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The effective-mass method (EMM) has been widely used for the description of layered semicon-

ductor structures with sharp boundaries (quantum wells, superlattices, etc.), although it does not

work for rapidly varying potentials. Here, I analyze the EMM in a simple case of one-dimensional

heterostructures. Being able to obtain the exact solutions (using the transfer-matrix method), I can
extract from them the envelope functions within the one-band or multiband EMM. I can then

derive the boundary conditions (BC's) for these envelopes at the interfaces. These BC's turn out to
be very different from what has been adopted so far. They involve microscopic parameters of the

bulk materials forming the layered structures; these parameters cannot be expressed by the effective

masses or other band-structure characteristics. In the multiband case the BC's are energy depen-

dent. For the band edges of different types on two sides of the interface (as in GaAs/A1As or
Si/Ge), the BC s are unusual and allow for the existence of intrinsic interface states. I also point out
some artifacts of the EMM; unphysical solutions in the bands and in the gaps which should be re-

jected.

I. INTRODUCTION

Since the early days of layered semiconductor struc-
tures (quantum wells, superlattices, heterojunctions) the
most common approach for determining the electronic
eigenstates in these materials has been the effective-mass
method (EMM), sometimes also called the envelope func-
tion approximation. ' The method has some advantages
as compared to tight-binding or pseudopotential calcula-
tions. It allows the determination of the electronic states
of a layered structure using only the bulk parameters of
its constituents plus the value of band offsets. It can be
applied self-consistently to account for charge redistribu-
tion across the interfaces, and it can also describe the
effects of slowly varying perturbations on the layered
structure (impurity states, magnetic- or electric-field
effects, etc.). However, as it is well known, the EMM
does not work for potentials rapidly varying in a unit cell,
such as those introduced by the abrupt interface between
two semiconductors. The correct approach, therefore,
consists in applying the EMM in each layer separately
and then in connecting the envelopes with appropriate
boundary conditions (BC). These BC cannot be obtained
from the EMM but have to be derived from microscopic
considerations. This has been shown for semiconductor-
insulator interfaces by Volkov and Pinsker and by Sham
and Nakayama. Also the effective-mass Hamiltonians
which successfully describe the electronic states in bulk
semiconductors, may produce some artifacts in layered
materials. Therefore it is desirable to consider a
simplified system where the exact solutions are available
and where the EMM could be tested and boundary condi-
tions derived. Here I have chosen to consider one-
dimensional (1D) structures, periodic up to the interface
(Fig. 1). Obviously this is quite idealized; interfaces may
perturb at least a few atomic layers. There are also im-

$4ej-
QV

FIG. 1. The potential close to the idealized interface between
1D crystals 3 and B. Lattice constants are d& and d&. The po-
tential discontinuity AV could be zero and should not be con-
fused with the band offset Wo. Here I chose the potentials in

the unit cells to represent my initials but they are arbitrary sym-

metric functions.

portant differences between the 1D and the 3D case; I
shall discuss them later. Still, I believe that this

simplified model reveals some properties of real interfaces
and clearly shows the artifacts of some methods applied
to the 3D case. The idea of studying one-dimensional in-
terfaces and deriving the BC for the envelopes is not new;
there have been several important contributions to that
problem. However, in all previous papers the tight-
binding approximation was used. There are two impor-
tant drawbacks to this approach. First, the model yields
only one or two bands and, therefore, is incapable of
describing the effective-mass Hamiltonians, where the
terms arising from the k p interactions with higher bands
are important. Secondly, it contains several (unneces-
sary) assumptions so that the Hamiltonian depends on a
few matrix elements that enter both the energies and the
wave functions. Therefore, the relations obtained from
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the model might not hold in the general case. Here I
present the calculation based on the transfer-matrix
method which is absolutely general and yields the exact
solutions for 1D crystals (or heterostructures). The num-

ber of bands is not limited and effective-mass Hamiltoni-
ans can be derived. Envelope functions can be obtained
from the exact solutions and, for a heterostructure, BC
for the envelopes can be determined. I have already pub-
lished some preliminary results (for the one-band case).

In the following I shall first briefly discuss the com-
monly adopted version of the EMM in the one-band and
in the multiband case. I will point out some inconsisten-
cies of the commonly adopted description which have ac-
tually led me to the present considerations (Sec. II). In
Sec. III, I shall describe the transfer-matrix method
which in my view is the most powerful description of a
1D crystal and could be useful for other considerations
(some mathematical details can be found in the Appen-
dixes). In Sec. IV, I discuss the one-band EMM and the
BC for the envelopes. In some cases these BC allow for
the existence of intrinsic interface states. In Sec. V, I dis-
cuss the multiband EMM (using mainly the two-band ex-

ample, but this could be easily generalized). Section VI
contains some conclusions and speculations concerning
the 3D case.

II. EMM IN HETEROSTRUCTURES:
THE APPROACH USED SO FAR

Let us consider the interface between two semiconduc-
tors A and 8. If the band offset is small compared to the
gaps in both materials and we are interested in electronic
states close to the band edges, we can use the one-band
EMM both in A and in B. In the direction parallel to the
interface we still have translational symmetry and from
the Bloch theorem the envelopes in A and 8 can be writ-
ten as exp(ik, x+ik y ))}))(z). If the band edges in A and
in B are of the same type (like in GaAs/Ga) „Al„As
with x &0.45) it is usually assumed that the Bloch func-
tions at k=0 are identical (u„—=uz) and that the en-

velopes are continuous [P„(zo ) =P~ (zo )]. As the aver-
aged probability current along z (see Ref. 1)

( )
ill d)I} yy y

dP*
(1)2m«dz dz

should be conserved, the condition for the derivatives is

istence of exponentially decaying interface states in the
case when m~m& &0, i.e., when the conduction band in
A is close to the valence band in 8 (but there is still a gap
between them). Both band edges have to be of the same
symmetry. This situation can be found at the
Hg Te/CdTe interface. "

Within the one-band EMM we replace k, by —iB!Bz
in the Hamiltonian. In addition to oscillatory solutions
for real k, we get exponential (evanescent) solutions for
imaginary k„' in the bulk they would have to be rejected
due to normalization condition. For a fixed (k„,k» ) and
the energy E there are always two solutions for k, and
—k, (k, real or imaginary).

The above method is applicable only to band edges of
the same type in A and 8. When the minima are of
different symmetry or are located in different points of
the Brillouin zone, the BC have not been determined in

the general case. ' Instead, many authors investigating,
e.g. , GaAs/A1As heterostructures consider the I and the
X states separately and treat their mixing" as a pertur-
bation. ' I will show in Sec. IV that the I -X mixing for
some energies may be important and that the perturba-
tional approach is inadequate. The same problem arises
at the Si/Ge interfaces. Also in GaSb/InAs heterostruc-
tures we have two overlapping bands of different symme-

try (I 6 in InAs and I s in GaSb). There is more and more

experimental data for heterostructures involving different

types of band edges. ' ' I shall derive and discuss the BC
for this case in Sec. IV.

