
LO and TO strengths and the LO and TO vibrational fre-
quencies of the coupled-mode model. In order to make
these latter equations as tractable as possible, the imagi-
nary parts of the dielectric response functions are derived
in the limit of zero damping. (This procedure is con-
sidered valid because the frequency broadening of a single
oscillator due to damping is small compared to the distri-
bution of oscillator frequencies of a single vibrational
mode in an amorphous material.) Then the strengths and
frequencies of the coupled system are described and
shown to be mixtures of the original strengths and fre-
quencies of the uncoupled system. Finally, in Sec. III D,
the relations between LO and TO frequency levels of the
coupled system and, in particular, the interspersion prin-
ciple of LO and TO modes alternating with each other in
frequency are described.

A. Coupled classical oscillators

The dielectric response of materials with coupled optic
vibrational modes can usually be analyzed in terms of a
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system of linearly coupled classical electric-dipole oscilla-
tors independent of whether the coupling arises from har-
monic or anharmonic interactions. By requiring harmon-
ic solutions ~exp(—iwt), and letting @w=2mcv, where ¢
is the velocity of light and v is the wave number, the clas-
sical equations of motion for a material with two linearly
coupled optical modes can be expressed in the form?®

VEn—ivrn—vIX +(Vh,—ivy )X, =Q,E™
(17)

(V2 —ivy )X+ (Vhgy—ivy 5 — v X, = Q,E™ |

where X, , and Q,, are reduced forms of the coupled-
optic-mode vibrational amplitudes x;,x, and transverse
effective charges e},e,, respectively, defined by the re-
lations

X, =2mc(M;/Q)"?x;, j=1,2 (18)
and

Q;=e}; 2mc(M;Q)'2, j=1,2 (19)

M, and M, are the reduced masses of the coupled-optic-
mode oscillators, and () is the volume of the material’s
unit cell. Other parameters in Eq. (17) are the unper-
turbed transverse oscillator frequencies vy, and vt
their respective damping coefficients ¥, and y,,, and the
transverse mechanical coupling terms expressed as an in-
teraction frequency vg;; and an interaction-damping
coefficient y,,. The quantity E™™ in Eq. (17) is the macro-
scopic electric field inside the material; corrections due to
effects of the local field are already included in the trans-
verse parameters €1, €T, Vi1, V122 and vp,. Restric-
tions on the parameters are those of a passive linear real-
izable system; v4,,, v35, 71, and ¥, must be positive,
v, v3,, must be greater than v4,,, and 7,,7,, must be
greater than y3,.
The polarization of the material P is given by

€,—1
47

In Eq. (20) the first term represents the electronic polar-
ization of the material. The remaining terms represent
the polarization due to the per-unit-volume dipole mo-
ments of the coupled oscillators. By restricting the
analysis to cases in which the polarization and electric
field vectors are parallel (an appropriate assumption for
an amorphous material), they can be treated as scalars,
allowing Egs. (17) and (20) to be written in scalar form.

Expressed in matrix form, the equations of motion
given by Eq. (17) become

P=

E™+0,X,+0,X, . (20)

G X=QE™ 1)
where

. 2 2 .
v%”—zvy”—v VT2—1vY 12

Gr= Vin—ivrn  Vip—ivip—v
(22)
X X, 9,
T X)) TTQ )
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Similarly, when expressed in matrix notation, the scalar
equation for the material polarization, P, given by Eq.
(20) becomes

47

where Q is the transpose of the column vector Q.

P:

En4 0x , (23)

B. Dielectric response function

Of interest in this paper is the dielectric response func-
tion € which represents the dielectric response of the
coupled-mode material to the external electric field of the
incident radiation E®. Introduced by Burstein et al.,”’
€ is defined by the relation

€E*=E*{47P . (24)

As will be shown, this response function €” is of interest
because it allows the LO and TO responses of a dielectric
material to external electromagnetic radiation to be ex-
pressed as separate functions from which, respectively,
both the LO- and TO-mode strengths and vibrational fre-
quencies can be calculated.

In order to express € in terms of the coupled-mode pa-
rameters discussed in Sec. III A, the relationship between
E®* and E™ needs to be established. For plane-wave
solutions of E™ ~exp(iq-r), where q is the wave vector
in the material, E** is related to E™ by?’

EMt—_FEt_J|p (25)

where L is a geometric depolarization factor arising from
a property of the electromagnetic field equations in bulk
material that the displacement field D =E™ 4 47P must
vanish in the direction of q. Thus, for a bulk material or
for a slab of dielectric material of sufficient thickness d
that |q|d >>1, L is given by

__ |0 for EM™iq,

~ |4r for EM|q . (26a)

In the case of the very thin slab or film of dielectric ma-
terial with which this paper is concerned, such that
| q|d << 1, the presence of electric-field-induced surface
charges on the slab faces requires that D vanish in the
direction normal to the slab faces rather than the direc-
tion of q. Thus, for a sufficiently thin slab, L is deter-
mined by the geometry of the material and is given by

0 for E™ parallel to the slab plane ,
= (26b)

47 for E,, perpendicular to the slab plane .

As a result of the fact that L can take on two different
values in a dielectric material, the system of electric-
dipole oscillators representing the dielectric can exhibit
two different vibrational modes: a transverse mode
(E™1q) corresponding to L =0, and a longitudinal mode
(E™|lq) corresponding to L =4m. Thus, upon eliminat-
ing E™ and P from among Egs. (21)-(26), the equations
of motion and dielectric response can be expressed in the
following manner:

For L =0,
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GpXr=QE™
and 27
€TE™ =€, E™+4r0Xy ,

where G is the transverse dynamic matrix given by Eq.
(22), X1 is the transverse vibrational amplitude matrix,
and €7 is the transverse dielectric response function.

For L =4m

G X, = ‘ELQEext

-]

and (28)

r rext __ L 4_77 N
e E =2 . + . ox, .
where G, =G +4mQQ /e, is the longitudinal dynamic
vibrational matrix, X is the longitudinal vibrational am-
plitude matrix, and € is the longitudinal dielectric
response function.
In more explicit form, G is given by

2 .
VL2—iVY 12

2 .
Vin—iV¥n—V

2 . 2
Vin—ivyn—v

Gy = .
L Vilz—“"}’lz

2| (29)

where

41
V%.jk =V%jk + Q0 )
€ j=12, k=12. (30

2 .2 2 __ 2
VLjk =VLkj> VYTjk =VTkj

As a result of having separated the dielectric response

function into its transverse and longitudinal forms, the
only expressions relating the longitudinal and transverse
coupled-mode parameters are now those given by Eq.
(30).

