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Complete tight-binding description of the empirical-local-pseudopotential Hamiltonian
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A complete spatial description of the empirical-local-pseudopotential Hamiltonian in zinc-
blende-structure semiconductor materials based on the tight-binding theory is presented. The sp'
Gaussian orbitals are employed to construct the Bloch basis functions which are subsequently used
in obtaining the Hamiltonian matrix. The spatial correlation of the neighbor quasiatomic wave
functions is estimated. It is shown that to produce an energy-band structure comparable to that of
the plane-wave basis, a cluster of at least 135 primitive cells is required. The intermediate-range in-

teractions are important in determining the dispersion of the band structure. We evaluated the
GaAs energy band as an illustration.

I. INTRODUCTION

The tight-binding model is a numerically straightfor-
ward and physically appealing approach to the study of
the properties of the electronic band structure of semi-
conductor materials. Physically, a bulk material is a
congregation of an order of 10 atoms which behave
hydrogen-atom-like when isolated. When these atoms
are brought close together, the atomic wave functions
overlap and form bonding and antibonding orbitals
which constitute the valence and conduction bands of the
material. It is therefore natural to construct the Bloch
basis functions as a linear superposition of the atomiclike
wave functions in accordance with the Bloch's theorem.
However, it is well known that when the nearest-
neighbor interaction is used to develop the single-particle
Hamiltonian, the tight-binding theory fails to produce
the correct conduction-band structure of many materials.
Extension to the next- and higher-order —nearest-neighbor
interactions is simple in principle, but it suffers from the
drawback that too many adjustable parameters are in-
volved to fit the experimental band structure. As a
consequence, it loses its simplicity and becomes impracti-
cal. A simple way ' to handle the band-structure calcu-
lation up to eight nearest neighbors is to employ the
Hartree-Fock effective one-electron operator and to set
the ionization energies of the s and p orbitals to their
atomic values. Then the dimensionless empirically ad-
justable parameters K„and j: for the s-s interaction
and the p-p interaction, respectively, in this extended
Huckel theory are chosen to be 1.75. The E, parameter
for the s-p interaction and the s- and p-orbital exponents
are subsequently adjusted to produce the best fit. Howev-
er, this approach produces E(X„)=3. 7e9V in GaAs,
1.76 eV higher than that in empirical-nonlocal-
pseudopotential method. Attempts to improve the
nearest-neighbor tight-binding theory by including an ex-
cited S' state in addition to the sp basis per atom pro-
duce results which are still unsatisfactory in producing a
flatter first-conduction-band dispersion when compared
with the empirical-nonlocal-pseudopotential band struc-

