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Polaritons in an n-i-p-i semiconductor superlattice: Bulk and surface modes
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We consider the propagation of bulk and surface polaritons of a superlattice consisting of n- and

p-doped semiconductors separated by an intrinsic semiconductor (n-i-p-i structure). Using a
transfer-matrix method we obtain the bulk modes in an infinite superlattice and the surface modes
in a semi-infinite superlattice. The effects of the charge of carriers at the interfaces of the doped
semiconductors and the thickness of the layers are analyzed. Our results can be specialized in order
to obtain the bulk and surface polaritons of a two-component (binary) dielectric superlattice.

I. INTRODUCTION

In recent years considerable effort has been devoted to
studying systems composed of alternating layers of
different materials, the so-called superlattices. ' Collec-
tive excitations that can propagate in these superlattices,
such as phonons, magnons, and polaritons, have been
studied and it was observed that their properties depend
not only on the materials used as the constituents of the
superlattices, but also on the ratio of the thickness of the
alternating materials.

Particularly the existence of electromagnetic collective
excitations on a superlattice, such as bulk and surface po-
laritons, can be understood in the following way. An ex-
citation of a polariton within a material layer produces
electric fields that extend outside its boundaries, and
these fields can couple with elementary excitations of the
other layers. Through the use of Bloch's theorem, one
sees that this coupling creates a set of collective excita-
tions of the entire superlattice. This collective mode is
characterized by a wave normal to the interfaces and can
transmit energy normal to the layers of the superlattice
structure. Taking Q as the wave vector normal to the in-
terfaces and L as the unit-cell length of the superlattice,
the bulk polariton can propagate when 0 & QL (n.
Surface-polariton modes exist in the regions above,
below, and in between the bulk bands. Among other im-
portant parameters in the dispersion relation of bulk and
surface polaritons on superlattices, the existence of two-
dimensional electron-gas layers at the interfaces of the
different materials on the superlattice plays an important
role. Recently Constantinou and Cottam obtained a
dispersion relation of bulk and surface polaritons on a su-
perlattice composed by a doped semiconductor and an in-
trinsic semiconductor. In this case, the superlattice is
composed of electron-gas layers separated alternately by
two media with different thicknesses and dielectric con-
stants.

The n-i-p-i crystal is a different superlattice composed
of doped semiconductors that presents many interesting

properties. This system, which is formed by a periodic
array of n- and p-doped semiconductor layers, separated
by an intrinsic semiconductor, was proposed by Dohler '

some years ago. A certain fraction of the donors and ac-
ceptors will be ionized, producing doped layers with posi-
tive charge in each n layer and negative charge in each p
layer.

In this paper we obtain the dispersion relation for bulk
and surface polaritons on an n-i-p-i semiconductor super-
lattice structure by using the transfer-matrix technique.
The results of Camley and Constantinou and Cottam
are obtained as particular cases of our results.

The remainder of this paper is organized as follows. In
Sec. II we present the general theory for both bulk and
surface polaritons propagating on an n-i-p-i superlattice.
In Sec. III we present special cases that can be obtained
from our results. Section IV is devoted to a discussion of
numerical results and a summary of our principal con-
clusions.

II. GENERAL THEORY

A. Bulk modes

The n i p istruct-ur-e -that we consider in the present pa-
per is shown in Fig. 1. Materials A and C are n- and p-
doped semiconductors with dielectric constants e, (co)
and e, (co), with thickness a and c, respectively. Materials
B and D are intrinsic semiconductors with frequency-
independent dielectric constant eb and ed, and thickness
b and d, respectively. The unit-cell length is
L =a +b +c +d, and is designated by the index n, as il-
lustrated in Fig. l. In the nth unit cell, at the interface
defined by z =nL and z =nL +a, we have a two-
dimensional hole gas (2D HG), and at z =nL +a +b and
z =nL +a +b +c we have a two-dimensional electron
gas (2D EG), respectively.

Considering an isolated slab, we assume a p polariza-
tion for the electromagnetic mode, characterized by a
wave vector k parallel to the xy plane. Since we assume
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of the electric field and the y component of the magnetic
field in each layer of the nth cell is given by

2 = (n+2) L
and

E'"'(z
[
I ~)= A(")e '+ A'"'e '

xj 1j 2J (2.5a)

( n I) th Cell

Z =(nil) L

a(")(z
~

k~) = —t
' '

( A '"'e ~' —A '")e ~')8 lj 2j

where e, =e/(~) and

(k„—e, co /c )', k„&e,ct2/c

CX

i (e co /c k, )—', k„&e~co/c .