Explicit expressions for €1 and €] can be written direct-
ly from an inspection of Eq. (27) and Eq. (28), respective-
ly. Thus, from Eq. (27), it is seen that

er=€.,+470G1'Q , (31)
and from Eq. (28) that

1 47 ~
§=2——+—-0G{'0 . (32)

€, €
Relationships between €t and €], and the material dielec-
tric function €, where € is defined in terms of E'™ by the

equation
€E™=E™+47P

can be found by comparing this equation with Eq. (24),
making use of Eq. (25) in the process. The relations
which obtain are

and (33)

€ =2—¢",
where the equivalence between €7 and € occurs because in
the transverse (L =0) case E™™ and E* are equal. By
making use of Egs. (22), (29), and (30), €T and €] as given
by Egs. (31) and (32), respectively, can be expressed as ex-
plicit functions of v of the forms

(Vi — vy —v)QT —2(vh 1 —ivy 1300, Qs + (VR —ivy ;; —vH)Q3

ev)=€,+4m (34)
T (Vi —ivy 1 = V) (Vi —ivy 5 — V) — (W —ivy )
and
riv)=2— -1 14 (VM —ivyna—v)01 =200 1, —ivy 12)Q1 Q2 + (Wi —ivy 11 —v*)Q3 (35)
eL(v)=2———+4m > - EPEIYI I 2 : 2 )
€ Vin—ivyn YV —ivy =V )= (Vi —ivy 1))

where, for j=1,2 and k =1,2, the longitudinal levels
vi x are defined by Eq. (30).

C. Dielectric-loss response-function model

In general, €} and €] are complex. Of particular in-
terest are the loss or imaginary parts of these dielectric
response functions €7’ and €{’’ since they are related both
to mode strength in dielectric materials through Eq. (12)
and to absorption in thin dielectric films through Egs.
(14) and (15). The defining relations

P LA 4 r%

2iey =€r—er ,

;T r r* (36)
2ie] =€ —ep

f

can be used, respectively, to obtain €7’ from Eq. (34) and
e’ from Eq. (35). Usually, the resulting expressions for
€7’ and €[’ are found not to fit the experimental spectral
data of amorphous dielectrics. The difficulty arises be-
cause each of the various vibrational modes of an amor-
phous material really should be represented by an essen-
tially continuous Gaussian-like frequency distribution of
Lorentzian oscillators with little or no damping rather
than a single, highly damped Lorentzian.!'=!* Accord-
ingly, the procedure to be used in this paper for obtaining
€7’ and €f”’ from Egs. (34) and (35), respectively, is to cal-
culate these quantities in the limit of zero damping. In
view of the fact that Lorentzian widths obtained from

crystalline quartz data are =~7 cm~!,'*?! while the
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Gaussian widths found from a-SiO, data are =70
cm~!,'>?! this approach appears plausible. When neces-
sary, suitable forms of these calculated quantities can be
arbitrarily broadened by convoluting them with a
Gaussian-frequency density distribution of the form

C.T.KIRK 38

2)—1/2

g(W)=Q2mo exp(—v'2/20?) .

Thus, from Egs. (34) and (36), in the limit as y;, ¥,
and y,,—0 such that y;7,,> 72, it can be shown that

ver'(v)—2m ([ £(1—-A3)2Q, —(AD)'2Q, PI8(v— ¥y +8(v+71y)]
+[(A2)V2Q,+(1—A2)V2Q, P[8(v—¥p,y) + 8(v+71,)]) (37

where, in Eq. (37), the “ 4 > sign holds for v4;,>0 and
the “— sign for v4;, <0, 8(£) is the Dirac & function,
+¥1, and ¥, are the zeros of

[(V"Zm“Vz)(VZTzz—VZ)"(V%'lz)Z] ’
and A% is a transverse coupling coefficient given by

A2=T%/(A%+42T%) (38)
such that, for v4,, <v2,,,

Li=viu—vhL=vhL—"via,

22 =[(A2)24(2v%,)*]'2— A%, (39)
and

Ar=vipn—viy -

Figure 2 illustrates the effect of transverse-mode cou-

pling on the transverse-mode frequencies in the limit of
zero damping. It can be seen from Egs. (37)-(39) that, in

the zero-damping limit, the transverse dielectric-loss

response function vey’ exhibits two Dirac 8-function
peaks as a function of v*: one at ¥%, and the other at
v1,, shifted apart in magnitude from their respective un-
coupled levels v4,, and v2,, by I'2. For finite values of
the quantity v4,,, which characterizes the actual coupling

between the two transverse modes, ' is always finite and

J

ve"(v)—2m*{[+(1

f

greater than zero; it vanishes if and only if v4,, vanishes.

Equation (37) shows the effect of the coupling on re-
duced transverse effective dipolar charge associated with
the cougled oscillator modes. For the coupled absorption
level ¥4,, the reduced charge is (1—A2%)2Q, —A;Q,
and, for v2,, it is A7Q, +(1—A%)1/2Q,, where A% is the
transverse coupling coefficient defined by Eq. (38). A%
vanishes when I'% and hence v%,, vanishes. In this case,
the reduced charges and mode levels take on their uncou-
pled values of Q,,v%,, and Q,,v%,,. As A2 increases, the
values of the reduced charges associated with ¥%, and
v2, change, with one increasing in magnitude and the
other decreasing. Which is which depends on the signs of
Q, and Q,. The sum of the squares of the reduced
charges is invariant to changes in A-Zr and is equal to the
quantity Q3 + Q3.

Since er=¢€ from Eq. (33) and therefore vey' =ve", it
can be shown from Egs. (11), (12), and (37) that the sum F
of the oscillator strengths F, and F, for the coupled
modes is equal to the sum of the squares of the reduced
charges. Accordingly, F=F,+F,=Q%+Q3 is indepen-
dent of the mode-coupling strength, at least in the limit
of no damping.

Similarly, from Egs. (35) and (36), and again in the lim-
it as ¥y, 722 and ¥;,—0 such that ¥,,7,, > ¥3,, it can be
shown that

—A%_)l/le “(A%_)l/zQz ]Z[B(V—-VL] )+8(V+VL1 )]

+ADYV2Q,2(1=ADV2Q, PI8(v—1,) +8(v+71,)]) (40)

where, in Eq. (40), the “ 4 > sign holds for v;,>0 and
the “—” sign for v#,, <0, 8(£) is again the Dirac § func-
tion, ¥, and £¥;, are the zeros of

[ =) =) — (1)1,
and A? is a longitudinal coupling coefficient given by

A2 =T2/(A} 4+2T%) 41)

such that, for v}, <v#,,

Ti=vin—viL=vi—vn,

2ri =[(Ai)2+(2"%12)2]]/2—13%, ’ 42)
and

2 _ 2
AL"'V%.ZZ_VLH .
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For the case in which v, >v},,, the numerical sub-
scripts in Eqgs. (40)—(42) must be interchanged, i.e., let
1—-2and 2—1.

Figure 3 illustrates the effect of longitudinal mode cou-
pling on the longitudinal mode frequencies in the limit of
zero damping. As in the transverse case, it can be seen
from Egs. (40)-(42) that, in the zero-damping limit, the
longitudinal dielectric-loss response function ve{’ exhib-
its two Dirac 8-function peaks as a function of v*: one at
v2, and the other at ¥,, shifted apart in magnitude from
their respective uncoupled levels v, and v#,, by I'Z.
For finite values of the quantity v2 ,, which characterizes
the actual coupling between the two longitudinal modes,
I'? is always finite and greater than zero; it vanishes if
and only if vZ |, vanishes.