ture. Earlier, Chadi proposed to apply the localized or-
bitals to the local-pseudopotential in the momentum
space and successfully produced the bulk band structures
comparable to that evaluated in the plane-wave basis.
This idea was further extended by Chen and Sher in
their study of the energy band of the random alloy and of
orthonormal local orbitals in III-V compound semicon-
ductors. Based on a set of nonorthonormal local orbitals,
Chen and Sher used a k-space construction procedure to
produce a set of orthonormal local orbitals through
Lowdin's diagonalization process. Bloch functions are
then represented through these orthonormal local orbit-
als and the Hamiltonian matrix elements are subsequent-
ly constructed. Numerical calculation demonstrated that
extended interactions up to the fifteenth-shell neighbors
are needed to be included to account for the valence and
conduction bands. These results are in qualitative agree-
ment with our results to be reported in this paper in
which a direct approach is employed. This paper reports
another aspect of the tight-binding theory applied to the
local-pseudopotential Hamiltonian; namely, the spatial
behavior of the wave-function correlation and
intermediate-range interactions of the local-
pseudopotential Hamiltonian. The analysis is carried out
in the coordinate space and therefore brings out the phys-
ical nature of the tight-binding theory. In doing so, a
deeper insight to the underlying physical principles
governing the formation of bulk band structure can be
gained. Furthermore, the techniques and results to be
presented in this paper are relevant to the study of de-
fects, heterojunctions, and microstructures. A nonempir-
ical tight-binding method which takes the interactions
with many neighbors into account has been proposed by
Lafon and Lin and subsequently applied to diamond, sil-
icon, and sodium crystals by Chancy et al. , Kane, and
Ciraci and Batra. ' These first-principles self-consistent
techniques use a variety of schemes to construct the core
potential and the exchange potential. These have demon-
strated that the linear combination of Gaussian orbitals
method simplifies the computational procedure. Howev-
er, Wang and Klein" reported that this self-consistent
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linear combination of Gaussian orbitals method applied
to the local-density theory for band-structure calculation
underestimates the optical band gaps by 30%%uo or more.
This has been attributed to the partial failure of the
local-density theory in describing excited states. There-
fore, for the sake of practicality and simplicity in the ap-
plication of band-structure calculation to microelectron-
ics, the empirical-pseudopotential method remains one of
the versatile schemes to use. In going into a tight-
binding description, a further computational advantage is
gained in that one diagonalizes an 8 X 8 Hamiltonian ma-
trix in the minimum basis set of s, p~, pz, and p, orbitals,
instead of an 89X89 (or larger} Hamiltonian matrix in
the plane-wave basi's. We organize the presentation in
the following manner. Section II is on the general for-
rnalism of the tight-binding theory in relation to the
local-pseudopotential Hamiltonian. Spatial properties of
the Hamiltonian will be analyzed in Sec. III. The spatial
correlation factor of the neighboring atomic wave func-
tions are explicitly defined and estimated. We evaluated
the band structure of GaAs as an illustration and the nu-
merical results are presented in Sec. IV. Section V is the
conclusion.

II. TIGHT-BINDING FORMALISM

To introduce notations for the discussion below, we
briefiy review Chadi's tight-binding approach. The
Bloch basis function P"(k, r) for a given crystal momen-
tum k is constructed as a linear superposition of the
atomic wave functions centered around each of the atorn-
ic site of the crystal lattice:

P"(k,r)= pe"' f (r —R —r;) .
R

R is the lattice vector of a primitive cell containing a cat-
ion at r, and an anion at rz (i = I or 2 for anion and cat-
ion, respectively). The displacement vector r; is mea-
sured with respect to R. e denotes the orbital label. In
the minimum basis set, a means the s, p„,p, or p, orbit-
al. We use the Gaussian orbitals in our study. They are

I'

f, (r)=C, e ', f =Cz xe ', f =C ye ', and
Z X s'&

f~, =C~ ze ', respectively. Here, the explicit form of
Z

the normalization constants C„C,C, and C whichl'x' ~y' Z

are functions of the variational parameter A, ; are not irn-
portant as they are easily evaluated numerically when the
Bloch basis functions are properly normalized in the
computer code. In general, the Bloch basis functions are
nonorthogonal and the overlap integrals are formally

(2)

general bounded spatial periodic function G ( r )
=G(r+R}:

(P"(k,r)lG(r)lpga'(k, r)) =N g e" g"&(R) (4a)

with

g J&(R):—fdr f (r r;—)G(r)f&(r R —r)—. (4b)