(2.5b)

(2.6)

Cb nt h Cell

The boundary conditions for the electromagnetic field
at the interfaces are that the component E„'~'(z

~

ken) is
continuous across an interface and the magnetic field

Hyg is discontinuous across an interface, due to the pres-
ence of a current density at the interface, given by

Z= nL

( n - I) th Cell

2

J„'"'(z
~

kco)=i E," (z
~

kcc)),
mpN

(2.7)

= (n- l) L

where the subscript p reads e for electrons or h for holes,
n is the carrier concentration per unit area, and m * is
the efFective mass of the charge carriers. Therefore, using
the boundary conditions for the electric and magnetic
fields given by Eq. (2.5) at the interfaces z =nL+a,
nL+a +b, nL +a+b+c, and z =(n +1)L, we obtain
the following equations:

FIG. 1. A schematic illustration of an n-i-p-i superlattice of
period L. The n and p layers contain 2D HG and 2D EG gas
layers, respectively, separated by media C and D of different
thickness and dielectric constants. The unit cells of the struc-
ture are indexed by n, as illustrated.

&a( A'la'fa —A 2afa }=(&b+ah }A lb ( be+ ha}A 2b

A ', b fb + A 2b fb = A inc + A 2nc',

eb( A lbfb A 2bfb ) =(ec ae }A (c
—(ec +ac ) A—2c

(2.8a)

(2.8b)

(2.9a)

isotropic materials we can take k parallel to the x axis
without loss of generality. Thus the electric and magnet-
ic fields can be written as

E'" (x, t)=(E„'"'(z
~

ken), O, E,'"'(z
~

ken))e
&c(A'1"c'fc —A2c'fc)=(&d ae}Ald (—ed+ac)A2d

(2.9b)
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and
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~
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(2.1)

(2.2)

A( )fn+ A (n)f A (n+1)+ A (n+1)
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(2.10b)
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Inside each layer these fields satisfy Maxwell's equa-
tions

crh )A la
—(ea+(Th)A2a (2.11b)

1n Fqs. (2.8)—(2. 1 1}we have redefined A,J"' and A z~' as

and

2

V X V X E'"'(x, t) = ROE'J(co) E'"'(x, t),at'

'())'X H'"'(x, t) =E()e, (co)—E'"'(x, t),

(2.3)

(2.4)

A'",'= A ",'exp[( —1) a, nL],
A'"b ——A '"b'exp[( —1) ab(nL +a}],
A '",'= A '",'exp[( —1) a, (nL +a +b)],

(2.12a)

(2.12b}

(2.12c)

A'"d ——A '"dexp[( —1) ad(nL +a +b +c)], (2.12d)

where co is the vacuum permittivity, t.. is the dielectric
constant, and j =a, b, c, or d.

From Eqs. (2. 1)—(2.4), we have that the x component

where m=1,2, and

p'. =p /(z, j =a, b, c,d (2.13}
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n e 2

0
m*CO28

'
p 0

p=e, h . (2.14)
From the definition of the transfer matrix in Eq. (2.22)

and using Eqs. (2.19) and (2.20) we can show that
detT= 1; therefore

The functions f, are defined by
—a.j=e (2.1 5)

T22 T12

—T21 T11
(2.27)

and

(2.16)

L

and hence, from Eqs. (2.26) and (2.27) our dispersion rela-

tion for the bulk modes is simply given by

Eqs. (2.8) —(2.11) can be written in a matrix form as

M.
~

A.'"'&=X,
~

A,'"'&,

Mb i
Ab"') =X,

i A,'" ),
M, ( A,'"'& =X„)A,'"'&,

M„( A,'"'& =X.
[

A I"+"&,

where we have defined the matrices

(2.18)

(2.19)

Defining for each medium, the two-column vector
'g(n)

1j
Aj ) A(n) (2.17)

2J

cos(QL}=—,'TrT . (2.28)

B. Surface modes

In order to study the surface modes on an n-i-p-i super-
lattice we consider the geometry illustrated in Fig. 2. In
this case our structure is terminated at the plane z=0,
with the half-space z~O filled with a materia1 that has a
frequency-independent dielectric constant e, . Then the
periodicity in the z direction is destroyed and we can no
longer assume Bloch's ansatz as in Eq. (2.23}. Therefore,
we have to consider electromagnetic modes that have
their excitations 1ocalized in the near vicinity of the inter-
face between the material with dielectric constant e, and

the superlattice. For these modes, instead of Eq. (2.23}

and

1
N =

e' —crJ P
—E'J —0 P

(2.20)

with p =h for j =a, b and p =e for j =c,d.
From Eqs. (2.18)—(2.20) it is easy to see that

~
A,

"+"&=T
~ A,'"'&, (2.21)

where the matrix T is given by

dNd ', , 'MbNb ' (2.22)

The matrix T in Eq. (2.22) is a transfer matrix because
it relates the coefficients of the electric field in one cell to
those in the preceding cell. Taking into account the
translational symmetry of the problem, we can use
Bloch's ansatz, that is

