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Picosecond response of photoexcited GaAs in a uniform electric field by Monte Car&o dynamics
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The transient electrical response of GaAs photoexcited by a subpicosecond pulse, in the presence
of a uniform biasing electric field, has been studied with use of a Monte Carlo calculation. Nonin-

teracting electron transport is considered, using the three-valley model for the conduction band.
Scattering from acoustic, optical, and intervalley phonons is included. The valence-band dispersion
relations and valence- to conduction-band momentum matrix elements needed to treat the optical
absorption were obtained from a full-zone k p calculation. The optical absorption has been given a
realistic treatment by including an effective energy linewidth resulting from the combination of the
Fourier transform of the driving pulse, electron-phonon scattering, and the effect of the applied
electric field. The average electron velocity is found to overshoot its steady-state value only if the
electric field is larger than a critical value which increases with the photon energy. For example,
these calculations indicate that at 5.0 kV/cm overshoot occurs for a photon energy of 1.5 eV but not
for 1.7 eV. Velocity overshoot is seen to occur when the steady-state average electron energy (for
the given applied field) is larger than the average electron energy of the initial photoexcited distribu-
tion. The regime of applied field and photon energy necessary for overshoot is mapped out.

I. INTRODUCTION

Design of semiconductor devices with desired high-
speed properties requires an understanding of how the
microscopic dynamics of carrier transport results in a
particular electrical response. The transient response of a
semiconductor is a direct consequence of the relaxation
of the carrier distribution towards its steady state. The
relaxation depends on the interactions of the carriers
with the lattice and with each other, as well as on the de-
tails of the band structure. An accurate microscopic
model of the carriers' dynamics therefore can be a very
useful predictive tool. The Monte Carlo (MC) method'
can be employed in the accurate calculation of individual
semiclassical electron (and hole) trajectories and thus, can
ultimately give the macroscopic response. At the same
time its appeal to physical intuition and direct interpreta-
tion make it ideally suited to these distribution relaxation
problems.

Laser excitation provides a convenient method for sud-
denly changing the carrier distribution and then follow-
ing the relaxation. Current experimental techniques al-
low for measurement of electrical transients in semicon-
ductors on the subpicosecond time scale. Experiments
have been performed in which a colliding-pulse, mode-
locked (CPM) laser is used to produce a train of pulses
that have durations of about 100 fs and energies of 2.0
eV. The beam of pulses is split into two beams, with a
timing relationship that can be precisely varied. One
beam is used to photogenerate electron-hole pairs in an
electrically biased semiconductor sample, and the second
beam is used in the temporal sampling of the electrical
response. The sampling can be performed either with
a short response-time photoconductor or with an elec-
trooptic polarizing material.

The CPM lasers that have been used for such experi-

ments are tunable only over a very narrow spectra range
near 2.0 eV. However, experimental studies for a range
of photon energies are needed to fully characterize photo-
conductive response, because the initial carrier distribu-
tion depends strongly on the photon energy. Experimen-
tal techniques to generate spectrally tunable subpi-
cosecond pulses are becoming available. ' To aid in the
interpretation and understanding of these types of experi-
ments, we present a MC calculation of the relaxation of
the distribution for photoexcited GaAs in the presence of
a uniform electric field. In particular, the dependence of
the response on the photon energy will be determined.

The dynamics of carrier relaxation toward a steady-
state distribution depends on the initial distribution and
on the steady-state distribution. The initial distribution
is determined by the characteristics of the 1aser pulse,
principally the photon energy, and the steady-state distri-
bution is determined by the electric field. In this paper
we present a systematic series of Monte Carlo calcula-
tions of electron relaxation in GaAs. We consider the
case in which the electrons are generated by a 100-fs opti-
cal pulse and the GaAs is biased by a uniform electric
field. We investigate the dynamics of the electron relaxa-
tion as a function of the photon energy and the magni-
tude of the applied field.

Similar MC calculations have been performed with a
field, but using as initial condition the state with all car-
riers at rest at k=O. It is impossible to create this situa-
tion experimentally. Photoexcitation results in the initial
carrier distribution occupying two or three shells in k
space, one from each of the highest valence bands. For
the k=O initial condition, MC calculations predict that
the transient average carrier velocity overshoots its
steady-state value, sometimes by a large factor. The ini-
tial condition produced by photoexcitation, however, can
lead to completely different results, such as a lack of any
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overshoot feature. In this paper we determine the condi-
tions on the photon energy and bias field for electron ve-

locity overshoot to occur.
Our calculations indicate that an accurate determina-

tion of the photoexcited distribution (and therefore its
average electron energy) is necessary for an accurate
modeling of the electrical response. We find that velocity
overshoot occurs only when the initial-state average elec-
tron energy is less than the steady-state value. The initial
average energy is roughly proportional to the photon en-

ergy minus the band gap, and the steady-state average en-

ergy is a nonlinear function of the applied field, so that
the presence of velocity overshoot is determined by the
relative size of the photon energy compared with the
field.