III. LOCAL-PSEUDOPOTENTIAL HAMILTONIAN

The local pseudopotential is defined as

Here, N is the number of lattice sites in the crystal. The
above equality is a consequence of the translational in-
variance of the summation over R and of the integration
over r. The integration over r is throughout the crystal
volume. The physical implication of Eq. (4a) is almost
explicit; namely, each lattice site R contributes to the ma-
trix element by an amount equal to the g function g J&(R}
(e.g. , the overlap integral and the energy integral) which
is mainly determined by how far the atomic wave func-
tion decays away from atomic site ~; to atomic site
R+v . If R is very remote from site ~;, which corre-
sponds to the zeroth lattice site, the atomic wave-
function overlap is insignificant. Therefore, there is a
natural spatial cutoff, R„ in the sum gR in Eq. (4),
beyond which the probability amplitude of electron hop-
ping from site R+'Tj to the zeroth lattice site is negligi-
ble. Such a locality property, namely, that electrons at
remote sites do not interact, will be fully exploited and
the numerical value for R, with reference to the local-
pseudopotential Hamiltonian will be presented in later
discussion. Another important aspect of Eq. (4a) is that
g'~&(R) depends mainly on R and is independent of the
momentum k in contrast with a similar equation [cf. Ref.
6, Eq. (7}] in the momentum representation. Therefore,
once the g functions are known, the Hamiltonian matrix
elements at any momentum k can be evaluated simply by
summing over the g functions multiplied by a phase fac-
tor e'" at each site R lying within a radius R, . This
spatial Fourier series analysis indicates that this tight-
binding formulation can be developed into an efficient
band-structure —calculation algorithm from a computa-
tional viewpoint. Furthermore, it implies that a complete
description of the band structure requires all neighbor in-
teractions of a cluster of atoms in a volume of 4m R, /3 in-
side the crystal. In the next section, we present an in-
depth discussion and explicit expressions of this formal-
ism with reference to the local-pseudopotential Hamil-
tonian.

and similarly, the matrix elements of the Hamiltonian H
are given by

V(r):—ge' 'u(g),
0

(5)

H'&(k) = (P"(k,r)lalyg'(k, r) )

which constitutes an 8X8 Hamiltonian matrix in the
minimum basis set. To proceed further without invoking
the momentum representation as Chadi did, we need to
employ the following property of the matrix element of a

where 6 is the reciprocal-lattice vector and u (6) is the
form factor given by

u (6)= u, (6)cos(6.r) —iu, (6)sin(6. r) .

We use Cohen and Bergstresser' parameters for v, and
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v, . The displacement vector v is (1,1,1)(a/8). The sutn in

Eq. (5) is limited to all G's which lie within a radius of
&11(2m/a) where a is the lattice constant. The full
single-particle Hamiltonian is H=p /2m+V(r). The

I

eigenvalue problem of finding the band energy is
equivalent to finding the roots of the equation
det(H —ES)=0 in the Bloch basis. By use of Eq. 4(a),
the matrix elements for the kinetic energy are

2 XA
(()'(k, r) imp(k, r) = — g e' [Poia;RjpFoia;Rjp(0}Foia;Rjp(0)

2m 2m

+Fo;a R&p(0. )Po;a g&pF. o;a Rjp(. 0)+Fo; aR&p(0)Fo; aR&p(0)Po; aR&p] . (6)

The matrix elements for the potential energy, Eq. (5), are

(P' (k, r)
~
V(r) ~Pjp(k, r) ) =N g e'"" g v (G)Fo a Rlp(G)F()ia Rjp(G)Foia Rj p(G'}

R G

The matrix elements for the overlap integral are

(P' (k, r)~Pp(k, r) ) =N g e'" Fo; Rjp(0)F. o; Rjp(0)F. o; Rjp(0) ..

In these equations,
—2(A, , +A, )x +ixG„

Foia;Rjp(G)—= f dx e ' ' "Q"Qp (9)

with
1/2 —A.

&

ji.&U /A. +iDg —g /4A,
co = — e00

and

Po, Rp= f dx. e ' Q" (Qpe ' ), (10}
a!

where Q", is defined as the x factor in the polynomial of
the Gaussian wave function f . For example, for the s
Gaussian orbital, Q",=1, and for the p Gaussian or-
bital, Q»= =y, and so forth. By using the Fourier

V

transform, one can build up the F 's and P 's of all Gauss-
ian wave functions from the s-state wave function by two
simple recurrence relations. Below we show how this can
be done and discuss the physical implications of these re-
lations.