' n=t

i

A'"+")= '~
~

A'"')
J

Using Eqs. (2.21) and (2.23), we have that

T
~

A'"') =e'&
~

A'"')
J j 7

T-'
~

A'" )= -' '~ A'"')
J J

(2.23)

(2.24a)

(2.24b)

(u)
c

' Z=L

n=o

and consequently

[cos(QL)I ——,'(T+T ')j
~

AJ"') =0 . (2.25)
C (~)

Since
~

AJ"') is a general vector of the structure con-
sidered, the dispersion relation of the bulk polaritons on
the n-i-p-i superlattice will be given by

cos(QL)I= —,'(T+T ') . (2.26)

Z=0
s

FIG. 2. Semi-infinite n-i-p-i superlat tice. The structure
presents the same periodicity as in Fig. 1, but is terminated with

the half-space z ~ 0 filled with material of dielectric constant e, .
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we consider that

A( +(() f3I—.
l

A( ()
J J (2.29)

T12 ~ la —PL

21 22 ~ 2g

la

g (O)
20

(2.35)

cosh(PL) =—,'TrT . (2.30)

Since we now have to consider a boundary condition at
the plane z=0, this implies a further constraint in Eq.
(2.30). In fact, the solution of Eq. (2.2) for the x com-
ponent of the electric field and the y component of the
magnetic field, in the region z & 0, is given by

and

E('((z
l

kco)=E"(k
l
co)e ' (2.31a)

with Re(P) &0, in order to obtain a localized mode.
Therefore, Eq. (2.28) still holds, provided we replace Q by
ip, i.e.,

From Eqs. (2.33)—(2.35) the coefficients E' (k
l
co),

3 ', ,', and A 2,
' can be eliminated, and then we obtain

( T((+ T(qk)A, = Tq(+ TqqA, ,

with

(2.36)

e, +e,
I I—Ea s

(2.37)

Equation (2.36) represents an implicit dispersion rela-
tion for the surface polaritons on the n-i-p-i structure. In
fact, once Eq. (2.36) is solved we must obtain a value of p
which satisfies Eq. (2.30), provided that Re(P) & 0.

where

l COFOEs
E(g)(k

l
)

s

CK

(2.31b)
III. SPECIAL CASES

A. Superlattice of alternating layered electron gases

1/2
CO CO

(2.32)

At the interface z=0, the x component of the electric
field and particularly the y component of the magnetic
field are continuous. Consequently, using Eqs. (2.5) and
(2.31) we have that

The dispersion relation of polaritons in a superlattice
of alternating layered electron gases calculated by Con-
stantinou and Cottam can be obtained from our results
as a particular case. For this we have to consider in our
calculations, a =c, b =d, and 0.

&
——0, Therefore the

periodicity of the superlattice is L =a +b, and to obtain
the transfer matrix it is necessary to consider only the
boundary conditions given by Eqs. (2.8) and (2.9). Thus
the transfer matrix will be given by

E"(k
l

)=A, '+A' ' (2.33) Tl —N, 'MbNb M, ~ (3.1)

and

e,'E"(k
l

co ) = —e,' ( A ',,' —A ', ), (2.34)

where M, b and N, b have been defined in Eqs. (2.19) and
(2.20), respectively. With Eqs. (2.28) and (3.1) the disper-
sion relation of bulk polaritons in this superlattice is
given by

respectively, where we have defined e = e la, .
Since the surface mode can be associated to the bulk

mode, provided we replace Q by iP, Eq. (2.24a) can be
written for the vector A, ') in the form

cos[Q(a +b)]=—,'TrT, . (3.2)

Using the definitions of the matrices M, „, Eq. (2.19),
and N, b, Eq. (2.20), the trace of T( is equal to

a, Cab

TrT, = [a,(f,fb f,f, f,f, +f—,f, )+—2&,e,+b(f,f, f,f,)—
4E~ Gb

+2+ cab(f. fb f.fb )+(&ob )'(f.fb—+fofb ) (& b )'(fafb+fa—fb )] (3.3)

with e-.b ——e.+eb.
Substituting Eqs. (2.13), (2.15), and (2.16) in Eq. (3.3), the dispersion relation in Eq. (3.2) can be written in the form

CX 0,'b
cos[Q(a +b)]=

26~ Eb

2

2o., +
0!