Equation (40) shows the effect of coupling on reduced
effective dipolar charge associated with the coupled lon-
gitudinal oscillator modes. For the coupled longitudinal
absorption level ¥?, the reduced charge is
1—ADV?Q,—AQ, and, for #%, it s
ALQ +(1—A})'2Q,, where Al is the longitudinal cou-
pling coefficient defined by Eq. (41). A? vanishes when
I'? and hence vZ,, vanishes. In this case, the reduced
charges and mode levels take on their uncoupled values
of Q;,v},; and Q,,v},,. As A? increases, the values of
the reduced charges associated with ¥, and ¥, change,
with one increasing in magnitude and the other decreas-
ing. Which is which depends on the signs of @, and Q,.
The sum of the squares of the reduced charges is invari-
ant to changes in A} and is equal to the quantity
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D. Interspersion of LO- and TO-mode levels

It should be noted that the LO- and TO-mode levels
shown, respectively, in Figs. 2 and 3 are not unrelated to
each other, even in the absence of the transverse mechan-
ical coupling parameter v4,. For v4,,=0, it can be seen
from Eq. (30) that v} ,,=47Q,Q, /€. Thus, the longitu-
dinal coupling parameter vZ |, does not necessarily vanish
when v4,, does, unless either Q, or Q, or both are zero.
This type of coupling between the longitudinal modes ex-
ists independent of v4,, due to the interaction between di-
polar vibrational modes through the polarization-induced
internal field term, —4xP, of Eq. (25) found upon taking
L =47 under the conditions indicated by Eq. (26). This
polarization-induced field coupling of the dipole charge
(charge coupling) acts in such a manner as to ensure that
an LO-mode level is always interspersed between any two
successive TO-mode levels.

Two cases of interspersion of LO and TO modes are of
interest here. They are shown illustrated in Figs. 4(a) and
4(b). Each case involves two LO-TO-mode pairs for
which there is no mechanical coupling between the
modes, i.e., v3;,=0, and the higher-frequency TO mode
is the T22 mode, i.e., v4,,>v%,;. There are no restric-
tions as to the location of the uncoupled LO modes other
than the normal one of lying higher in frequency than
their respective TO mode.?® In the first case, Fig. 4(a),
the uncoupled L22 mode is taken to lie higher in frequen-
cy than the uncoupled L11 mode. In the second case,
Fig. 4(b), the opposite is taken to be true, i.e., the uncou-
pled L22- and T22-mode-pair frequencies lie sandwiched
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FIG. 4. Effect of charge coupling on the unperturbed
(v4,,=0) longitudinal mode levels v},, and v%,, (a) for
V25> viy; and (b) for v, > vi,,.

between the uncoupled L11- and T1l-mode-pair fre-
quencies. Upon turning “on” the charge coupling be-
tween the two modes, the longitudinal levels “repel” each
other, as shown in the figures each by an amount I'}(0)
from its uncoupled position. The quantity I'}(0) is the
magnitude of the longitudinal-mode level shift for
v4,,=0. As illustrated in Figs. 4(a) and 4(b), and analyti-
cally in the Appendix, I'}(0) is sufficiently large in each
case to depress the lower lying of the two uncoupled LO
modes below the level of the T22 mode. Figure 4(a)
shows the usual situation that is observed when the
charge coupling is taken into account, namely the LO
and TO modes are properly interspersed and the LO
modes lie higher in frequency than their respective TO
modes. In Fig. 4(b) the situation shown with the charge
coupling taken into account is somewhat different; the
LO and TO modes are properly interspersed and the L11
mode lies higher in frequency than the T11 mode, but the
L22-T22 frequency positions are reversed, with the T22
mode lying higher in frequency than the L22 mode. An
examination of Fig. 4(b) shows that this comes about as a
result of the uncoupled L22 mode lying lower in frequen-
cy than the L11 mode. Thus, for a LO-TO pair lying
sandwiched between the frequencies of another LO-TO
pair, interspersion is accommodated by inversion of the
LO-TO-mode frequencies of the sandwiched pair.

IV. EXPERIMENT

A. Procedures

To test the theory of mode coupling in a-SiO,, oxide
films were prepared, characterized by ellipsometry, and
their ir-absorption spectra obtained for both normally in-
cident and obliquely incident light. Oxide films ranging
in thickness from 10 to 100 nm were grown thermally on
3-in.-diam single-crystal (100)-oriented Si wafers. The Si
wafers themselves were phosphorus-doped 1 Q cm »n type,
14-16 mils thick, and optically polished on both sides to
facilitate the ir studies. Prior to oxidation the wafers

were given a RCA-type peroxide cleaning including a HF
dip, rinsed thoroughly in deionized water, and spun dry
under a clean dry nitrogen blanket. After chemical treat-
ment the wafers were put into the oxidation furnace by
inserting them into 800°C oxygen and ramped up to
1000°C in 15 min. The wafers were oxidized on both
sides in pure dry oxygen at 1000 °C for various lengths of
time depending on the thickness desired. Oxidized
wafers were removed from the furnace by a 15-min ramp-
down in dry nitrogen to 800°C, at which point they were
pulled from the furnace. All ambient gases were at at-
mospheric pressure.

Ellipsometry was used to characterized the oxide films
in terms of their thickness and optical index of refraction.
A Rudolf Research model AutoEl automatic ellipsometer
was used to take the ellipsometric data. This instrument
generated A and V¥ readings from which calculations of
the optical index and film thickness were made using the
NBS ellipsometer program.?® Readings were taken at a
wavelength of 632.8 nm with a sensitivity of 0.04° in both
A and V. The optical index of the silicon substrate, ng;,
at this wavelength was taken to be 3.856(1+i0.0074).!
Under these conditions, errors in the calculation of the
index and thickness of the films were +0.002 and 0.1
nm, respectively.

All ir-absorption spectra were measured with an IBM
FTIR-32 Fourier-transform infrared spectrophotometer.
The spectral data were obtained from Si single-crystal
wafers optically polished and oxidized on both sides,
referenced against an empty-beam background for abso-
lute transmission, and against a bare silicon wafer for ex-
traction of the oxide absorption. All spectra were each
the average of 1000 passes taken at a resolution of 2
cm~!. Seven-point, three-pass Savitzky-Golay smooth-
ing®® was used to reduce to a negligible level the effect of
a periodic fringe pattern (=~4 cm~!) that arises from
internal reflections in the silicon wafers.

Infrared transmission through the bare silicon refer-
ence wafer in frequency regions of low absorption were
found to be within 0.2% of the theoretical value
2ng;/(14+n%) calculated using a silicon index
ng;=3.418.3" While the major absorption in crystalline
silicon takes place around a narrow peak at 607 cm~ ! a
small but appreciably structured amount of absorption
extends from this peak all the way up to 1500 cm—!.3?
Because of the interest of this paper in the spectral region
from about 900 to 1400 cm ™!, the absorption spectrum of
single-crystal silicon was deleted from the absorption
spectra of oxidized wafers by subtracting a proportional
amount of the absorption spectrum of the bare silicon
reference wafer sufficient to eliminate the silicon 607-
cm™! line together with its structured high-frequency tail
from the oxidized-wafer spectra. Thereafter, only the
spectral region from about 900 to 1400 cm™' was con-
sidered.