A general Gaussian wave function is a product of a po-
—A.rlynomial in x, y, and z with a Gaussian function e

A x I, j)(.zwhich can always be decomposible into e e e
When an inner product is constructed as in Eqs. (6)—(8),
term-by-term multiplication of the polynomials from the
bra and ket produces terms of the form x y "z' which are
multiplied by the Gaussian functions of the x, y, and z
components. Subsequent integration with respect to r
can be done separately for each coordinate in the x, y,and
z directions. Therefore, without loss of generality, we
confine oup derivation to the x component only. In gen-
eral, the following function is encountered formally:

o)„(g)=fdx(x —A)"(x B) e—
where A, , and X2 are arbitrary real constants. A and 8
are the x component of r, and R+r in Eq. (4b), respec-
tively. This function can be evaluated in closed form.
The best approach is to consider the following integral:

„—X,(x —A )' —X,(x —B)'+ igx
h„(g) —= dx x "e

CHOO

Bg

A, ( A +j(,2B
U = A —B, i(,

—=A. ) + A q, D =
(12)

Defining F' ':—co00, we immediately obtain the following
useful recurrence relation:

F(l) l lF(0)
Bg

F(1—]) D g + F(1—2)

2A, 2A,
(13)

Therefore, Eq. (11)becomes

n m

(g) —g g ~ m
( A)n

—
k( B)m —IF(k+I)

k =01=0

(14)

The recurrence relations in Eqs. (13) and (15) show that
A,

1
A.2' /A,

the exponential factor e ' ' in Eq. (12) is the crucial
factor that determines the magnitude of the Fo; .Rjp(G)
and Po,- .R & contributing to the Hamiltonian matrix with
respect to the variation of the relative distance U of two
lattice points. It is a measure of the correlation of the
two Gaussian atomic wave functions separated by a dis-

Furthermore, a second recurrence relation related to the
kinetic energy in Eq. (10) is obtained as follows. Define

k( -A' a2k](x A )

Bx
—j}(, (x —B)X[(x —B) e ' ].

Then,

P„=m (m —1)o)„z—2A2(2m +1)o)„+4Azco„+2 .

(15)
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tance of U from each other. The exponential decay im-

plies that if U ))(A, /A, , A
i)', Fo; z~&.

(G)'s and Po a~ jp. s

contributions are negligible. This forms the theoretical
basis of the spatial truncation in our numerical works. In
practice, for the minimal basis set of sp Gaussian orbit-
als, the spatial truncation is defined by R, with a numeri-
cal value of at least 4(A. /A, ,Az)' which is defined as the
spatial correlation factor. This factor determines the
minimal number of near-neighbor interactions measured
frotn the center of a cluster of primitive cells of size
(256~/3)(A, /A, ,A2) . These complete the analysis of the
local-pseudopotential Hamiltonian.

IV. NUMERICAL RESULTS

TABLE I. Band energies (eV) for different spatial cutoffs.
The number in square brackets [ ] is the degeneracy. N, is the
number of primitive cells in a cluster with a spatial radius of R, .

R, =1.6a
N, =79

R, =1.84a
N, =87

R, =1.95a
N, =135

R, =2.0a
N, =141

In this numerical works, we employed Chen and Sher's
optimal values for A, , (=0.352m /a ) and
(=0.212m/a ). These parameters mean that the spatial
correlation factor 4(A, /X, A2)'y is about 1.75a, corre-
sponding to a cluster of 87 primitive cells. We used a to
denote the lattice constant of GaAs. To study the change
of the band structure with respect to the variation of the
spatial cutoff, we evaluated the band energies with
different spatial cutoff values from R, =0.433a, the
nearest neighbor, to R, '", a cutoff value that gives a can-
vergence error of better than 0.05%. R, '" is found to be
2a (Table I). Table II is a comparison of the band ener-
gies for the plane-wave (PW) basis and the Gaussian basis
in the momentum (GOM) and the spatial (GOS) represen-
tations. It indicates that band structures of GOS (i.e.,
this method with a spatial truncation of R, =2a) and
GOM (i.e., Chadi's method in Ref. 6) are almost identical
and compare very well with PW. Table III presents the
energy integrals of the empirical pseudopotential up to
second-nearest neighbors. Note that the local pseudopo-
tential is not spherical. This gives rise to nonzero contri-
butions to Exr(011)c t Ex„(011)„, Esx(011)c, and
Esx(011)„which have zero-overlap integrals. Note also