2
Eb

+ sinh(a, a)sinh(abb)
CXb

ea—20e
a

Cb 2Ea ~b
cosh(a, a)sinh(abb)+ sinh(a, a)cosh(abb) + cosh(a, a)cosh(abb)

CXb 0!go b

(3.4)

Particularly, if we consider the limit where retardation effects can be neglected, we have that
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and consequently Eq. (3.4) is simplified and we obtain

K„[cosh[( 1+s }K„]—cosh [( 1 —s)K„]j

(r +1)sinh[(1+s)K„]—(r —1)sinh[(1 s)K—„]+F'~

with

F =2(r + 1)[ cosh[(1+s)K„]cosh[(1 s)K—„]—1 ] —2(r —1)sinh[(1+s)K„]sinh[(1 —s)K„]

+4r cosh[(1+s)Q, ] t cosh[(1+s)K„]cosh[(1—s)K„]],

(3.6)

(3.7)

where we have introduced in Eqs. (3.6) and (3.7) the same
notation used by Constatinou and Cottam, that is,
K„=k„a, Q, =Qa, r =e, Ieb, S =b/a, and Q=(n, e I
am "e e )'"

B. Plasmons in superlattices

Another special case of our results is the dispersion re-
lation of bulk plasmons obtained by Camley and Mills.
In this case the superlattice is constituted by two dielec-
tric materials A and 8 with dielectric constants e, (cu}
and eb (frequency independent), respectively, on which
the retardation efFect is ignored. The dispersion relation
of bulk plasmons in this superlattice can be obtained
from Eq. (3.4), by considering a, =ab ——k and o, =0.
Thus, using these restrictions in Eq. (3.4) we obtain

cos[Q(a +b)]= [(e, +eb)sinh(ka)sinh(kb)
Ea Eb

+2e, ebcosh(ka)cosh(kb)],

(3.8)

which corresponds to the result obtained by Camley and
Mills.

A different way to obtain Eq. (3.8) is to consider in the
n-i-p-i superlattice o„o.h ——0, a =c, and b =d. Thus, the
transfer matrix in Eq. (2.22) is given by

T=(T, ) (3.9)

with T& given by Eq. (3.1). Therefore Eq. (2.28) can be
written as

cos[2Q (a +b ) ]=—,
' Tr(T, ) . (3.10)

cos [Q (a +b) ]= —,'(TrT, ) (3.1 1)

+cos[Q(a +b)] = —,'TrT, . (3.12)

The two roots in Eq. (3.12) mean that we need to con-
sider only 0 & Q & n /2, instead of 0 & Q & m as used in Eq.
(3.8).

IV. RESULTS AND DISCUSSION

In order to obtain numerical results we consider the
dielectric materials A and C as Si doped with n and p im-

Using the matrices M, b and N, „defmed in Eqs. (2.19)
and (2.20), with o, =o b

——0, we can show that Eq. (3.10)
is equivalent to

purities. Since we do not use highly-doped semiconduc-
tors, we assume that e, (co)=e, (co), and the dielectric
constant of the Si can be taken as

e(co) =eL(1 —co'/co~ ) . (4.1)

where eL ——11.7 is the background dielectric constant of
the material, and co =7.65/10' s ' is the electronic
plasma frequency and we consider e(co) independent of
the impurity density. The effective mass of the electrons
and holes are related to the electron mass mo by

m,' =0.2mo and mz* ——0.4mo, respectively. ' We also as-
sumed that the dielectrics b and d consist of Si02 with
dielectric constant e&

——ed ——3.7.
In Figs. 3(a) and 3(b) we plot the dispersion relation for

bulk polaritons by considering the semiconductor layers
(n and p) with 400 A of thickness and the insulators with
200 A of thickness. We also consider that the density of
electrons and holes at the interfaces are equal to 2)& 10'
carriers/m . We observed the existence of four bands
separated by gaps that tend to crowd together when k in-
creases.

In Figs. 4(a) and 4(b) we present the dispersion curve
for bulk polaritons on which the layers have the same
thickness as shown in Figs. 3(a) and 3(b), but with a den-
sity of carriers (electrons and holes) at the interfaces
equal to 4X10' carriers/m . Comparing Figs. 3 and 4
we see that the increase in the density of charges at the
interfaces changes the values of frequency on which the
modes tends to crowd together. We also observe for the
two upper bands, Figs. 3(b) and 4(b), that the larger den-
sity of charges corresponds to larger bulk bands for small
values of k. The effects observed for the bulk bands with
large density of charges at the interfaces can also be
found in systems on which the layers have a small thick-
ness.

In order to analyze the dispersion relation of surface
polaritons on the n-i-p-i structure, we consider in Figs.
5(a) and 5(b) a superlattice with all layers with the same
thickness and equal to 400 A. We also assume that the
density of charges (n and p) at the interfaces are the same
absolute value and equal to 2&& 10' carriers/m .

In Fig. 5(a) we have one surface mode localized below
the lower bulk band, corresponding to PL purely real and
positive, and another surface mode inside the gap be-
tween the bulk bands, which is associated with
PL =i vr+X, , where X, is positive. In Fig. 5(b) we see two
surface modes, above and below the bulk bands, corre-
sponding to PL purely real. The other mode between the
gap of the bulk bands corresponding to /3L =ivr+Xz,
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