Let us now discuss the multiband case. The multiband
description has to be used for the valence bands, for
narrow-gap materials and also when the band offsets are
comparable to the gap width (like in GaSb/InAs). The
prescriptions for applying the multiband EMM to layered
semiconductors were discussed in several papers but in
the most general form they were given by Alteralli. ' '
Again, the BC were either obtained by integrating the
symmetrized effective-mass equation across the inter-
face' or by tending to zero with the quadratic terms in
the Hamiltonian and thus eliminating the rapidly varying
evanescent states that could modify the BC.' Both
methods are dubious because both the potential and the
envelopes should be slowly varying within the framework
of EMM. Anyway, band-edge Bloch functions were as-
sumed identical on both sides of the interface. The en-
velopes P;(z) were taken to be continuous across the in-
terface

d4~(zo) 1 dna( o)

m g dz mg dz
(2)

P,"(zo)=P;(zo), i =1, . . . , N

as first pointed out by Bastard. Here m~ and m& are
the values of the effective mass m« in A and 8, respec-
tively. These BC are sometimes "derived" by integrating
across the interface) the effective-mass equation with the
symmetrized kinetic-energy part (see Ref. 10 for a de-
tailed discussion). The symmetrization is not unique,
thus also the BC could take different forms. Moreover,
as I emphasized in the Introduction, there is no
justification for any form of the effective-mass equation
for a heterostructure (i.e., across the abrupt interface).

The boundary condition of Eq. (2) allows for the ex-

while their derivatives should satisfy the condition

N

(Df~ +Dr ')k —2iDI~ P continuous

(4)

where the matrix Dl ~ is determined by the quadratic part
of the k-p Hamiltonian
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H1 (k)=E1(0+1m+ g PP k + g D1 ik k& .
III. ONE-DIMENSIONAL CRYSTAL:

THE TRANSFER MATRIX AND THE EMMa=1 a,P=1

Linear terms of the Hamiltonian do not affect the bound-
ary conditions, i.e., if we neglect the quadratic terms, we
are left only with the condition (3). There were a few
things that worried me in the above scheme. Basically
within the EMM we can take as many bands as we wish
into consideration, provided we know the parameters of
the "bulk" Hamiltonian (5). Quadratic terms (apart from
free-electron terms) arise from the k p interaction with
"outside" bands (1 & X). In the bulk in many cases we
can neglect these quadratic terms with good accuracy
while the above BC are very sensitive to them. Another
problem is the increasing number of BC when we in-
crease N. The bulk Hamiltonian has, in general, oscillat-
ing and exponential solutions at a given energy E. The
oscillating ones are simply Bloch states and for fixed
(k„,k» ) and E we usually have only two or four of them.
The number of exponential solutions ("evanescent
waves") for a 3D crystal is, in principle, infinite. ' In a
1D crystal there are only two exponential solutions in the
gaps because the Schrodinger equation becomes an ordi-
nary differential equation of the second order and has two
independent solutions at any energy. Therefore, it is evi-
dent that the prescription described above will fail for 1D
crystals because at every energy there are only two con-
stants that determine the wave function (in each layer)
and the number of BC we have to fulfill increases with
the number of bands we include in our EMM description.
The EMM will give us more and more solutions as we in-
crease N, but these will be unphysical solutions corre-
sponding to large ~k~ values (like those encountered in

Refs. 18 and 19) and should be rejected. It has to be
borne in mind that EMM is based on the k p perturba-
tion theory and is not valid for ~k~ comparable to the
Brillouin-zone radius (both for real and imaginary k).
Another problem with the above-described approach is
that the effective-mass equations in each layer constitute
a set of relations between the envelopes P;, their deriva-
tives BP, /Bz, and, possibly, their second derivatives
8 P;/Bz . If we estimate the second derivatives (e.g.,
8 P;/Bz ——k P;) we get the relation between P; and

BP„/Bz. Therefore the continuity conditions for P; imply
some conditions on BP„/Bz. The conditions on the en-

velopes and their gradients are thus interdependent and I
will show, in Sec. V, on a simple example that Eqs. (3)
and (4) are incompatible with the effective-mass equa-
tions. One could ask then, why was the above multiband
scheme applied successfully for so many years? Well, in

most cases the multiband description was used only at
the start and then reduced to a one-band nonparabolic
equation ' or to the problem involving fewer bands
where the BC could be fulfilled after some approxima-
tions. ' ' In the calculations of Altarelli the BC were in-

corporated into a variational method' so that they were
optimized, in some sense, but did not have to be fulfilled

exactly. Anyway, all these problems have inclined me to
consider a simplified case where I could find the exact
solutions, compare them with those obtained from EMM
and, finally, derive the BC for the envelopes.

~ 11 =y1(d) ~12 =y2(")

A» ——y', (d), A22
——y,'(d) . (8)

Any solution of Eq. (6) in the cell 0 & z & d can be written
as a combination of y &

and y2,

q(z) =a,y, (z)+b,y, (z),

and in the cell nd &z & (n +1)d,

(9)

1)'j(z)=a„+1y,(z nd)+b„+1y2(z— nd) . — (10)

The continuity of P and g' at the cell boundaries yields

a„+
bn+1

1
ll

b,

which explains the term "transfer matrix. " If the poten-
tial V(z) is symmetric in a unit cell it can be shown ' that
A» = A22. The Wronskian of Eq. (6) is constant so that

A (I A I2A2) —1 .2 (12)

This means that detA =1. The transfer matrix depends
on the energy F.; we can choose two of its elements, e.g.,
A»(E) and A, 2(E), as two independent functions
describing our 1D crystal. They can be determined from
Eq. (6) once the potential in the unit cell is specified but
for many purposes some general properties of A(E) are
sufficient. I will show that many important physical
quantities can be expressed by A (E).

The eigenvalues of A,

(13)

are real when
~

A 11 ~
& 1 (gaps) and complex when

~ A» ~

& 1 (bands). The wave vector k defined by
A, += exp(ik+d) will then be real in the bands and com-
plex in the gaps. From (13) we obtain

A»(E) =cos(kd) (14)

which yields the band structure E(k). At the band edges

Let me consider the Schrodinger equation with a
periodic potential V (z ) = V(z +d ):

2mp
g"(z)+ [E —V(z)]f(z)=0 .

$2

I shall assume that V(z) is symmetric around the center
of each unit cell. The symmetries in 3D are much richer
but at least we shall have two possible kinds of band
edges —those with symmetric Bloch functions and those
with antisymmetric ones. In the first cell (0 &z & d), fol-
lowing Ref. 21, I introduce two independent solutions
y1(z) and y2(z):

y, (0)=1, y', (0)=0, y, (0)=0, y', (0)=1.
It is clear the y1(z) and y2(z) are real and independent
functions. I define the transfer matrix A in the following
way:
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A» =+1 for k =0 or A» = —1 for k=+~/d (I shall

call these points I and X to use the 3D analogy). In both
cases A, z A z, =0 [see Eq. (12)] so that there are two types
of band edges at some energy Eo: those with