We have calculated the photoexcited distribution by
using valence bands obtained from a full-zone k p calcu-
lation, while using a nonparabolic effective-mass fit to the
I valley of the conduction band. The fitting procedure
for the conduction band (as opposed to the full-zone k p
results) was used to be consistent with the description of
the conduction band in terms of its I, L, and X valleys in
the MC calculation. In this way the scattering processes
are easier to treat. Effects of an absorption linewidth
have also been included, through use of the Maxwell-
Bloch equations with a damping time T2, applied to a
light pulse with an electric field varying with time ac-
cording to sech(t iso), where ro is a width parameter. In
these calculations, the laser intensity is assumed to have a
full width at half maximum (FWHM) of 100 fs, and pho-
ton energies will be considered from 1.5 to 2.2 eV. The
time T2 is determined in a self-consistent manner by the
total carrier scattering rate and the applied electric field.
Typically we will have T2 &(~o so the line shape will be
Lorentzian with energy width varying as 1/T2. Because
of the energy dependence of the scattering rates, the
linewidths will be functions of both the electric field and
the photon energy. For moderately large fields and pho-
ton energies, the widths can become as large as =100
meV. We have found, however, that the net effect of this
energy width for most cases of interest has been rather
small.

To obtain the leading-order response behavior, a num-
ber of simplifying assumptions have been used. First of
all, for the low number density limit, carrier-carrier in-
teractions are excluded. This approximation is valid at
low laser intensity. At room temperature, the photogen-
erated carrier density should not exceed about 10' cm
The electric field is assumed to be uniform. This latter
condition may actually be dif5cult to satisfy experimen-
tally. Device response calculations based on a macro-
scopic continuum model indicate that the response of a
high resistivity photoconductor to a moderate intensity
subpicosecond pulse involves a collapse of the electric
field, due to the opposing directions of electron and hole
drift. " Using low laser intensity, so that the photogen-
erated carrier density is small, minimizes the effects of
the collapsing electric field. " We take into account only
the transport of electrons, assuming that the lower drift
velocity of the holes makes their contributions to the
electrical response much smaller. ' As mentioned above,

the conduction band will be considered as composed of
the valleys at points I, L, and X. This means that the
process of drifting from the I point over the energy peak
and then into either the L or X valley is excluded. Typi-
cally the scattering rates increase strongly enough (mov-

ing up in the band) so that this process is improbable.
The band structure for GaAs as obtained from the

full-zone k p calculation is reviewed in Sec. II. Details of
the model employed for the MC calculation, including
the necessary scattering rate parameters and valley fitting
constants, are discussed in Sec. III. Results of a steady-
state transport calculation of GaAs are also given. In
Sec. IV the details of how the photoexcited initial distri-
bution was generated and how the linewidth was included
are discussed. Results are presented in Sec. V for GaAs
with fields up to 50 kV/cm and photon energies ranging
from 1.5 to 2.2 eV. Our conclusions concerning the
trends in the photoresponses are discussed in Sec. VI.

II. BAND STRUCTURE FOR GaAs

It is straightforward to apply the k p pseudopotential
method to the GaAs band structure. The calculation was
carried out by first using a basis of 113 plane-wave states,
corresponding to reciprocal-lattice vectors of the zinc-
blende structure with squared magnitudes of 0, 3,4, 8, 11,
12, 16, and 20 [in units of (2~/a)z]. After diagonaliza-
tion for k=0, only the 27 lowest energy states are re-
tained. The spin-orbit interaction is added at this point,
with splitting parameters 60=0.34 eV and 6&=0.22 eV,
and the 54 X 54 matrix is then diagonalized for a range of
k. Input to the calculation is through the pseudopoten-
tial form factors, which have been taken from Ref. 13, for
300 K. We modified these form factors slightly to those
given in the caption of Fig. 1, in order to enforce the
band gap to be 1.44 eV, and the splittings from I to L
and from I to X to be 0.33 and 0.52 eV, respectively.
The lattice spacing is taken to be a =5.6533 A