Normal-incidence beam absorption spectra of the oxi-
dized wafers were obtained using unpolarized light.
Oblique-incidence oxidized-wafer absorption spectra
were obtained using polarized light. Polarization of the
incident light beam was effected using a PTR Optics
wire-grid polarizer, 15X 15 mm? with 1200 wires/mm.
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An arbitrary oblique angle of incidence 8 for the beam
was accomplished by arranging for the normal to the sur-
face of the oxidized wafer to be tilted by the angle 6 with
respect to the incident beam. At oblique angles of in-
cidence, two unique polarizations of the incident beam
can be distinguished, depending on how the plane of the
oxidized wafer is tilted with respect to the polarization
direction of the incident beam: one is the case in which
the electric (E) field vector of the incident light lies in the
plane of the oxidized wafer (s polarization). The other is
the case in which the magnetic (H) field vector of the in-
cident light lies in the plane of the oxidized wafer (p po-
larization). s-polarized oblique-incidence oxidized-wafer
absorption spectra are the same as the oxidized-wafer ab-
sorption spectra obtained using normally incident unpo-
larized light. p-polarized oblique-incidence oxidized-
wafer absorption spectra exhibit new absorption peaks in
addition to the absorption peaks found in the s-polarized
absorption spectra due to the Berreman effect’® dis-
cussed briefly in Sec. I and in more detail in Sec. IV B.

B. Results

Absorption spectral data for a number of oxidized sil-
icon wafers with different oxide thicknesses ranging from
approximately 10 to 100 nm were obtained by FTIR
spectroscopy using normally incident light. Typical of
oxide absorption spectra in the (900—1400)-cm~' fre-
quency range is the spectrum shown in Fig. 5. This spec-
trum is from a silicon wafer with 37 nm of oxide thermal-
ly grown at 1000°C on each side, from which the silicon
absorption spectrum has been deleted by the method de-
scribed above. The mode strength of the main TO ab-
sorption peak near 1076 cm~! was estimated using Eq.
(16) and doing the integration by the simple technique of
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FIG. 5. Infrared TO absorption spectrum of two 37-nm-thick
a-SiO, films one on each side of a (100) Si wafer in the region of
the AS vibrational mode. The actual height of the main absorp-
tion peak near 1075 cm~! is 0.281 and the full width of the ab-
sorption peak at half the maximum peak height is 76.1 cm™',
from which the apparent integrated oscillator strength of the
AS, mode F7 is estimated from Eq. (16) of the text to be 50 700
cm™2,
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assuming a Gaussian shape for the main peak and calcu-
lating the area under it from the absorption peak height
and the full width at half the maximum peak height
(FWHM). Comparison of this method of computing the
TO-mode strength with the dispersion-analysis method
used by Naiman'? for his published transmission spec-
trum of a 36-nm-thick oxide (see Table I) produced agree-
ment within 3%, both strengths having been scaled to the
density of quartz. The scale factor used in this case was
2.65/2.24 (=1.18), where the density ratio of a-quartz to
1000 °C thermal oxide films on silicon was obtained from
Table 1.

Scaled TO-mode strengths for the 37-nm-thick oxide
just described and for Naiman’s 36-nm-thick oxide were
found to be 50 700 and 52000 cm ™2, respectively. These
values are some 15-17 % below the 61 300-cm 2 value of
crystalline quartz. Strictly speaking, for finite values of
oxide thickness d, Eq. (16) calculates an apparent jth-
mode strength F;* such that F*=F; only in the limit as
d—0. The complete equation relating F;* and F; in-
volves a functional dependence on d. In order to see if
the calculated 1076-cm™' TO-mode strengths of oxide
films are dependent on d, as they should be, and to ascer-
tain the correct value of that strength in the limit of van-
ishing d, values of 1076-cm~! TO-mode strengths for ox-
ide films of several different thicknesses are shown plotted
as a function of d in Fig. 6. The null hypothesis that the
calculated values of the 1076-cm~! mode strength, F?,
for these films are independent of d results in a mean
value for the mode strength F, of 50400 cm~? plus or
minus a standard deviation error of 1530 cm~2. A fit of
the data for F} versus d to a straight line, shown plotted
as a solid curve in Fig. 6, yields a significance level of
0.001 for (and hence rejects) the null hypothesis. Fits of
FY to second- and third-order polynomials with
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FIG. 6. Apparent 1075-cm~! AS, TO-mode strength F{ of
a-Si0, films grown thermally on (100) Si wafers vs film thickness
d (solid circles). The solid line represents the best linear fit of
the data. For comparison, the a-quartz 1072-cm~! value for the
AS, TO E-mode strength of 61300+1800 cm~2 obtained by
Spitzer et al. (Ref. 14) is shown on the graph (solid diamond
with error bars).
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significance levels of 0.003 and 0.005, respectively, are
not as good as the first-order fit. Evaluated at d =0, the
linear expression for F} yields a density scaled value for
F,=52530£520 cm~2. At roughly 85% of the value of
F, for a-quartz (see Table I), this experimental value of
F, for the 1076-cm~! AS, TO-mode strength of a-SiO,
represents significant difference in strength compared to
the same mode in a-quartz.

In another set of experiments, oblique-incidence ab-
sorption spectral data of an oxidized silicon wafer with
an oxide thickness of 100 nm were obtained with the
FTIR equipment for various angles of incidence using p-
polarized light. Shown in Fig. 7(a) is the absorption spec-
trum for the (900-1400)-cm ! range of an oxide film for
p-polarized light incident at 60° from normal. The
broader of the two peaks located at approximately 1076
cm~! is the AS; TO-mode absorption seen at normal in-
cidence. The other peak in the figure at approximately
1256 cm ! is due to absorption by the AS, LO vibration-
al mode which occurs as a consequence of the Berreman
effect referred to earlier in this paper.”—°

Essentially, Berreman® showed that the transmission of
oblique-incidence p-polarized light, T}, through thin films
to first order in 27vd is given by?’

T,=1— zczsvg (€] 'cos?0+ €] 'sin’0) , (43)

where 6 is the oblique incident angle. For sufficiently
thin films, such that the second term in Eq. (43) is much
less than unity, the absorption ln(Iop /Ip )=In(1/ Tp) can
be approximated by the relation

Top

I,

2mvd | .,

2 ree s 2
In cos0 (€7 cos O+ €1 'sin“0) . (44)

~
=~

For a silicon wafer supporting an identical oxide film on
each of its sides, Eq. (44) must be modified to the relation

ng+3
ngi+1

’
Top

1,

__ 2md
~ cosf

ree re

In (vey'cos?0+ve]''sin’0) .

(45)

Equation (45) indicates that the absorption of p-polarized
oblique incident light by the films is due to both LO and
TO modes. This contrasts with the case of normally in-
cident light in which absorption is due only to the TO
modes as expressed for the jth TO mode by Eq. (15). In
fact, in view of Eq. (33), when 6=0 and considering only
the jth-mode absorption, Eq. (45) reduces to Eq. (15).