Az, (EO)=0, A, z(EO)=A, z (type 1), and those with

A iz(Eo ) =0 A zi (Eo ) = A zi ('type 2). Fol k =0 the
Bloch function at the type-1 (type-2) band edge is sym-

metric (antisymmetric). For k =+@/d .it is the opposite.
If I also distinguish between the bands with positive cur-
vature (eff'ective mass m, ir) 0) and with m, ir &0, calling
them conduction (c) and valence (v), I shall have eight
different band edges: c I 1, c I 2, cX1, cX2, U I 1, U I 2,
UX1, and UX2. The eigenstates of A determine the wave
functions through Eq. (10); oscillatory in the bands
(Bloch states) and exponential in the gaps [see Eqs. (17)
and (18)]. In an infinite crystal the exponential states
would have to be rejected. In a finite slab we include
them, the band structure E ( k) can be complemented by
E(k„ip) in —the gaps (k„=0 at I gaps, k„=n/d at .X
gaps) —we get the so-called complex band structure
(Refs. 22, 23, and 17). In the gaps at k =0 we have
A,+=e +—"",k+ =+ip, and Eq. (14) becomes

O

CD

tD

O 7T
I I I

2

0

-2

2 .—

0--

(c)

(b)

A „(E)=cosh(pd), (14a)

while in the gaps at k =+a/d we have kz =+(m /d)+i p,
A.~= —e+"",and

-2

(14b)A»(E)= —cosh(pd) . -50 0 10 20

Ener gy (eV}
FIG. 2. (a) and {b) Elements of the transfer matrix for the

Kronig-Penney case: d =10 A, 8'=9.75 eV, a =9.3 A. A» is

dimensionless, A» is in A, A» is in A . (c) Corresponding
real band structure.

2' egAzi(E)= z o (E Eo) . —
A A)2

(16a)

Thus the transfer matrix within a one-band approxima-
tion is given by Eqs. (15) and (16); we have to know E

0
Or

m,z, and A12'
Bloch functions P+k(z) correspond to the eigenstates

of A: [a+,b+] with complex eigenvalues A+=e*'" . If, in
the first cell our Bloch function is

f„(z)=a+y, (z)+b+yz(z), 0&z&d .

Then in the (n+1)th cell it becomes, according to Eq.
(11),

mes
A „(E)=+ 1 — (E —Eo)

fi

In the latter case we have
~

A, + ~
&

~
A,

~
so that the ex-

ponentially increasing eigenstates correspond to A.

At this point it is instructive to consider a specific ex-
ample of a 1D crystal —the Kronig-Penney potential
with square wells of depth 8'and width a. The expres-
sions for the transfer matrix in this case are given in Ap-
pendix A. The functions A»(E), A, z(E), and Azi(E)
are shown in Figs. 2(a), 2(b), and 3(a), and 3(b) and the
corresponding band structures are plotted in Figs. 2(c)
and 3(c). We can see in Fig. 3 that band crossings
("zero-gap" situations) can occur, with linear E(k)
dependence. Clearly, in such cases the two-band EMM
would have to be used. Gaps are present also for E &0
but for high energies we have to recover the free-electron
case (see Appendix B). All gaps are direct, either at k =0
or at k =+ir/d. Bloch states at the band edges sur-
rounding the gap are always of opposite symmetry. At
the energies close to nondegenerate band edges E(k) =E—

2 2
0

+A' (k —ko) /2m, ir and from Eq. (14) we get

(15)

+ and —corresponding to I and X edges, respectively.
From Eq. (12) we also get

2fPl eg
A, z(E)Az, (E)=

z (E —Eo) (16)

so that one of these functions vanishes at Eo while the
other is constant close to Eo. If, for instance,
A, z(EO) = A iz, we get

gk(z) =(A+)"[a+y, (z nd)+b+yz(z ——nd)]=e'"'u„(z),

nd &z &(n+1)d (18)

with

ui, (z)=e '"' ""'[a+yi(z —nd)+b+yz(z nd)], —

nd &z &(n +1)d . (19)

The eigenstates [a+,b+ ] should be chosen in a special
way, so that the following conditions are fulfilled. (1)
Bloch states gk(z) and P „(z) should coincide when



38 EFFECTIVE-MASS APPROXIMATION IN SEMICONDUCTOR. . . 12 497

]

0
(20)

k ~0 or when k ~sr ld (the same must hold for exponen-

(2) Periodic Bloch amplitudes should be normalized in
the standard way:

N ormalization of uk is essential if we want to compare
the envelopes in two different materials. From Eq. (19)
we see that this requires the evaluation of the integrals

and f »y. In Appendix B I show1& j 2& 12'
that they can be expressed by the transfer matrix and its
energy derivatives. The final expressions for [a+,b+]
determining P+& and satisfying the above conditions are

[a+,b+]= '

[(~A,z )', +sgnA, 2(A2, sgnA, z)' ] for A2, (Eo)=0~N(E)

[+sgnA2, (A, 2sgnA2, )', ( Az, ~)' ] for A, 2(Ep)=0~N(E)
(21)'

25where N(E) is the normalizing factor

N(E)=

dA11
sgn A, 2 for E in the bands

mpd dE

fi dA, 2 dA21
g 12 21 dE 122mpd

for E in the gaps .
(22)

At E close to the band edge N(E)=~m, &Id ™p,as fol-
lows from Eqs. (15) and (16). Note that the eigenstates
will be real in the gaps ( A, 2 A &,

= A f~
—1&0) and com-

plex in the bands (A, 2A2, (0).
The general solution at any energy will be a combina-

tion of gk and g k (k real in the bands, complex in the
1gaps). Within the one-band EMM we have

O

O
0)

(c}

kP„0P+„=-e'"' uo(z)+ g u„z
,"omo n o

so that the general solution can be written as

P (z)=giPk(z)+gzP &(z)

iPo(z)p„o-
=—Po(z)uo(z)+ g u„z

,&pmo n o

with

y (z) —
g e&kz+ g

—&kz

(23)

(24)

(25)

77
I I I I

d

2

-2

(b)

(a)
being the envelope function.

In the multiband case we have to construct the
e6'ective-mass Hamiltonian first. In real semiconductors
we can determine it from symmetry arguments and deter-
mine its parameters from experiment. In the 1D crystal
we can calculate these parameters; I shall do it in the sim-
plest case of the two-band model.

Let me consider two bands (further labeled c for the
conduction band and v for the valence band) with extre-
ma at k=0 and, for example, A&z(E, )=0,
A2, (E, ) = A2„A»(E, ) =0, A, 2(E, )= A, z. Therefore,
the Bloch functions at the band edges will be [see Eqs.
(21) and (22)]

0 5

Ener gy (eV)
10

0FIG. 3. Same as in Fig. 2 but for d =10 A, 8'=5 eV, a =8
A. Band crossing can be seen at E=9.5 eV. At this point
A» =1 and both 312 and Azl vanish.



12 498 WITOLD TRZECIAKOWSKI 38

u, (z) = mp

m,

' 1/2

y, '(z), (26)
2

E,(k) =E, + P+ E (36)

mp
u, (z)= A~,

mvd

' ]/2
Ey2'(z), (27)

2

E„(k)=-E, + a- lp
(37)

where m, and m, are the absolute values of the effective
masses and the energy dependence of y, (z) and yz(z) is
explicitly denoted.