The resulting band structure is shown in Fig. 1. An
effective-mass fit to the I valley of the conduction band
gives m*/mo=0. 077, with a nonparabolicity parameter
o.=0.8 eV '. It is difficult to find a set of pseudopoten-
tial form factors that will produce an effective mass and
nonparabolicity close to the accepted values of 0.063 and
0.69 eV ', respectively. Correspondingly, heavy-hole
and split-off hole masses are approximately 0.7 and 0.2,
reasonably close to accepted values. Similarly we can es-
timate the resulting effective conduction-band masses
near the L and X points. Taking these as ellipsoidal val-

leys, approximate longitudinal and transverse masses
turn out to be m& /mo =1.5, m, /mo =0.12,
mr /mo = 1.5, and m, /mo =0.25. These values were
used in the fits to these valleys for the MC calculations.
The major utility of this band-structure calculation, how-
ever, was in employing its valence bands for the photoab-
sorption calculation, and also in using the valence- to
conduction-band momentum matrix elements for correct-
ly weighting the allowed optical transitions. The conduc-
tion band (I valley), however, was fitted with an effective
mass of 0.063mo and nonparabolicity of 0.69 eV ' for
the photoabsorption calculation, in order to use the same
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fit in the MC calculation and therefore to conserve ener-

gy correctly.

III. MONTE CARLO MODEL AND STEADY-STATE
RESULTS

The MC method as applied to transport in semicon-
ductors has been described in Ref. 1. In the semiclassical
approximation, drift of a carrier in the applied electric
field is treated classically as smooth motion in a band, in-
terrupted by quantum-mechanical scattering events that
discontinuously change the carrier's wave vector k. The
conduction band can be described in terms of the valleys
at I [k=(0,0,0)], L [k=( —,', —,', —,')2nla and other sym-

metric points in the star of k] and X [k=(1,0, 0)2n/a
and other symmetric points in the star of k], with inter-
valley phonon scattering making transitions between the
valleys possible. The L and X valleys are taken to be el-
lipsoidal and nonparabolic. In this way, in an applied
field the three X valleys and four L valleys become ine-
quivalent for an arbitrary field direction, and effects of
this k-space anisotropy are retained. There may be some
dependence of the response on the field direction that
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cannot appear if all the valleys are taken to be spherical.
This effect might be expected to be strongest for large
electric fields. The ratios of transverse to longitudinal
effective mass have been taken from the full-zone k p cal-
culation, and the density-of-states masses md =(mim, )'
have been fixed to values given in Ref. 4, which also was
the source for the valley nonparabolicity parameters.
Thus the dispersion within each valley is given by a rela-
tion

e(k *)=Eo+
1

2'
$2—1+ 1+4a (k*)

2mp

1/2

where

(k')= k+ k
mp mp

mt ml

Here cp is the energy at the bottom of the valley, and kI
and k, are the longitudinal and transverse components of
k as measured in the valley, and e is the nonparabolicity
parameter.

The electrons are assumed to scatter from acoustic, po-
lar optic, nonpolar optic (only in the L valley), and inter-
valley phonons. In the low number density limit we ex-
clude carrier-carrier interactions. A fictitious "self-
scattering" is also included, so that the time intervals be-
tween scattering events can be chosen from an exponen-
tial distribution. (See Ref. 1.) The interaction Hamiltoni-
ans for each type of scattering process and expressions
for the scattering rates can be found in Refs. 1 and 2;
coupling constants and phonon frequencies have been
taken from Table I of Ref. 4. The total scattering rate
due to real physical processes (excluding self-scattering)
will depend on the valley as well as on the carrier energy.
Measuring all energies relative to the energy at the I
point, the total scattering rates for GaAs at 300 K are
shown in Fig. 2, including contributions of phonon emis-
sion and absorption processes.

For noninteracting electrons, a large number of single-
electron trajectories can be generated, and then averages
of time-dependent quantities can be made by averaging
over all the trajectories. For each trajectory, the final k
state after each scattering event and the times of the
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FIG. 1. GaAs band structure from the full-zone k p calcula-
tion. In the notation of Ref. 13, the nonzero pseudopotential
form factors, in Rydbergs, were V3 = —0.237, V3 =0.07,
V4 =0.0496 Vg =0.01 Vl l

=0.0628, and Vl"1 =0.01. (a) Shown
over the whole zone vs k. (b) Region near k=0 vs k, to exhibit
the deviations from parabolic bands.
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FIG. 2. Energy dependence of the total electron-phonon
scattering rates, including acoustic, optical, and intervalley pho-
nons. The curves correspond to an electron in the I valley
( ), L valley (

———},and X valley ( . - -).
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events are enough to reconstruct the electron's k state at
any desired time. For the scattering time intervals to be-
long to an exponential distribution, they are chosen with
a random number Ocr&1 by