It can be seen from Eq. (45) that p-polarized, oblique-
incidence light absorption spectra of very thin films are
proportional to the sum of their LO and TO absorptions
scaled, respectively, by the absolute squares of the ratios
of the incident-electric-field components normal and
parallel to the plane of the films with respect to the total
incident field. Such an oblique spectrum can be decom-
posed into its LO and TO component spectra by subtract-
ing off the film’s appropriately scaled normal incident TO
absorption spectrum from its oblique absorption spec-
trum and thereby revealing the film’s LO spectrum. This
was done for the p-polarized, 60° oblique-incidence,

C.T.KIRK 38

1000 °C thermal-oxide-film absorption spectrum shown in
Fig. 7(a). The resulting LO and TO component absorp-
tion spectra for the thermally grown oxide films on sil-
icon are shown in Figs. 7(b) and 7(c), respectively. In ad-
dition to the AS, LO and TO peaks at 1256 and 1076
cm ™!, respectively, both the LO and TO absorption spec-
tra exhibit shoulders. These shoulders are more conspi-
cuous in Figs. 8(a) and 8(b), where the respective LO and
TO absorption spectra of Figs. 7(b) and 7(c) are shown as
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FIG. 7. (a) Oblique-incidence (60° from normal), p-polarized
infrared-absorption spectrum in the region of the AS vibrational
mode of identical @-SiO, films grown thermally on each side of a
(100) Si wafer shown separated into its component (b) LO and
(c) TO absorption spectra.
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solid lines on semilogarithmic plots. The absorption-
band centers responsible for these shoulders are estimated
to be located at 1160 cm~! in the case of the LO spec-
trum and at 1200 cm ™! in the case of the TO spectrum.
Unfortunately, attempts to resolve these bands in a
unique and systematic manner were frustrated by the
dependence of the bands upon the choice of profiles for
the main absorption bands at 1256 and 1076 cm ™.

The high-frequency shoulder of the 1076-cm~! TO ab-
sorption spectrum of a-SiO, as calculated from the
reflectivity spectrum of vitreous silica has been analyzed
by Gaskell and Johnson.?? Their attempts to resolve the
absorption band responsible for this shoulder also were
frustrated by the dependence upon the choice of the
profile for the 1076-cm~! absorption peak. The presump-
tion that some of the absorption in the high-frequency
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FIG. 8. Semilogarithmic intensity plots (to enhance the
shoulders) of (a) the LO absorption spectrum of Fig. 7(b) with
the approximate positions of the LO AS, (LO1) and the LO AS,
(LO2) absorption peaks indicated by the vertical lines at 1256
and 1160 cm™!, respectively, and (b) the TO absorption spec-
trum of Fig. 7(c) with the approximate positions of the TO AS,
(TO1) and TO AS, (TO2) absorption peaks indicated by the
vertical lines at 1076 and 1200 cm ™!, respectively.
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shoulder is attributable to absorption by the 1076-cm ™!
mode in combination with other modes led Gaskell and
Johnson to attempt to eliminate this absorption by add-
ing a high-frequency tail to the 1076-cm~! absorption
profile. Their best estimate of the 1076-cm~! high-
frequency tail indicated a TO absorption peak in the
high-frequency shoulder near 1200 cm .

Theoretical considerations led Gaskell and Johnson?
to suggest that the 1076-cm~' TO absorption is due to
the AS, vibrational mode and that the TO absorption in
the high-frequency shoulder with an absorption peak
near 1200 cm~! is due to the AS, mode. More recently,
Lucovsky et al.’ and Pai et al.® have suggested that, in
a-Si0,, the AS, mode is not only responsible for the
infrared-absorption shoulder, but also gives rise to the
Raman spectral peak observed by Galeener et al? and,
earlier, by Flubacher et al.*} near 1200 cm ™.

The LO intensity peak seen near 1256 cm™! in the in-
frared spectrum for a-SiO, is absent in the Raman spec-
trum.>* However, Denisov et al.,’ using hyper-Raman
spectroscopy, observed a strong peak at 1255 cm™! that
they conclude is the same mode as the 1260-cm™! LO
mode found by Galeener et al.? from an analysis of the
infrared-reflection spectrum of fused quartz. At 1065
cm~™!, Denisov et al. observed the TO mode associated
with their 1255-cm~! LO mode. In addition, lying be-
tween this LO-TO pair at ~1180 cm™~!, Denisov et al.
observed another LO-TO pair that they were unable to
resolve, but whose intensity peak they believed corre-
sponds to the peak near 1200 cm ™! in the Raman spec-
trum of vitreous silica discussed above.

In summary, the experimental infrared, Raman, and
hyper-Raman spectra of a-SiO, in the (900—1400)-cm !
range appear to show two types of lattice-vibrational
modes, each exhibiting some LO-TO frequency splitting.
The most prominent vibrational mode, AS,, exhibits a
TO mode at a frequency of approximately 1076 cm ™' and
a LO mode at a frequency of approximately 1256 cm™'.
Thin film measurements of the strength of this TO mode
indicate a density-scaled value of F, equal to about 85%
of that of the same mode in quartz. A second vibrational
mode, AS,, lying intermediate in frequency between the
frequencies of the AS; LO-TO pair, exhibits a TO mode
at ~1200 cm~! and a LO mode at ~1160 cm~'. Esti-
mates of the density-scaled strength of the AS, TO mode,
F,, from bulk silica measurements indicate a value of F,
equal to 3-5 times that of the same mode in quartz?? or
about 15% of the 1072-cm ™! mode in quartz. The most
notable feature of these results is that, in going from a-
quartz to a-SiO,, the value of the sum of the AS TO
density-scaled mode strengths, F, +F,, is approximately
constant, increases in F, being at the expense of de-
creases in F.

Finally, it is important to note here that, altogether,
there are four vibrational modes in a-SiO, which exhibit
significant LO-TO level splitting.>!” Thus, in addition to
the respective experimental values of 1256-1076 and
1160-1200 cm~! for the coupled AS, and AS, LO-TO
pairs obtained from Berreman-effect measurements as de-
scribed above, the LO-TO frequencies of the two other

2
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TABLE II. Comparison of experimental and estimated values of the a-SiO,, density-scaled, 1076-
cm~! AS, TO-mode strength F, assuming four modes exhibit LO-TO splitting.

Oscillator
mode VL)’ VT} F}calc) a,b Fj(meas) b
j (em™}) (em™}) (cm~?) (cm™?)
1 1256 1076 ~51 840 52 530+520°
2 ~1160 =~ 1200 ~8740
3 820
4 507
*Values estimated from Egs. (52) and (53) of text with €, =2.14 and N =4.
Linearly scaled to the density of a-quartz (scale factor 2.650/2.237).
“Experimental value from Sec. IV B.
pairs will be needed for the analysis of the coupled-mode F =[2(1-A2)12Q, —(A})2Q,1?, (49)
model. Experimental values of these two other pairs have 2112 212 12
been obtained by the author also from Berreman-effect Fo=[(A7) 770 +(1-A7)"7Q, 1", (50)

measurements of thin a-SiO, films (not shown). One pair
is at 820-810 cm~! and is associated with the SS vibra-
tional mode of the oxygen atoms. The other, at 507-457
cm™!, is associated with the R vibrational mode of the
oxygen atoms. The LO and TO frequencies of these four
vibrational modes for a-SiO, are listed, respectively, in
the columns of Table II labeled ¥;; and v;. Also listed
in this table, in the column labeled F }"‘e‘“), is the experi-
mentally determined value for F, discussed earlier in this
section.