In the Kohn-Luttinger representation the Hamiltonian
(p /2mo+ V) has the form

fi kH„„= E„(0)+
2mp

5„„+ kpn„
mo

(28)

In order to remove the interband terms up to second
order in k we perform a transformation of our basis (see,
e.g. , Ref. 26) and we get

A' k fi
H„„.= E„(0)+ 5„„+ kp„„

mo mo

fi k

2m 0,~(„„,) E, E„—1+ E PnsPsn'E —E ~s n'

(29)

In our simplest two-band case we have n, n'=c, v. The
Hamiltonian becomes

where

E„+ak i yok
—iyok E, +Pk (30)

g2 d due
XO pvc uv dz

mo mod o dz
(31)

2mo m02, (E, E )

g2

2mp

(32)

(33)

(E„+ak' E)(E, +iak E) yo—k =0—. — (34)

This is quadratic in E so that for a given k we get two
bands

E,(k) = ,'(E, +E„+(a+@)k—'

+[[E +(P—a)k ] +4yok I'i ),
which for small k are parabolic:

(35)

The off-diagonal quadratic terms in 0 vanish, because
P„P,„=O due to the different symmetry of u, and u, .
This form of 8(k) was used in Refs. 1, 15, and 16 to de-
scribe the interaction between the light hole and the con-
duction band in GaAs/Ga„Al, „As heterostructures.
The secular equation is

For any specific 1D potential the constant yp can be cal-
culated from Eq. (31) (the expression in the Kronig-
Penney case is given in Appendix A) while a and P can be
determined from the effective masses. The masses, in
turn can be obtained from Eq. (15) once we know A

&&
(E).

In the real 3D crystal all these parameters would be ob-
tained from the experiment; here we can calculate them.
In the gap k = ip a—nd from Eq. (35) we can get the
complex band structure E(p). If we fix the energy and
look for possible values of k (E) that satisfy Eq. (34) we
get, in general, two solutions

k~(E)= [a(E E, )+P—(E E, ) +—y~~+v'b]
2aP

(38)

with

b, = [a(E, E)+P(E—, —E)—yo]

+4aP(E E, )(E, —E) . — (38a)

Depending on the sign of aP we have two possibilities.
(1) For aP) 0 we get two positive roots in the bands and
one positive (real k), one negative (imaginary k) in the
gap. For small values of the quadratic terms a and P one
of these positive roots is very large and thus is beyond the
scope of the two-band model. This was the source of the
"spurious solutions" encountered in Refs. 18 and 19. (2)
For aP & 0 we get two negative roots in the gap (imagi-
nary k) and one positive, one negative in the bands. This
case was considered in Ref. 16 where the negative root
was called the "wing band. " For a)0, 13&0, and
yo/Eg &(a —P) &2yo/Eg we would have b, &0 in some
energy interval in the gap so that k+ would be complex.
In our 1D case we know the exact k (E) which is positive
in the bands and negative in the gap. Therefore, we see
that the EMM can produce unphysical solutions both in
the bands and in the gaps —they correspond to large ~k~

values and should be rejected. In Ref. 16 the wing bands
were excluded from the wave function in the limit
a,P~O because they become vanishingly small away
from the interface. Here we can see that these wing
bands should be rejected because they are the artifacts of
the EMM. Any band that has a large m, s (small curva-
ture) yields large ~k~ values fairly close to the band edge.
In the bulk we are seldom interested in such states but in
the finite layer we often need exponential solutions lying
deep in the gap with large k =ip. In three dimensions
the number of exponential solutions at any energy is un-
limited' but all large-~k~ solutions obtained from the
EMM should be rejected. In one dimension it is easy to
see that in our two-band model the k+ solution in (38) is
unphysical. It is therefore k (E) which we compare to
the exact k(E) [Eqs. (14) and (A3)] in Fig. 4 for two
Kronig-Penney cases. Slight discrepancies occur for
higher values of k (or p) as could be expected. The agree-
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O
O

obtain expressions for A, 2(E) and A2, (E) by inserting
the exact formulas for the Bloch functions g&(z), u, (z),
and u, (z) [Eqs. (21), (26), and (27)] and setting z =d.
This, however, turns out to be a poor evaluation of A (E)
(compared, e.g. , to the exact formulas in the Kronig-
Penney case), especially when other bands are not far
away so that the second term in Eq. (39) is important.
Much better approximation for A&z(E) and Az, (E) can
be obtained if we use the full equation (39) and the rela-
tions between the envelopes P, and P, given by the
effective-mass equations. Inserting k = i —d/dz into the
Hamiltonian [Eq. (30)] we obtain

Energy {eV)

(E„+ak E)P,—+yo =0,' dz

dP„—
yo +(E,+Pk E)P, =—0 . (41)

0
O
QP

0)

O

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

Energy {eV)

FIG. 4. Complex band structure ~k(E)~ for the Kronig-
Penney crystal in a selected energy range. Solid lines, exact;
dashed lines, t~o-band approximation. In the bands k is real, in
the gaps it is imaginary. {a) d =10 A, %=9.75 eV, a =9.3 A
[compare with Fig. 2(c)]; (b} d =10 A, II'=5 eV, a =8 A [com-
pare with Fig. 3(c)].

~ mo[E((0) E(0}]—(39)

In an infinite crystal It (z) =gk (z), p&(z) =e '"', and

PI =ike'"' Very often t.he second term is neglected, but
this is a very crude approximation. If we make it, we can

ment is better when other bands are further away.
Let us now turn to the determination of the transfer

matrix within the two-band approximation. This is im-
portant because I will show in the following sections that
the BC are expressed by the elements of the transfer ma-
trix. Using k (E) and Eq. (14) we obtain A»(E) in the
energy range of our two bands. A, 2(E) and Az, (E) can-
not be obtained from the band structure but, possibly,
from the wave functions. Within the N-band EMM the
wave function can be written as'

N

f(z) =—g P, (z)u, (z)

and of the envelopes in between the cells

0,=——,'(4'+4') .
D D D

(43)

The relationships (40) and (41) applied to (42) and (43)
yield the formulas for A, z(E) and Az, (E). I compared
them to the exact expressions in the Kronig-Penney case
and it turned out again that the accuracy was rather
poor. This is due to the fact that I treated the envelopes
as constant within a unit cell; also, Eqs. (42) and (43) are
poor interpolations. I can go one step further, i.e., in-
clude the linear terms in P, (z) and P, (z}. I obtain, in the
cell [zo —d/2, zo+1/2],

The second derivatives P"=—k P both for real and for
imaginary k. In the bands the envelopes are combina-
tions of e' ' and e ' ', in the gaps they become combina-
tions of e"' and e "'. This is a speci6c property of 1D
crystals because in three dimensions we may have oscil-
lating and exponential solutions at the same energy so
that we can only estimate P"——k P. The above equa-
tions are the example of the relationships between the en-
velopes and the derivatives which I mentioned in Sec. II.
Here we clearly see that, e.g. , the boundary conditions
imposed on P„ imply the boundary conditions for

dP, /dz.
The envelopes can be expressed by A (E) in the follow-

ing way. We can integrate Eq. (39) with u, (z) [or u, (z)]
in a given unit cell, thus obtaining the average value of
the envelope P, (or P, ) in that cell (envelopes are slowly

varying). The function g(z) is expressed by y& (z) and

y2 (z) [Eq. (9)] while the band-edge Bloch functions are
E E„

expressed by y &

'(z) and y2" (z) [Eqs. (26) and (27)].
Therefore we need the values of the integrals like

d g E„
y, y2" —they are all expressed by the transfer matrix

0
in Appendix B. We can then evaluate the envelopes in

the following cell in the same way, thus obtaining P,
' and

P,'. This allows us to determine the approximate value of
both the derivatives

(42)
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dP„(zo )