2.5
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0

b, t, = I o 'ln(r) where I O=I h„,+ I „. (3)
1.5
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o

The constant I o is a scattering rate chosen to be greater
than the sum of the rates of all the real physical process-
es 7

phyg and it is assumed that the electron energy never
exceeds some chosen maximum value. The difference
I o

—I h„,(E) gives the self-scattering rate I „,at the ener-

gy c.. When a self-scattering event occurs, the electron's
final state is set equal to its initial state, and it continues
to drift in the field as if no scattering occurred. The term
"self-scattering" is a misnomer; a better name for it
might be "nonscattering. "

Between scattering events, the equation of motion is

Ak=qE, (4)
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where q is the charge and E is the applied field. At each
scattering time the type of scattering process is chosen
randomly but according to the relative probabilities of
each of the allowed processes, using a random number
generator. The random number generator is also used to
choose an allowed final state, from those consistent with
conservation of energy and momentum. For scattering
from optical photons, choosing from the allowed states is
relatively easy because the phonon frequency is fixed.
For acoustic phonons the choice is more difficult and a
"rejection technique" for choosing final states of the
desired distribution is used (as in Ref. 1).

The time-dependent response quantities of most in-
terest are the average velocity (or current), the average
carrier energy, and the relative populations of the valleys.
This velocity is determined by

For the steady-state case, time averages of these quanti-
ties can be easily calculated, and fewer electrons are need-
ed to get small statistical errors than are needed for
time-dependent problems. As an example, we have
reproduced the calculation of the steady-state conduction
in GaAs at 300 K, using the trajectories of 400 electrons
for 100 ps. The beginning 20 ps of each trajectory was
discarded. Results for the average velocity and energy
versus the applied field (in the [100] direction) are shown
in Fig. 3. The initial condition consisted of all electrons
starting at k=0, with averages formed from the data
after the initial transient passed. The carrier energy
tends to saturate because the scattering rates, which in-
crease with energy, compete against the applied field,
tending to prevent the energy from increasing. The ener-
gy versus field curve will be relevant for estimating the
velocity overshoot regime for the time-dependent pho-
toexcited transport problem.

IV. GENERATION OF THE PHOTOEXCITED INITIAL
DISTRIBUTION

We consider a laser pulse with vector potential varying
as

0.1
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FIG. 3. Results of a steady-state MC calculation for GaAs at
300 K. The average electron velocity and energy were obtained
by simulating the trajectories of 400 electrons for 100 ps, after
discarding first 20 ps containing the transient effects of the k=0
initial condition.

A(t)= Aoae 'sech(tlro), (6)

with amplitude Ao, polarization unit vector c, , center fre-
quency cvo, and envelope width parameter ro. (For this
envelope, the laser intensity FWHM is 1.76ro). If effects
of the absorption linewidth due to damping are excluded,
and also ~,~, »1, then the rate for a transition from a
valence-band state Uk to a conduction-band state ck is
given in the dipole approximation by Fermi s golden rule,

W= ((czar&;„,~vk)~ 5(s, —E„—Acvo), (7)

with interaction Hamiltonian

e Ap.lnt
0

Here the envelope slowly modulates the transition rate.
The general case with damping will be considered in
more detail below. States in k space are chosen satisfying
the 6 function, with the conduction band described by
Eq. (1) and the valence-band dispersion c, (k) derived
from the full-zone k.p calculation. The 5 function
defines an equi-energy surface in k space. After choosing
a random direction in k space, the magnitude of k for the
transition from a chosen valence band is found numeri-
cally. When computing averages, the subsequent MC
trajectory of the electron created at that k is then weight-
ed by the momentum matrix element ((c&~e.p~v&) ) . An
initial distribution of electron states will be composed of
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either two or three peaks, due to the two or three allowed
valence- to conduction-band transitions, and they will
have small energy widths caused by the angular depen-
dence of the valence-band dispersion relations. For tran-
sitions from a given hole band, numerical integration of
the transition rate over the equi-energy surface then gives
the relative contribution of transitions from that hole
band to the absorption. Initial electron states are thus
created from the two or three allowed transitions with
the appropriate relative numbers (as determined by these
integrals involving the optical matrix elements). The to-
tal absorption coefficient a,b, and the contributions from
the three transitions are shown in Fig. 4.