V. ANALYSIS

Two vibrational modes whose systems become coupled
as a result of some physical change in their environment,
such that their individual mode strengths are altered but
their sum is conserved, as in the case of the two AS vibra-
tional modes of SiO, in going from a-quartz to a-SiO,,
are readily analyzed in terms of the coupled-mode model
developed in Sec. III. Figure 9 shows tlie model of the
AS coupled-mode vibrational levels involved in the
analysis of a-SiO, together with the experimental values
for these levels expressed in units of cm~2. Analytic ex-
pressions for the coupled levels in terms of the model pa-
rameters Q,, Q,, A%, and v, can be found from Egs.
(39) and (42) making appropriate use of Egs. (30), (37),
(38), (40), and (41). The resulting equations for the cou-
pled levels can be used to construct the following analyti-
cal model for the coupled silica modes by taking the
differences of the levels:

:—”(Qf+Q§)=(vi,—v%.)+(viz—v%2) , (46)

2
4 4
- 24,+277010;

-]

2
(Q%-Q%)—A%] +

=%}, —-v4)?, @7
(A2 4+ (242, =(7%,—%3))?, (48)

with the TO-mode strengths of the two coupled modes
being given by

where, in Egs. (49) and (50), the “ + > sign holds for
v4,,>0 and the “—” sign for v4;, <0, and A% is related
to v4,, by the equation

; {

v, (1256)2
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v, ‘ = (1200)2
- r2
o
§ .y
@ rZ
@
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.
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FIG. 9. Analytical model for the AS coupled-mode vibra-
tional levels of a-SiO,.
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(1=2A2)[14(2v%, /A% ]2 =1 . (51)

Upon eliminating A% and +%,, from among Egs.
(46)—(51), the coupled-mode—model equations reduce to
the relations

=2 =2
€ _ N o Vir—VTn
F1=4—(vi,—v%l) | | B (52)
™ k=2 VIk—VTI
(k1)
and
2 =2
€ N Vik—V1
2 =2
F2=47T(VL2_VT2) I1 — 5 (53)
k=1 YTk — VT2
(k#2)

where N is the number of modes. For the model of just
the two mechanically coupled modes, N =2. However,
because all LO modes of a system’s split LO-TO pairs are
coupled independent of whether they are mechanically
coupled or not, as discussed in Sec. III D, N has been
deliberately left unspecified in these equations in case the
system contains additional split LO-TO-pair modes that
are not mechanically coupled but need to be included due
to longitudinal coupling.

Table II shows values of F| and F, calculated from
Eqgs. (52) and (53), respectively, using the values listed in
the table for the frequencies of the four LO-TO pairs. As
shown in Table II, there is good agreement between the
calculated and measured value of F,. No experimental
intergrated absorption measurements for F, were made
because the absorption peak for this mode is not well
defined. However, since the overall strength of the cou-
pled modes is conserved, the sum of the calculated values
of F, and F, scaled to the density of quartz, approxi-
mately 60 580 cm ™2, can be compared to the sum of simi-
lar modes in quartz (the E modes with TO frequencies at
1072 and 1163 cm ™). Spitzer’s data'* give 62 350+1830
cm~? as the sum of the TO strengths for the two modes
in quartz. The value for the sum of the TO-mode
strengths derived from the thin a-SiO, film is within the
error bounds of the value obtained from Spitzer’s data.
This supports the idea that, properly scaled, the com-
bined TO-mode strength of the two AS modes is con-
served with respect to crystalline quartz and a-SiO,, and
that comparative differences in the scaled separate
strengths of these two modes in quartz and a-SiO, are
due to increased coupling of the modes in a-SiO,.

The coupled-mode model described by Egs. (46)—(51) is
underconstrained since the six equations contain seven
unknown variables. As a result of this underconstraint, it
can be shown that an arbitrary number of equivalent
solutions for the coupled-mode model can be generated
from the unitary matrix transformation U, which leaves
€T, as given by Eq. (31), invariant, i.e.,

Q'=00Q, (54)
Gr=UG; U, (55)
where, for two coupled modes,
cos sin
o1 s (56)
—siny cosn
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and 7 is an arbitrary coupling angle such that 0 <7 < 2.
Consequently, while the model correctly relates mode
strengths to the LO and TO frequencies of the various
LO-TO split-pair modes [compare Egs. (52) and (53) with
Eq. (4)], details of the model, such as the values of the
mechanical coupling coefficient A% and the effective
charges Q, and Q,, cannot be uniquely determined unless
a value for one of the unknowns can be obtained indepen-
dent of the model as applied to a-SiO,.

Toward this end, an independent estimate of the unper-
turbed transverse level separation A% can be made from
the AS, and AS, TO E-mode frequencies of a-quartz as-
suming the only difference in the actual transverse level
separation ¥3,-72, of these modes in a-quartz and the
same modes in a-SiO, is that vZ,,, the mechanical cou-
pling between these modes, is zero in a-quartz. In this
case the application of the coupled-mode model, Eq. (48),
to a-quartz yields

A2=203400 cm~?, (57)

where the experimental values of the TO frequencies used
for the AS, and AS, E modes of a-quartz were the nomi-
nal values ¥1,=1163 cm™! and %1, =1072 cm~!, respec-
tively, given by Spitzer et al.'*

Application of the modified coupled-mode model as
given by Egs. (46)—(51) and (57) to a-SiO, using the ex-
perimental data of Table II yields the following estimates
for the values of the model parameters, all in units of
cm~2% a transverse coupling coefficient A%2=0.140 corre-
sponding to a mechanical coupling parameter value for
the model of 2v4,,=+195700, and a pair of mathemati-
cally equivalent solutions for the values of the squared
effective transverse charge parameters Q2 and Q3. One
of the solutions yields the values Q%=55400 and

2=0.339 such that if arbitrarily Q, is defined to be pos-
itive, then Q, > O for v3;,>0 and Q, <O for v4;, <0. The
other solution vyields the values Q%=28600 and
Q3 =26800 such that if again arbitrarily Q, is defined to
be positive, then Q, <0 for v4,>0 and Q,>0 for
v21,<0. Both solutions, used appropriately in Egs. (49)
and (50), produce the calculated values for F; and F,
given in Table II once the effect of the charge coupling of
additional dipolar modes is taken into account [as in Egs.
(52) and (53)] and the resulting values are scaled to the
density of a-quartz.