(flu, ) -=p, (zo)+ —f u, (z —zo)u, ,
dz

dy, (zo)
&yl .&=y„( .)+ ' —f,(.—.,}.,dz

(44)

(45)

In this way we know the envelopes P„P„,P,', and P,', and
the derivatives P, , P„', (t,', and P„' at two neighboring
"lattice points. " Now we use a better interpolation
scheme to obtain the envelopes and the derivatives in-
between the lattice points:

The integral u, zu„can be easily expressed by yo Eq.
(31)] and the left-hand sides of (44) and (45) can be evalu-
ated using Eqs. (9) and (B6)—(B8) from Appendix B. The
relationships (40) and (41) allow us then to determine

P, (zo), P, (zo) and P,'(zo), P'„(zo). The same procedure
can be repeated for the next cell, with t}'j still given by Eq.
(9) but

,'(—4',—+0,' }+ (0—",

d
(4,' 0', )—,'(4—", +—0,'»

(47)

(48)

a& ao

b
—A (46)

and similarly for P, and P'„. Imposing the conditions (40)
and (41) on these values we obtain the following expres-
sions for A, z(E) and Az, (E):

A, z(E)=

Az, (E)=

A'„m„E—E„
1/2

A'„m, E

Az&m, E, —E
' 1/2

A &2m, E —E„

[1—A &&(E)](k d —12)yo[1+Po(E E„—a—k )]

6d(E E, —a—k }[I+Po(Pk +E,—E)]

[1—A))(E)](k d —12)yo[1+Po(Pk +E,—E)]
6d(Pk +E,—E)[1+Po(E E„—ak—)]

(49)

(50)

where

A ]/A p]

2d yoEs m, m„

1

Eg
(51)

IV. BOUNDARY CONDITIONS AND INTERFACE
STATES IN THE ONE-BAND CASE

Let me now consider an idealized interface between
two crystals A and 8 (Fig. 1). Knowing the bulk transfer
matrices A (E) and B (E) I can construct the solution
across the interface. Starting from a given solution
ay ~" (z)+ by z" (z) in some unit cell in A I can "propagate"
it according to Eq. (11)up to the interface and then in B:

ax+t+ ] a
BlA N (52)

bN+I +1 b

and k =k (E) is given in Eq. (38). Therefore, in order
to determine the transfer matrix from the two-band
EMM we have to know additionally two "microscopic"
parameters A, z and A z&. In the one-band case we need-

ed only one [see Eqs. (15) and (16)]. We can plot the
two-band expressions for A (E) for the Kronig-Penney
crystals taking band-structure parameters together with
A &z and Az, from the exact calculation. When com-
pared to the exact formulas (Appendix A), the agreement
is quite good (Fig. 5). Again the two-band approximation
is better if other bands are further away [Fig. 5(a)].

I

energy in material B—our solutions in B are then
modified due to the change of the transfer matrix 8 (E}
and of the functionsy, andyz.

Equation (52) immediately supplies us with a simple
criterion for the existence of interface states: an exponen-
tially increasing eigenstate in A should become an ex-
ponentially decreasing eigenstate in B. Here it has to be
borne in mind that in the I gaps we have lA, +l) lA,

while in the X gaps lA, + l
& lA, l. Using the general form

of the eigenstates given in Eq. (21) and considering all
possible kinds of band edges on two sides of the interface
we reach the following conclusions. (1) When the con-
duction band in one material is close to the valence band
in another (but there is a gap left between them) the inter-
face states can appear when both band edges are of the
same type, e.g., cI 1 in A and vt 1 in B or cI 2 in A and
UX2 in B. (2) When two conduction (or two valence)
bands meet at the interface, localized states can occur
only when the band edges in A and B are of the different
type, e.g., cI 1 in A and cX2 in B or v I 1 in A and v I 2 in
B.

The first conclusion contains as a special case the situa-
tion at the HgTe/CdTe interface" and agrees qualitative-
ly with the condition obtained from the BC introduced by
Bastard (see Sec. II). The second conclusion suggests a
possibility of interface states being formed in GaAs/A1As
or in Si/Ge heterostructures. From the proportionality
of appropriate eigenstates in A and in 8 [using Eq. (21)]
we get the condition for the interface-state energy:

Now the solution in the Ith unit cell in B is

f(z) =a++&+,y &
(z —ld)+bz+~+&yz (z ld) . —(53)

A, z(E}Bz,(E)= A z, (E)B,z(E) . (54)

For the type-1 edges at E~ in A and at E~ in B this be-
comes (for m„m~ &0)

The functions y &,y z,y, ,y z depend on the energy and so
do the transfer matrices. If we change the potential jurnp
at the interface b, V (Fig. 1) we find ourselves at a difFerent

2m „d~ 2m~d~
o z z' '= o(A, z) A' (B,z) A'

(55)
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I I I I I I I I I I I I I I

Ener gy (eV)

materials are given in Eqs. (21) and (22). I have used two
methods for obtaining the envelopes from the exact solu-
tions: one consists in projecting the exact solution onto
the band-edge Bloch functions in two neighboring cells
and then interpolating in between the cells —this method
will be applied in the multiband case (Sec. V) and, as I
showed in Sec. III, it allows for the determination of
A&2(E) and A2&(E). In the one-band case one can use
the expressions (15) and (16) for A (E) (close to the band
edges) and Eq. (25) for the envelope in A. Thus in the
one-band case we can use the second method which con-
sists in expressing the envelopes in A and B by the same
constants [e.g., g, and (2 from Eq. (25)] which should
then cancel when determining the BC. In this approach
we obtain the envelopes as continuous functions of z so
that there is no need for interpolation. If we start in A

from a solution ay, +by 2" we can decompose

(b)
a

+kz, (57)

p

where [a+,b+ ] are the eigenstates of the transfer matrix
+ik~ d

A corresponding to eigenvalues A,+=e " (let us as-
sume we are in the band both in material A and in ma-
terial B). The envelope function in A is given by Eq. (25).
In material B the wave function is given by Eqs. (52) and
(53). Inserting (57) we get

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

aN+ I+1

~N+ I + 1

a+=B' gA,
a

+g,x~ (58)

For the type-1 edge in A and type-2 edge in B we get (for
m„ms )0)

2m„d„(B2,) A

o(A, 2) fi 2m~de(E Es)—(56)

For the type-2 edges both in A and in 8 the constants
A, z and B,z in Eq. (55) should be replaced by Az, and

B2, , respectively. The above formulas show that the en-

ergy of the intrinsic interface state can be related to
A 12 ~B 12 o to A 12B21

0 0 0 0

Let us now turn to the determination of the BC for the
envelopes and their gradients. The exact solution is
determined by Eqs. (10) and (11) in A and by Eqs. (52)
and (53) in B. The normalized Bloch functions in both

Ener gy (eV)

FIG. 5. The exact (solid lines) and approximate (dashed lines)

elements of the transfer matrix in the Kronig-Penney case. (a)

d =10 A, W=9.75 eV, a =9.3 A; (b) d =10 A, W=5 eV,
a =8 A. Exact curves were obtained from Eqs. (A3) —(A5)
while the approximate functions were calculated within the
two-band model from Eqs. (14), (49), and (50) using Eq. (38) and

the values of A ]2 and A2~ obtained from the exact formulas.
The parameters of the two-band model were also taken from the

exact calculation (Appendix A).