Strictly speaking, Fermi's golden rule as given above
should be used only in situations where the electron will
not likely scatter during the laser pulse time interval. If
the scattering rate is high enough, however, a linewidth is
introduced due to the finite lifetime of the excited state.
Similarly, an applied field also causes a finite lifetime and
therefore a linewidth. The effects of both of these pro-
cesses can be incorporated in terms of a damping time T2
as a parameter for the Maxwell-Bloch (MB) equation. If
the electron-photon interaction Hamiltonian is written in
the form

3.0

2.0
C3

0.0
1.4 1.6 1.8 2.0 2.2 2.4

Here Ac, is the transition change in energy between
valence and conduction bands, as in

FIG. 4. Calculated GaAs absorption coefficient, as obtained
by using optical matrix elements from the full-zone k p calcula-
tion. The relative contributions from the three valence bands
are indicated; these were applied to the generation of the pho-
toexcited initial electron states.

%;„,=y(k)a (t),
with

he=a, (k) —E, (k) . (13)

ego
&c), la plvg&,

moc
a (t) =2cos(coot)sech(t Iso),

y(k)=

w(t) = —a (t)F(t),1

then the transition rate w (t) is given by

(10)

Equation (12) can be solved by Fourier transforms. Per-
forming the inversion by summing over the required
poles produces the following expressions for the time-
dependent transition rate: for t &0,

I 12 (2n+1)t j~o
4~pl P I

oo t„e
w(t)= sech(t/ro) g (

—1)",(14)
„=o (Qro) +t„

where F(t) satisfies the MB equation in the form

d'F 2 dF b, c, 1 2lyl da+ a
dt2 T2 dt I T22I dt T2

(12)

vo
t =(2n +1)+n T2

and for t) 0,

(15)

w(t)=

—(2n+1)t jro
4&o y t„e

sech(tlro) —g (
—1)"

$2 „=p (Qro) +t „
—t/T 2

+a [sina sinhP sin(At)+cosa cosh/icos(Qt)]
cosh( 2P ) +cos( 2a )

o ~&o ~n&o
t„=(2n +1)—,a=, P=

T2
' 2T2' 2

(16)

(17}

where the detuning from resonance 0 is given by

0—
Crap

Some typical curves of w (t) for damping ratio
~o/T2=1. 5 are shown in Fig. 5, for a range of detuning
frequencies Q. Integration of w(t) over all time for a

range of A gives the line shapes (disregarding effects of
the slowly varying momentum matrix elements) shown in
Fig. 6, for a range of damping ratios. For small damping,
~p/T2 & 1, the line shape is fit approximately by
sech (nQro/2), i.e., the squared Fourier transform of the
driving field, and the half width varies as 1/~o. For larger
damping, the line shape becomes Lorentzian with half
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For the simulations presented here this is not a problem
because the response well after the light pulse is desired,
and the pairs can be thought of as being created almost
simultaneously. The recombination can be treated in
terms of negative weights for the trajectories of electron-
hole pairs that were created when w(0. For most cases
only the transition from the split-off band will have such
low damping, for a 100-fs pulse. Such transitions con-
tribute the smallest number of electrons to the conduc-
tion band. (See Fig. 4.)

The damping time T2 is determined as follows. The
damping rate I/T~ should have a contribution I/r„, «
due to the total scattering rate of the electron, plus a con-
tribution due to drifting in the applied field, written in
terms of a drift time as 1/~drift,

FIG. 5. Time-dependent absorption transition rate m(t), for
fixed ~p/Tp=1. 5. From top to bottom, the curves correspond
to values of the detuning frequency Q~o of 0, 0.5, 1.0, 1.5, and
2.0. Note that while t=0 corresponds to the center of the laser
pulse, w(t) peaks slightly after t=0, depending on the damping
and detuning.

width I/Tz. For most cases considered here, with a laser
intensity pulse with FWHM equal to 100 fs, such that
~o=28.4 fs, the transitions will be heavily damped. For
example, for the transitions from the heavy-hole band,
the damping time T2 can be around 10 fs, producing a
FWHM up to about 120 meV. Low damping will occur
only for photon energies just above 1.44 and 1.77 eV,
where transitions into states near k=0 take place. Then
the effective damping time T2 =370 fs when there is no
field.

For low enough damping, ro/Tp ( 1.3, the time-
dependent transition probability w (t) can be negative a
short time after t=0. This corresponds to stimulated
emission immediately following the absorption. For a
time-dependent simulation at time scales shorter than the
laser pulse width, this would complicate the algorithm
for creating electron-hole pairs, because we would also
need to allow for the stimulated recombination process.