Even though both solutions are equivalent under a uni-
tary transformation and provide the same fit to the exper-
imental data, the physical models described by these solu-
tions are different. While the magnitude of A% is the
same for each solution, the magnitudes and, depending
on the sign of v4,,, the relative signs of Q; and Q, are
different. In the first solution described above, Q, is
quite small compared to Q, and hence the optical activity
of the AS modes is due almost entirely to the AS; mode
and its two vibrational frequencies acquired as a result of
its mechanical coupling to the optically inactive AS,
mode. In the second solution, Q, and Q, are comparable
in magnitude and hence both the AS, and the AS, modes
are optically active. The disparity in the mode strengths
at the two TO absorption levels of the two coupled modes
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is the result of @, and Q, being mixed additively at their
lower vibrational frequency and subtractively at their
higher vibrational frequency, as indicated in Egs. (49) and
(50).

From a mathematical point of view, unless and until
there is some more information on the magnitude of Q,
and its sign with respect to Q, in a-SiO,, there is no way
to choose the ‘“correct” coupled-mode model from
among these several models since they all equally fit the
present data.

From the standpoint of physics, the simplicity and un-
derstandability of the first solution given above is to be
preferred. Thus, in going from a-quartz to a-SiO,, the
only significant result of becoming amorphous is the in-
troduction of mechanical coupling between the AS, and
AS, modes. Also, from the nature of the AS, and AS,
modes (adjacent AS dipoles vibrating in phase and 180°
out of phase with each other, respectively), it can be un-
derstood, at least in the long-wavelength approximation,
how Q, can have a large finite value while the value of Q,
can be equal to zero or very nearly so.

VI. COMPARISON WITH OTHER ANALYSES

Some confusion exists in the literature as to the nature
of the mode at 1200 cm ™! in a-SiO,. It has been pointed
out that while an analysis of the infrared-reflection spec-
tra of silica revealed that one of its LO vibrational modes
of should occur at approximately 1256 cm™!, a peak in
this region was absent from the Raman spectrum.>® Ac-
cordingly, the infrared results obtained for silica were
treated with some suspicion.? It was concluded in Ref. 2
that some error was made in the analysis of the infrared-
reflectivity data, resulting in a spurious LO absorption
peak at ~1256 cm~! and that the Raman peak at 1200
cm~! is the site of the LO mode which is to be paired
with the TO mode in the 1070-cm ™! region of the a-SiO,
infrared spectrum. However, the hyper-Raman data of
Ref. 3 for fused quartz and the Berreman-effect measure-
ments of Refs. 7 and 8 and this paper on thin silica films
confirm the infrared-reflectivity spectral result that the
LO mode paired with the 1076-cm ' TO mode of this pa-
per lies at 1256 cm~!. Furthermore, the mode at 1200
cm~! must be a TO mode since it shows up in the TO
component of the Berreman spectrum [Fig. 8(b)] and is
required as a consequence of the interspersion of LO and
TO modes (Sec. III D).

It is interesting to compare the experimental values for
the positions of the four pairs of LO-TO-mode peaks list-
ed in Table II for a-SiO, with the VDOS for a-SiO, as ob-
tained by Carpenter and Price* from vitreous SiO, using
coherent inelastic neutron scattering. The comparison is
shown in Fig. 10. It can be seen from the figure that
peaks in the VDOS generally tend to coincide with the
peaks of the TO modes (solid vertical lines) rather than
the LO-mode peaks (dashed vertical lines). This is espe-
cially obvious in the higher-frequency modes, where there
tends to be less overlapping of the VDOS bands. In fact,
judging from Fig. 10, there appear to be no prominent
features in the VDOS spectrum that can be associated
with the LO-mode peaks.
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FIG. 10. Comparison of experimental values for the four
pairs of LO-TO-mode absorption peaks (LOj-TOj, j=1,...,4)
of a-SiO, listed in Table II with the VDOS spectrum for a-SiO,
as obtained by Carpenter and Price (Ref. 34) from vitreous SiO,
using coherent inelastic neutron scattering. The positions of the
LOj absorption peaks are indicated by vertical dashed lines, the
TOj absorption peaks by vertical solid lines, and the experimen-
tal values of the VDOS spectral plot by solid circles (®) joined
by straight lines to guide the eye.

This observation of the correspondence between the
TO modes and peaks in the VDOS of a-SiO, agrees with
theoretical results obtained by de Leeuw and Thorpe.®
By including long- (infinite-) range Coulomb effects in a
study of the vibrational properties of a computer-
generated random network with the chemical formula
AX,, they provide calculated results showing for the first
time unambiguous evidence for a LO-TO splitting in
these systems. Because of the strong negative dispersion
of the LO mode, de Leeuw and Thorpe found that LO-
TO splitting does not give rise to a double peak in their
calculated VDOS. Instead, they show that only a single
VDOS peak is associated with the splitting of a vibration-
al mode into a LO-TO pair, and that in the long-
wavelength limit this peak corresponds closely in fre-
quency to their calculated TO peak. Furthermore, they
show that in the long-wavelength limit their calculated
LO peak occurs at a band edge in the VDOS, as is ob-
served experimentally in Fig. 10. They go on to suggest
that the extra (second) peak at ~1200 cm ! in the VDOS
of Fig. 10 is due, as has been shown in this paper, to the
relatively optically inactive AS, mode. According to de
Leeuw and Thorpe, their random-network-model param-
eters would have to be further refined to produce this
second peak.

Two high-frequency peaks in the calculated VDOS
have been obtained from random-network models using
only short-range interactions. Pick and Yvinec*® ob-
tained two peaks by considering tetrahedral glasses of the
chemical form AX, as a dense assembly of 4X, mole-
cules with random but fixed positions coupled only by
dipole-dipole interactions. They observed quite correctly
that the dipole-dipole couplings produced a split-up simi-
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lar to that found in the Raman spectrum of SiO,,"? but
wrongly associated this with LO-TO splitting.> Gutt-
man and Rahman,’” using a continuous-random-network
model of SiO, and a modified Keating potential®® that in-
cluded only short-range forces, observed a double peak at
high frequencies in their calculated density of states.
They also showed that the calculated density of states
agrees fairly well with an experimental density of states
obtained from inelastic-neutron-scattering data. Similar-
ly, Lucovsky et al.’ using a refinement of the Bethe-
lattice method including up to second-neighbor interac-
tions to study a-SiO,, obtained two peaks attributing
them, as discussed earlier in Sec. IV B, to AS;- and AS,-
type TO vibrational modes.

It is known that in amorphous solids the Raman spec-
trum tends to mimic the vibrational density of states,*
especially at high frequencies.! Thus, it would appear
from the foregoing discussion that the high-frequency
doublet in the experimental Raman spectrum for a-SiO,
is due to the same short-range interactions that give rise
to the high-frequency AS; and AS, TO peaks in the
VDOS spectrum shown in Fig. 10.

VII. CONCLUSIONS

In addition to the three well-known vibrational modes
of a-SiO, with sufficient oscillator strength to show
significant LO-TO splitting located at 507(LO)-457(TO),
820(LO)-810(TO), and 1256(LO)-1076(TO) cm™!, there
is a fourth mode exhibiting inverted LO-TO splitting at
~1160(LO)- ~1200(TO) cm~!. The fourth mode, opti-
cally weak in crystalline a-quartz, owes its increased opti-
cal strength in a-SiO, to increased coupling between the
AS, and AS, vibrational modes. The observed decrease
in the strength of the AS, mode, 1256-1076 cm~!, and
the concomitant increase in the strength of the AS,
mode, ~1160-~1200 cm ™!, in a-SiO, compared to crys-
talline a-quartz is a direct result of the coupling.