Now if we decompose the eigenstates of A, [a+,b+ ], into
the eigenstates of B, [a+,P+],

(59)

(60)

Here z =0 at the interface. Using Eq. (21) for the nor-
malized eigenstates of A and B we can obtain u+, w+
from Eq. (59) and then compare the envelopes and their
gradients on both sides of the interface. This leads to the
following BC:

1/2
mg dg A 12

mg dg B
0 1/2

m~ dq B,2 sgnm ~

m „dg A 12 sgnmg

for type-1 band edges in A and B, and
1/2

mg dg dg
0 0 sgnm g

(61a)

(61b)

(62a)

mg dydee

mg A 12B21
0 0

1/2

(
—sgnm~ ), (62b)

we will get the required expansion similar to Eq. (24) but
in B. The envelope function is

Ik
A Nd~ —kANd~ kBZ

P~(z)=(g&e " "u++gze " "u )e
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for the type-1 band edge in A and type-2 edge in B. For
the type-2 edges both in A and in B the BC are deter-
mined by Eqs. (61) with the replacement 1~2.

It is easy to check in each case that the average proba-
bility current, proportional to [P(P')' —P'P']/m, s, is
conserved across the interface. The products PP' contain
only the effective masses but, e.g. , the logarithmic deriva-
tives depend only on the microscopic parameters like d~
and A, 2. The masses can be removed from the above BC
(except for the signs) by the transformation
P=P/(~m, tr~)' suggested in Ref. 5. This shows that the
masses will only affect the envelope functions but have no
direct influence on the energies [the masses enter only
through the E(k) dependence in each material]. In the
transfer-matrix method the effective masses and the
whole band structure and determined by A»(E) [see Eq.
(14)] while the BC contain the off-diagonal elements A &z

or A 2„ independent of A». The ratio A &z /B, 2 is not
related to the ratio mz/m „even when the Bloch func-
tions in A and B are almost identical ( u „=uz ); this can
be checked numerically for, e.g., the Kronig-Penney crys-
tals or analytically from Eq. (6) treating V„—Vs as a
perturbation. Concluding, the BC for the envelopes con-
tain microscopic parameters of the two crystals, even for
an idealized interface. These parameters are not related
to the effective masses and can be determined from first-
principles calculations' but, at the moment, they can be
treated as fitting constants, similarly to band offsets. The
case of abrupt heterojunctions resembles the case of deep

impurities or, better, the chemical shift of shallow impur-
ities where we need additional characteristics of the rap-
idly varying potential. Thus, the attempts to construct
the effective-mass Harniltonian for an abrupt heterojunc-
tion' should be abandoned. It is also interesting to note
that the Bloch functions in A and B can be quite different
and still it is possible to formulate the BC for the en-
velopes. The previous statements concerning the inter-
face states are confirmed here: for two bands of the same
type the masses must be of the opposite signs, for the
bands of different types in A and in B the masses have to
be of the same sign.

Although the BC given in Eqs. (61) differ from the ones
used before, the effect they have on, e.g., the energy levels
of a single quantum well is rather small, especially for
deep wells. When the wave function decays rapidly in
the barrier, the matching conditions are not that essen-
tial. Still, they might be important for the resonant tun-
neling or for the superlattice band structure. The BC for
two different types of band edges in A and B [Eqs. (62)]
are rather unusual. They coincide with those obtained by
Ando and Mori for the case m „&0 and mz &0 to de-
scribe the GaSb-InAs interface. The BC from Eq. (62)
modify the bound states in a quantum well BAB in an
unexpected way. Let us assume d ~ =dz =d, m „)0, and
m~ )0, in the barriers B, (E&2) =0 and in the well

A2, (E„)=0. The well extends from L/2 to L/2. —
Denoting 6'o =Ez E„(depth of the w—ell), a =

~
A &2B&& ~

("microscopic parameter"), E Ez =Pi k /2m „, a—nd

E~ —E =A' p /2m~ the following conditions for the
bound states are obtained:

kL
tan

2

for symmetric solutions and

kL pkdtan
2 cx

(63)

(64)

for antisymmetric solutions. For the states below the
bottom of the well (interface states) we may use Eqs. (63)
and (64) with k =i( T. he antisymmetric interface state
lies above the symmetric one and with increasing well
depth it crosses the bottom of the well and becomes the
lowest state inside the well. A similar transition can be
obtained for a fixed depth but with decreasing well width.
The condition for antisymrnetric state to lie below the
bottom of the well is

aL8'o &
2d

2

2m@ d
(65)

For deep wells the spectrum is similar to the standard
case: E„=Pi n n/2m .„L . However, the symmetric and
antisymmetric solutions change places and we always
have the symmetric interface state below the well. I ex-
pect the GaAs well with AlAs barriers to reveal some of
the above-described properties (see Sec. VI).

V. BOUNDARY CONDITIONS
IN THE MULTIBAND CASE

go"(z)=ay, (z+d)+by2" (z+d)

while in the cell on the B side we have

(66)

f, (z)=a'y, (z)+b'y2(z) (67)

with

Throughout this section I shall use the two-band model
(discussed already in Sec. III) as an illustration of the
multiband case. Thus I assume that in both materials A

and B forming the interface we can use the EMM Hamil-
tonians given in Eq. (30) with k = —i d /dz. All parame-
ters of these Hamiltonians will now have A or B indices.
I will also assume that the band edges are at the I point
in A and in B and that both conduction-band edges are
type 1 and both valence-band edges are type 2. This
means that the Bloch functions will be given by Eqs. (26)
and (27). I also take d„=dz=d. In each material the
(real or complex) wave vector k(E) is given by Eq. (38).
This wave vector inserted into Eq. (14) yields the diago-
nal element of the transfer matrix [ A»(E) or B»(E)]
while the off-diagonal ones ( A, 2, B,2, A2„Bz, ) are deter-
mined by Eqs. (49) and (50). The exact solution is deter-
mined by the transfer matrices through Eqs. (10) and (11)
(in material A) and through Eqs. (52) and (53) in material
B. Now it is necessary to determine the values of the en-
velopes and their gradients on both sides of the interface.
It is sufficient to consider only two neighboring cells to
the left and to the right of the interface (denoted by 0 and
1, respectively). In the cell on the A side we have
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a'
b'

a
=A

b

If A was extending further to the right we would have

(68)

the above BC are independent. Formally the more bands
we include in our EMM the more BC we obtain, but the
important thing is that some of them are redundant. For
the 2X2 Hamiltonian of Eq. (30) the BC introduced by
Altarelli would read [see Eqs. (3) and (4)]

P,"(z)=a 'y,"(z)+b'y,"(z) (69)

in the cell to the right of the interface. Similarly, if B was

extending further to the left we would have

yA yA' =1= "',
yB yB

(78)