2s5

~ 2.0U

0
1.5

C0 1O

Q
0 0.5

~ 0.0—6.0 —3.0 0.0 3.0 6.0

FIG. 6. Absorption line-shape functions, as obtained by in-
tegration of m(t) over all time. From top to bottom, the curves
correspond to values of the darning ratio ~o/T& of 0, 0.5, 1.0,
1.5, and 2.0. The line shape changes from a squared hyperbolic
secant to a Lorentzian for ~o/T, greater than about 1.3.

1 1 1

T2 +scat t +dri ft

(19)

The drift time ~d ift is taken to be the average time inter-
val needed for the electron to drift in the applied field
across the half width at half maximum (HWHM) of the
absorption line, according to the semiclassical equation of
motion

drift

eE
Ahk

eE 1 Bc
bc A Bk

(20)

z fi( 1+2ae )
+drift eE 2e(1+uE)

(21)

Here c. is the energy measured from the bottom of the
valley. This formula applies most accurately at high
field. For example, with E=30 kV/cm and for a transi-
tion from the split-off band with a 100-fs pulse of 1.55-eV
photons, c, =0.1 eV, and Eq. (21) gives rd„;«=18 fs. When
the above inequalities are not satisfied, ~d jft needs to be
determined numerically.

Distributions of initial states from photoexcitation are
shown in Figs. 7 and 8, for GaAs at photon energies of
1.5 and 2.0 eV, respectively, as a function of the angle 0
measured from the [001] direction as in standard spheri-
cal coordinates. Initial states out to 5% of the rnaximurn
of the absorption line were included in these figures. In
part (a) of these figures no linewidth was included; an en-
ergy width still results because of the anisotropy of the
valence bands. In part (b), the width due to scattering, a
laser pulse with a 100-fs FWHM, and no electric field was
included. In part (c), the width due to scattering, the
laser pulse, and a 10-kV/cm field was included. The indi-
vidual contributions from the split-off, light-hole, and

Here b c is the HWHM of the absorption line. The prod-
uct &oh@. is a function only of 7o/T2. Thus ~d„«can be el-
iminated from Eqs. (19) and (20), and we can solve for T~
numerically, with the help of the known relationship for
the HWHM as a function of ro/T~. (See Fig. 6.) In this
way the drift time ~d '

ft and the HWHM are determined
self-consistently, even when the scattering time becomes
much larger than v.o. The drift times varies as the re-
ciprocal square root of the applied field. For example, if

scatt ++ +O ++ +drift& then one obtains T2 drift with

' 1/2



12 520 G. M. LYSIN, D. L. SMITH, AND ANTONIO REDONDO 38

0.15
1.5 eV (a)

0.75
2.0 eV (a)

0.10

0.05 ~NO~» 0.25

0
0.15

0.10
O
CD

0.05
&+~vi~Lj+Ps &iP4&&&i4tÃ4+Pq&

&& & h& d
& & &

0
0.75

. . . (b)

al 4~m&~ W,ig
0.25

~, g~ ~w~~ ~g ~ cap@sQ~~~~~"- M8$

0
0.15

.
'

(c)

0.10
~ & & v

&
~

& ~

&& &&

& & + &I 6&
&

0
1 0 -0.5 0.50

cos 8
1.0

FIG. 7. Photo-induced initial-state energies as a function of
polar angle 0 for 1.5-eV photons. Here and in Fig. 8, the sym-

bols indicate contributions from the split-off (c ), light-hole

(6), and heavy-hole (+) valence bands. In (a) no linewidth is

included. In (b), the linewidth due to a 100-fs laser pulse com-
bined with that due to finite T2 is included. (c) is the same as (b)

but with the addition of a 10-kV/cm field.
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FIG. 8. Photo-induced initial-state energies as a function of
polar angle t9 for 2.0-eV photons, with (a), (b), and (c) as de-

scribed in Fig. 7.

heavy-hole valence bands are (most obvious when the
linewidths are not included) indicated by the symbols c,
6, and +, respectively. The linewidths increase with the
photon energy due to the increase of the scattering rates
with energy. They also increase as the field increases, due
to the reduction of the drift time ~d„«. Another represen-
tation of the distribution of states generated by the light
field is given in Figs. 9 and 10, in terms of the number as
a function of the conduction-band energy. Note that the
states represented in Figs. 7—10 involve transitions at ar-
bitrary times [the transition rate w (t) has been integrated
over time to obtain these results], and so these plots do
not represent the distribution function at t=0. They are
used only to indicate what initial states are possible for
the given energy and electric field, with the creation time
of an electron into one of these states being undeter-
mined.