LO-TO splitting of all four modes can be observed ex-
perimentally in the infrared-absorption spectra of very
thin films of a-SiO, by making use of the Berreman effect.
Neither the experimental VDOS nor the Raman spec-
trum portrays the observed LO-TO-mode splittings in a-
SiO,. Instead, the major peaks of these spectra, especial-
ly at the higher frequencies, align closely with the ob-
served TO peaks. In fact, no significant feature of either
spectrum appears to be associated with the experimental
positions of the LO peaks, including the double max-
imum at high frequencies.

ACKNOWLEDGMENTS

The author is pleased to acknowledge useful discus-
sions with Dr. Peter W. Wyatt and Professor Stephen D.
Senturia of MIT. He also wishes to acknowledge Jeffrey
M. Knecht for his assistance in obtaining the oxide films
and taking the infrared spectra. This work was spon-
sored by the U.S. Department of the Air Force.

APPENDIX: INTERSPERSION ANALYSIS
OF LO- AND TO-MODE LEVELS

LO- and TO-mode levels are related to each other even
in the absence of the mechanical coupling coefficient v2,,.
It can be seen from Eq. (30) that the longitudinal cou-
pling coefficient v}, does not necessarily vanish when
v4,, does. Coupling between longitudinal modes exists
due to the interaction between the dipole charges associ-
ated with each of the two oscillator modes through the
polarization-induced field term, —4wP, of Eqgs. (25) and
(26). In this appendix it is shown that this polarization-
induced field coupling of the dipole charge (charge cou-
pling) acts in such a manner as to ensure that a LO-mode
level is always interspersed between any two successive
TO-mode levels.

Two cases of interspersion of LO and TO modes are
considered here. They are shown in Figs. 4(a) and 4(b).
Each case involves two LO-TO-mode pairs for which
there is no mechanical coupling between the modes and
the higher-frequency TO mode is labeled the T22 mode.
There are no restrictions as to the location of the uncou-
pled LO modes other than the normal one of lying higher
in frequency than their respective TO mode.

For the case in which v4,,=0 and v#,,(0) > vZ,(0), the
relationship of the longitudinal mode levels with respect
to the transverse levels is shown in Fig. 4(a) assuming
v%22(0)> v2,,(0). The levels on the left-hand side of the
figure, v4,,(0), v3,,(0), v},,(0), and v},,(0), are the trans-
verse and longitudinal mode levels for vZ ,(0)=0, i.e., the
charge coupling between the two longitudinal modes is
“off,” the argument “0” indicating that v},,=0.
Differences between the longitudinal and transverse levels
associated with each of the two oscillator modes
4mQ? /e, and 4mQ2%/e. are the result of the self-
interaction of the dipole oscillators through the
polarization-induced field. Since these two terms are al-
ways greater than or equal to zero, Eq. (30) shows that
the longitudinal level is always greater than or equal to
its transverse. Upon “‘turning on” the charge coupling
between the two modes, the longitudinal levels “repel”
each other as shown in the figure with v#,,(0) decreasing
by an amount I'}(0) to v, and v},,(0) increasing by the
same amount to v#,,. The quantity '}(0) is the longitu-
dinal mode level coupling coefficient upon turning the
charge-coupling term, v ,=47Q,Q, /€., “on.” From
Egs. (42) and (30) it can be shown to be expressed by the
relation

2I3(0)={[A3(0)]*+(87Q,Q, /€ )*} 2 —AZ(0)
where
A}(0)=v7,,(0)—v},,(0)
=AY 4+47Q3 /e, —4mQ? /e,
and
A%=V%22—V'zrn .

For the lower longitudinal mode level v, to lie between
the two transverse mode levels vy, >v;, such that
vZ,, > Vi, > v4,, requires that
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AT Q > T2 (0)> Aam Q2 ways satisfied regardless of the values of the charges o,

€, ! and Q, or the spacing of the transverse levels A%. Upon
Upon assuming that both A2(0)>0 and A}>0 are substituting the relation given above for I'}(0) into the
satisfied, it can be shown that the above mequalxty is al.  inequality, a little algebra reveals that

47
—03

— A2
- 01-4}.

41 41
6—Q%+€—Q%+A%~>

Am o 4T o,
erl erz

4
—0i

172
] ‘-‘Q1+

The left-hand and middle terms of this inequality relation are always positive regardless of the values for A%( >0), Q,,
and Q,, while the right-hand term may be of either sign. When the right-hand term is negative, the right-hand inequal-
ity is automatically satisfied. When this right-hand term is positive, all the terms in the above inequality relation can be
squared without invalidating the relation. A little additional algebraic manipulation involving the factoring of the
difference of two squares results in an inequality relation of the form

417' 4 4
““Ql Q2 Qz Q1 Qz :

I

This last inequality is seen to be satisfied for all allowed  but now

values of A%, Q,, and Q,. Accordingly, for v4;,=0 and ) ) )

v2,,(0)>v},,(0), the longitudinal mode level v},; must AL(0)=v1,1(0)—v1,(0)

always lie between the two transverse levels v2,, > v3 =470 /e, —4mQ2 /e, — A2

such that the inequality v3,, > v}, > V2, is satisfied. g 1o 2o
an

Similarly, for the case in which +%,=0 and
v$11(0)>42,,(0), the relation between the longitudinal
mode levels and the transverse levels is shown in Fig.
4(b), again assuming v4,(0)>v4,,(0). As before, “turn-
ing on” v ,=47Q,Q, /€, causes the longitudinal levels
o “repel” each other as shown in the figure, with v ,,(0)
decreasing by an amount I'}(0) to vZ,,, and vZ,,(0) in-
creasing by the same amount to v2;,. The longitudinal
mode level coupling coefficient '2(0) is still given by

'} (0)={[A}(0))*+(87Q,Q, /€, )*}'"*—A%(0) ,

A
€

0? QZ Am 03> AT 01 a2

-2}

47
—Q}+A% >

o

which is seen to be satisfied for all allowed values of A%,
Q,, and Q,. Thus, for v2,,=0 and 2 ,(0)> v{,(0), the
longitudinal mode level v{,, must always lie between the
two transverse levels v3,,> v, such that the inequality
V2y> V3, > VA, is satisfied. Interestingly, v#,, is lower
in value than v%,,. Normally, the LO-mode level of a

A%=V2T22“V%n .

For the lower longitudinal mode level v#,, to lie between
the two transverse mode levels v%,,>v%;, such that
V52> Vi, > VA requires that

;—Qz +A3>THO) > —Qz .

As before, a little algebraic manipulation and some fac-
toring reduces this inequality to

47 2
em QZ ’

—

LO-TO pair lies above the TO-mode level in value; how-
ever, when both levels of an LO-TO pair are intermediate
between the levels of another LO-TO pair, then the levels
of the intermediate pair are reversed, as in the case just
discussed.
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