$0(z)=a "y, (z+d)+b "y2 (z+d)

with

(70)
yA'

yB' pA
(79)

bit 8 bl 8 A (71)

yA'

yB' A
(80)

These fictitious extensions allow us to determine the in-

terpolated values of the envelopes and their gradients at
the interface. The method is exactly the same as the one
described in Sec. III [Eqs. (44)—(48)]. Due to Eqs. (68)
and (71) all envelopes and gradients contain only com-
binations of a and b; these combinations cancel in bound-
ary conditions. If we insert the expressions for A, 2(E)
and A2)(E) [Eqs. (49) and (50)] into these BC we finally

obtain

pA EB E + [pB PB(yB)2]k 2
C (E)

c

yB c E A E+[pA pA( A)2]k2

EB E+[IzB+PB(yB)2]k2

EA E+[&AypA(~A)2]k2
=f„(E)

pA
' ~8+PB~B(pBk 2 +E 8

c f (E) 0 0 0 8 c

$8' " yA+PAlrA(PAk2 +EA E)

y
A' ~B+PB~8(E —EB &Bk 2

)c f ( E)

0 0 0 u 8

$8 c yA+PA A(E EA AI 2
)

where

(72)

(73)

(74)

(75)

f, (E)= A2, m (E E,)—
B2(m," (E E„")—
[1—A „(E)](k„d +24)y0

[1 B,t(E)](—kBd +24)y0

A02m, (E E,)—
B,2m

" (E E")—
c

[1—A, t(E)](k„d +24)yp

[1 Bt(tE)]( kdB+2—4)y0

(76)

Here, as usual, k (E) is positive in the bands, negative in
the gaps, and it should be determined from Eq. (38).
A»(E) is again detertnined by Eqs. (14) or (14a), P0 is

given in Eq. (51). The above BC are energy dependent
and in addition to band-structure parameters they con-
tain microscopic constants A, 2, A2, and B,z, Bz, . For
E=E,"=E, or for E=E, =E, they reduce to the BC in

the one-band case [Eq. (61)]. The conditions for the gra-
dients follow from the conditions for the envelopes (and
vice versa) if we use Eqs. (40) and (41) so that only two of
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FIG. 6. Boundary conditions [Eqs. (72)—(75)] for the en-

velopes and their gradients at the interface between two
0 0

Kronig-Penney crystals: d = 10 A, %=9.75 eV, a =9.3 A [see

Figs. 2 and 4(a)], potential jump b V=548 meV (in this case 6 V

is equal to the band offset). Envelope ratio at the interface, solid

lines; gradient ratio, dashed lines. In both cases c and U denote

the conduction- and valence-band envelopes, respectively. The
BC used previously would imply [see Eqs. (78)—(80)] that all

these ratios should be equal to unity.

These BC are independent of each other —furthermore,
they are incompatible with the effective-mass equations
(40) and (41). The conditions for the gradients do not
reduce to the one-band condition [Eq. (2)] in the ap-
propriate limit.

For the two-band model we can consider a specific case
when the "microscopic" potentials in A and in B are
identical but only shifted by a constant amount hV. In
this case the band-edge Bloch functions will be identical
in A and in B and also A iz B iz A zi =Br& a =a
P"=P, etc. In Fig. 6 I plotted the right-hand side of
Eqs. (72) —(75) in the Kronig-Penney case ( A, 2 and A zt
were determined from the exact formulas, see Appendix
A). In the energy range correctly described by the two-
band model (see the band structure in Fig. 4) the envelope
ratio is almost constant and of the order of unity [so that
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Eq. (78) is approximately correct] but the gradient ratio
strongly varies with energy. P,

" /P, has a singularity at
E =E„, P„" /P„at E =E, . This is also evident from
Eqs. (40) and (41) if the envelopes are almost continuous.
The conditions (79) and (80) ("old BC") are therefore to-
tally incorrect.

VI. SUMMARY AND CONCLUSIONS

Here I would like to discuss what we can learn from
the analysis of the one-dimensional case as far as the
EMM in real heterostructures is concerned. Despite all
the differences between the 1D case and the 3D layered
structures certain conclusions are generally true. (1) The
EMM is not valid for a layered material with some "su-
perlattice potential;" it can only be applied to separate
layers and then the envelopes should be properly
matched at the interfaces. (2) The EMM in a finite layer
can produce unphysical exponential and oscillating solu-
tions corresponding to large ~k, ~. These solutions should
be rejected. (3) The BC used so far are incorrect, both in
the one-band and in the multiband case. The proper BC
involve some microscopic parameters not related to the
effective masses. These parameters should either be
determined from first principles or treated as fitting con-
stants. For the most common heterostructure
GaAs/AI„Ga~ „As with x (0.4 we can probably as-
sume that the ratio of these parameters is close to unity
(see Ref. 12) but for very different materials this cannot
be postponed.

For the band edges of different symmetry in two ma-
terials the BC can be very unusua1, allowing for the ex-
istence of slowly varying interface states and leading to
unusual properties of a quantum well or a resonant tun-
neling structure formed from these materials.

At this point it is worthwhile to comment on the ap-
proach, commonly adopted for GaAs/AIAs heterostruc-
tures, namely the separate consideration of I and X
profiles (see, e.g. , Refs. 13 and 14). Within such approach
there is no place for, e.g. , bound states in the I -X well
considered in Sec. IV. There is more and more experi-
mental evidence for such states in GaAs/AIAs resonant
tunneling structures. ' ' There is also strong evidence
that there are interface states at the GaAs/AlAs inter-
face; they might be extrinsic but I believe that this
problem requires more experimental investigation.

Another important case of band edges of different sym-
metry can be found in Si/Ge heterostructures. Here the
band structure is strongly modified by the strain which,
in turn, depends on the substrate on which the structure
is grown. The conduction-band minima are located in
different regions of the Brillouin zone so that the EMM is
difBcult to apply. The conduction-band ofFset seems to be
very small in this case ' but one could search for the in-
terface states in the gap.

The third interesting case is the GaAs/Ge heterojunc-
tion, preferably grown along the (111) direction. This
would allow the Bloch states with small (k„,k ) to propa-
gate across the interface from I minimum in GaAs to L
minima in Ge along the growth direction.

Finally, the case which can be described within a one-

band picture (in a certain energy range) but involves two
bands of different symmetry; the GaSb/InAs superlat-
tice. The simplest way to describe the superlattice (SL)
is to use the transfer-matrix method —this time the SL
unit cell consists of, say, one InAs layer (thickness d, )

surrounded by two layers of GaSb (thickness d2/2). The
SL periodicity is d =d&+d2 and the unit cell is sym-
metric. Also, at the boundaries between unit cells we
have the continuity of envelopes and their gradients so
that the formalism described in Sec. III applies without
any changes. Of course, in order to determine the
transfer matrix A s (E) we have to propagate the solu-
tions y, (z) and y2(z) across two GaSb/InAs boundaries
where the BC given in Eq. (62) will hold. In the most in-

teresting energy range of the overlapping conduction
band in InAs and valence band in GaSb we obtain

A „(E)= —cos(k, d, ) cos(kzdz )

—
—,
' sin(k, d z ) i (k2d2 )

k, k,d'
+ a

k)k~d2
(81)

where A' k~/2m, =E E, in InAs —conduction band and
fi k2/2m„=E, E in the (G—aSb) valence band. Here
again a=

I A, 282, ~

is the microscopic parameter charac-0 0

terizing the interface (see Sec. IV). The SL band struc-
ture is given by A „(E)=cos(kd). It is quite different
from those obtained by Sai-Halasz and by Altarelli (Ref.
33). This is only the first step of the calculation; after
determining the position of the Fermi level and after cal-
culating the charge transfer between the GaSb and InAs
layers the new potential in the layers should be deter-
mined, leading to a new A

&~ (E). Here I just want to
point out that the BC have a very important effect on the
final spectrum.