The weighting of the trajectories is a function of the
polarization of the light. Nevertheless, we have not
found any strong dependence of the transition responses
on the polarization in the MC calculations. As suggested
above, for time scales of the order of ~o, the effects of the
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FIG. 9. Conduction-band energy distribution of the photoex-
cited electrons with 1.5-eV photons, for no field and 10 kV/cm.
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V. MONTE CARLO TRANSIENT RESULTS
AND DISCUSSION

Calculations were made for photoexcitation by a laser
pulse whose intensity has a FWHM oM of 100 fs, corre-

=28.4 fs. The photon energies were 1.5,sponding to 1p ~ s.
l the. , 2.0, and 2.2 eV. For %cop(1.77 eV, on y

li ht-hole and heavy-hole bands contribute to the absorp-
tion. The electric e range

cit ener y, val-F h se average values of the velocity, energy, va-For eac case a
ulations, and distribution functions z, cley popu ations, an

t d functions of time. Calculatio q
'' nsre uiredbe-compute, as u

it the sta-000 and 10000 electrons in order to limit th
in Fi s. 11—15, thetistical errors. For the data presented in igs.

1
'

d 1 [100] and the electric field was
in the [100] direction. The responses exhibited only very

'
n and field direc-slight dependences on the polarizat;ion an

Some typica im1 time evolutions of the distribution func-
tion f(E) are shown in Fig. 11, for A'coo= . an . e
and E=5 kV/cm. Note that the earliest f (E) exhibited is

'
htl after the center of the laser pulse, and is not ex-

actly the same as the curves in Figs. ~ an
time integrals of the transition rate. Although the initial

to the same final distribution, which depends only on t e
applied field. The two peaks in the steady-state distribu-
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FIG. 12. Transient responses of the ave agvera e velocity, average
energy, and L-valley fract;iona p p f 5ional o ulation for a field of 5
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tion correspond to the populations in the I and L valleys,
with about 20% in the L valley. The lower grap ( .
eV) correspon s o ad t a case which exhibits velocity
overshoot, w ere a sizeh, h sizeable fraction of the electrons are
created at energies well below the steady-state average
energy of 0.17 eV. Conversely, for 2.0 eV no velocity
overshoot occurs, and a large fraction of the electrons are
crea e wet d ll above the steady-state average energy.

Fi . 12A set of transient response curves are shown in ig.
for a field of 5 kV/cm. The average electron velocity,
average electron energy measured from the I minimum,
and the fraction of the electrons in the L valleys are

ly populated for most of the calculations shown here. '

From top to bottom, the curves for average velocity cor-
res ond to the five photon energies, 1.5 1.7 1.8, 2.0, and
2.2 eV. Note that the order is reversed in the average en-

ergy and L-valley population graphs. The steady-state
value of each quantity is independent of the photon ener-

gy. The transients, however, have a clear dependence on
the photon energy. Only the 1.5-eV excitation produces
an obvious ve oci y oveb

'
1 'ty overshoot. The 1.7-eV excitation ap-

ears to be just over the maximum energy that will pro-
duce velocity overshoot. The higher proton energies do

not produce an overshoot and exhibit a much longer ve-
locity rise time. The average energy and L-valley popula-

responses. The cases that exhibit velocity overshoot in-
volve an average energy that increase s with time. When
no velocity overshoot occurs, the average energy mono-
tonically decreases with time. The behavior of the popu-
lation of the L valley is similar to that of the average en-

ergy When velocity overshoot occurs, the fractional L
valley population increases monotonically wit time. On
the other hand, when no velocity overshoot occurs, the
L-valle opulation overshoots its steady-state value.
The only exception to these observations mig t be
1.7-eV excitation, because it is so close to producing ve-

locity overshoot.
of 10 kV/cm, areA similar set of responses, for a field o cm, a

F' 13 for the same set of excitation energies.shown in ig.
Th t' cale in this figure is shorter than in ig.

the eneraland the steady-state values have changed, but the g
l

' h' b t een the response quantities are the
same. Now velocity overshoot occurs for the 1.5-,
and 1.8-eV excitations, and these are the only cases with
an increasing average energy transient, and a monotoni-
cally increasing L-valley population (or L-valley popula-
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FIG. 13. Transient responses as described 'g.in Fi . 12, for a
field of 10 kV/cm.

FIG. 14. Transient responses as described in 'g.in Fi . 12, fora
field of 20 kV/cm.
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tion that does not overshoot). Also, it is clear that the
relative size of the overshoot for 1.5 eV is now larger
than it is for the 5-kV/cm field.

If the field is increased to 20 kV/cm, the responses
shown in Fig. 14 are obtained. Note that again the
steady-state values have changed, and the time scale of
the graphs has been shortened. As the field is increased
the average energy increases, causing the. average scatter-
ing time to be reduced, and consequently shortening the
response time. Now we see that the 2.0-eV excitation is
very close to producing velocity overshoot. The correla-
tions between the response quantities are the same as in
Figs. 12 and 13.

Finally, a set of response curves for a field of 50 kV/cm
is shown in Fig. 15. The 2.0-eV excitation appears to be
very near the limit for overshoot. In the average energy
response for 2.0 eV, there is initially a very small decrease
followed by a small increase, the latter accounting for the
velocity overshoot feature. At this field only the 2.2-eV
excitation does not produce velocity overshoot. The L-
valley population response for 2.2 eV, does not exhibit an
overshoot as might be expected from the observations for

the lower fields, because about 25% of the electrons tran-
siently occupy the X valleys (Ref. 14). The relative sizes
of the velocity overshoots for excitations below 2.0 eV
have increased well above those seen for 10 kV/cm.

For all of these fields, any velocity overshoot features
present at low %coo eventually are suppressed at higher
A'coo. Also, a velocity overshoot is always accompanied
by an increasing energy transient. Conversely, lack of
overshoot is associated with a decreasing energy tran-
sient. This suggests that knowledge of the initial- and
steady-state average energies generally is adequate to pre-
dict velocity overshoot. There may be a few exceptions
where the photon energy is near the maximum for which
velocity overshoot is allowed. These data make clear the
idea of a critical field (or critical photon energy) neces-
sary for overshoot.

These results can be summarized in terms of a photon
energy —electric field "phase diagram. " In particular, a
curve can be drawn that corresponds to the photon ener-

gy needed so that the initial average electron energy
e;(A'coo, E) is equal to the steady-state average energy
e»(E), as from Fig. 3. Such a phase diagram is presented
in Fig. 16. Individual cases tested are indicated on the di-
agram as either solid, for overshoot, or open, for no
overshoot. One can see that the general rule is that all of
the overshoot cases fa11 below the equi-energy curve de-
scribed above. The question can be raised whether this
rule will still be valid for other temperatures. A number
of calculations were also performed for 77 K. It was
found that the rule still generally holds, but there are
some exceptions to it when the initial energy is just above
the steady-state value, where overshoot can still occur.
This happens because there is a very fast drop in the
average energy, followed by a rise back towards the
steady-state value, which is synchronized with the veloci-
ty overshoot feature.

The relative magnitude of the velocity overshoot is a
function of both %coo and E. This is exhibited in Fig. 17,
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FIG. 15. Transient responses as described in Fig. 12, for a

field of 50 kV/cm.

FIG. 16. Overshoot "phase diagram, " in terms of the photon
energy hv and the field E. The solid circles represent simula-
tions in which velocity overshoot occurred; the open circles
represent cases where overshoot did not occur. The curve cor-
responds to cases where the steady-state average electron energy
is equal to the average electron energy of the photoexcited elec-
trons.
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((10 fs) into the I. valley. This dramatically reduces the
effective mobility to such an extent that the velocity tran-
sient has a delay interval, where v is very small before
eventually beginning to slowly rise towards its steady-
state value.

VI. SUMMARY AND CONCLUSIONS

1.0
eV

0.0
0.0 10.0 20.0 30.0 40.0 50.0 60.0

E (kv cm)
FIG. 17. Magnitude of velocity overshoot as a function of

the applied field, in terms of the maximum average velocity U,„
and the steady-state average velocity U„.

in terms of the maximum velocity v,„and the steady-
state velocity v„, where the relative overshoot
(v,„—v„)/v„ is plotted versus the applied field for vari-
ous photon energies. Critical turn-on fields can be seen;
there is a tendency for the relative overshoot to saturate
with increasing field.

Some transients at high photon energy also show
another interesting feature, in cases where a large frac-
tion of the electrons have been created high in the I val-
ley of the conduction band and then scatter very quickly

We have presented a systematic series of Monte Carlo
calculations of electron relaxation in GaAs. The case
was considered in which the electrons are generated by a
100-fs optical pulse and the GaAs is biased by a uniform-
in-space and constant-in-time electric field. We investi-
gated the dynamics of the electron relaxation as a func-
tion of the photon energy and the magnitude of the ap-
plied field. We have found that velocity overshoot occurs
when the initial average electron energy is less than the
steady-state value and does not occur when the opposite
is true. In particular, for excitation with 2.0-eV photons,
as occurs in experiments using direct excitation from a
CPM laser, velocity overshoot does not occur for applied
fields less than about 30 kV/cm. These results demon-
strate the importance of using a spectrally tunable source
in experiments designed to observe velocity overshoot.
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