In the multiband case the BC are energy dependent,
especially for the gradients. They also depend on each
other; the correct multiband BC must be compatible with
the effective-mass equations in the bulk material. For ex-

ample, narrow-gap zinc-blende semiconductors are well

described by the 8 X 8 k p Hamiltonian without the quad-
ratic terms (see, e.g. , Ref. 34). This model allows us to
express all envelopes by the first two: P, and $2. There-
fore the only independent BC will be those for P, and Pz.
In this way the number of BC does not necessarily in-
crease with the number of bands included in the EMM.

I should stress that all my statements about the real
heterostructures are speculative because of obvious
differences between the 1D and the 3D case. For any
quantitative predictions numerical calculations for
specific interfaces are required. Such calculations for
GaAs/Al, Ga, As interfaces have recently been report-
ed' and the 1D model with the exact solutions can al-
ways be used to test the accuracy of more realistic (but
approximate) calculations. The EMM is such a useful
and important method for heterostructures that it is cer-
tainly worth further effort.
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APPENDIX A: THE KRONIG-PENNEY CASE

i+—cos(ka) sinh[K(d —a)],
K

(A4)

[K +k +(K —k ) cosh[K(d —a)]I
sin(ka) i 2 z

2K k

Here I would like to write down the transfer matrix
A (E) and other important quantities for a potential with

periodicity d consisting of square wells with the width a
and depth 8'.

d —a d+a—8' for &z&
2 2

V(z)= '

d —a d+a
2

0 for 0&z & and &z &d,
2

V(z+nd)=V(z) .

(Al)

(A2)

+ cos(ka) cosh[K(d —a)], (A3)

Using the definition of the transfer matrix [Eq. (8)] and
determining y, (z) and yi(z) satisfying Eq. (7) we obtain

K —k2 2

A = A22=11 22 2K
sin(ka) sinh[K(d —a)]

I

Ai, =
t K —k—+(K k—) cosh[K(d —a)]I

+K cos( ka }siilll[K(d —a)] (A5)

where K = 2m—0E /fi, k =2mo(E + W)/fi . These for-
mulas hold for E &0 and for E & 0. For the latter case K

becomes imaginary, ( I /K) sinh[K(d —a) ] becomes
(I/~Ki)sin[iKi(d —a)], etc. The exainples of A»(E),
A i&(E), and Az, (E) are given in Figs. 2 and 3 together
with the band structure E(k) following from
A „(E)=cos(kd).

Using the two-band model we need the value of @o-
the matrix element of rnomenturn between two band-edge
Bloch functions [Eq. (31)]. Inserting Eqs. (26) and (27)
into Eq. (31) we obtain

a . a
cosk —sink—

C 2 v

d —a . (d —a) . a
&i(Ao Ao, iiz k, coshK, sinhK, sin(k, —k„)—

A, 2A2, & 2

d(mm )' (k, —k, )

sin(k, +k„}—

(k, +k, )

+Kc
(K„+K,) Kv Kc

(d —a) . (d —a)
sinh(K„+K, } sinh(K, —K, )

2 +
' ' 2 (A6}

where

K, = —2moE, /A'

cos(kx). Determining the y, (z) and yz(z) solutions [Eq.
(7)] and using the definition of the transfer matrix A (E)
[Eq. (8)] we obtain

k, =2mo(E, + W)/vari

E„E„,m„and m, are determined from A ii(E) [Eqs.
(15) and (A3)], while the parameters A, i = A ii(E, ) and
A ii = Az, (E„)are determined from Eqs. (A4) and (A5).

The two remaining parameters of the 2X2 Harniltoni-
an (a and P) are obtained from m, and m, [see Eqs. (36)
and (37)].

1/2

A (E)=——
21 d E0

1/2

sin
Eo

1/2

A» (E)= A ii(E) = cos
Eo

1/2
Eo . E

A ii(E)=d sinE Eo

(82)

(83)

(84)

APPENDIX 8: SOME USEFUL FORMULAS
FOR A 1D CRYSTAL

Here I would like to derive several identities involving
the transfer matrix, using only the Schrodinger equation
[Eq. (6)] for a periodic potential V(z+d)= V(z). For
very high energies (E )& V) this equation becomes

where Eo=h' /(2mod ). These are the asymptotic ex-
pressions for the transfer matrix. There are no gaps and
at the band edges for E =Epn vr both A, 2 and A2, van-
ish. Now let me consider the full Eq. (6) for two dilferent
energies E, and E, and two corresponding functions i',
and 1/c„. Multiplying the first 1(„and the second by g,
and subtracting I get

2m 0f"+ EQ=0 (81) (Q', g, g', P, )=—,(E,—E, )g, g„. —

so that its solutions are combinations of sin(kx) and (85)
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For E, =E„we simply get the constancy of the Wronski-
an. For diff'erent energies Eq. (B5) leads to useful identi-
ties for the integrals of y, (z) and y2(z). Integrating (B5)
from 0 to d and using the definition of the transfer matrix
we obtain

2mp d E E
, «, E,—)f yi'yi'

= Az, (E, ) A i, (E, )
—Az, (E, ) A „(E,), (B6)

2mp d E
, (E, E—.) f yi'y2"

=A z(E, )A, (2E, ) —A„(E,)A„(E,)+1, (B7)

2mp d «d A„(E) dA2&(E)

fi' yty, =A»(E) —A, 2(E)
dE dE

(B10)

2mp d ~ q
dA)2(E) dA)t(E)

(y2 ) = A „(E) —A, 2(E)
dE

(Bl 1)

where E, was replaced by E. These formulas were neces-
sary for the normalization of the Bloch functions.

Finally, the Wronskian of yt and yz (equal to 1) may
be written as

2' p d E E
(E, E)f—y2'y2"

=A)t(E, )A)z(E„)—A„(E,)A)2(E, ) . (B8)

Here E, and E„are arbitrary energies —if they corre-
spond to the band edges, Eqs. (B6)—(B8) further simplify.
If, for arbitrary E„we tend with E, to E„,we can expand
the functions on the right-hand side around E„, which
leads to the following formulas:

E

( g)2 d yz =1.
d

Integrating this by parts from 0 to d we obtain

E

A»(E)A»(E) —2f y, =d,
0 dz

(B12)

(B13)

2mp d dA)((E) dAzt(E)
2 y1 —321 E

dE 311 E
2 0

(B9)

where, again, we used Eqs. (7) and (8). As we can see,
many important quantities can be expressed by the
transfer matrix.
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