TABLE II. Band energies of GaAs (eV) calculated using 89
plane waves (PW), the Gaussian orbital in momentum represen-
tation (GOM), and the Gaussian orbital in spatial representa-
tion (GOS) with R, =2a.

r, „
~lsU

r„
I]s
X)„
X3,
Xs„
X],
X3,
L]„
Lou

L3„
L],
L3,

PW

—12.22
0.0
1.42
4.43

—10.14
—6.09

2.23
1.77
2.09

—10.75
—5.96
—0.89

1.69
4.96

GOM

—12.54
0.0
1.42
4.42

—10.51
—5.91
—2.11

1.90
2.13

—11.08
—6.15
—0.71

1.53
5.17

GOS

—12.59
0.0
1.42
4.42

—10.55
—5.95
—2.18

1.87
2.12

—11.13
—6.27
—0.72

1.54
5.17

that Ex+(000)„and Exx(000)c contribute significantly
more to the Hamiltonian matrix, in contrast with earlier
results' ' obtained by adjusting directly the tight-
binding parameters. The overall characteristic of the en-
ergy integrals is that they do not decrease rapidly with in-
crease in distance. Figures 1(a) and 1(b) show that the
nearest- and second-nearest-neighbor interactions with
the energy integrals defined in Table III cannot account
the band structure of the local pseudopotential. Their
band structures are completely different from the bulk
band structure and from each other. Even their valence
bands are not the same. The band structures become
similar to the local-pseudopotential band structure only
for suSciently large R, & 1.58a. Figure 2 shows the band
structure at R, =1.41a which appears better than that of
the nearest- and second-nearest-neighbor interactions.
The high-lying conduction bands push down at the I
point. The shapes of the valence bands and the first con-
duction band are similar, but their values are by no
means close to that of the plane-wave basis. Further-
more, the band gap at the I point is too small though it
predicts a direct band gap. As the cutoff increases, the
band structure steadily improves and finally converges to

r„
I[s,

Xl,
X3,
Xs„
X],
X3c
LI,
L
L3,
L[c
L3c

—12.802
0.0

—0.219 [2]
1.143
3.704
4.047 [2]—10.760

—6.163
—2.394 [2]

1.679
1.984

—11.345
—6.447
—0.929 [2]

1.127
5.033 [2]

—12.679
0.0

—0.081 [2]
1.309
4.097
4.226 [2]—10.638

—6.039
—2.268 [2]

1.778
2.016

—11.221
—6.343
—0.806 [2]

1.378
5.040 [2]

—12.591
0.0 [3]

1.417
4.416 [3]

—10.550
—5.951
—2.183 [2]

1.871
2.121

—11.132
—6.270
—0.719 [2]

1.540
5.167 [2]

—12.591
0.0 [3]

1.417
4.418 [3]

—10.550
—5.951
—2.183 [2]

1.871
2.121

—11.132
—6.270
—0.719 [2]

1.540
5.168 [2]

[Ess(000)]c
[Exx(000)]c
Ess~---)222
[Esx( —,

'
—,
'

—,
'

) 1 ~ c
Exr~-- —)

1 I I

222
[Exy(o11)]c
[Exy(01 1 )]A

[Exx(110)]~
[Exx(011)]„
[Esx(011)]c
[Esx(011)]~
[Ess(110)]~

—1.355
6.278

—0.659
0.697

—1.484
0.152

—0.542
—0.539

0.020
—0.082

0.376
—0.159

[Ess(000)1~
[Exx(000)1 ~

[Esx( —,
'

—,
'

—,
'

) ]c~
Exx~ ---)222
[Exy(110)]c
[Exy(11o)]~
[Exx ( 110)]c
[Exx(011)]c
[Esx(110)]c
[Esx ( 110)] A

[Ess(110)]c

1.924
4.931
0.202

0.358
—0.181
—0.928
—0.168
—0.055

0.168
—0.130
—0.195

TABLE III. The local-pseudopotential nearest-neighbor and

second-nearest-neighbor energy integrals (eV) for GaAs. A and

C stand for anion and cation, respectively.
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FIG. 4. The band structure of GaAs calculated using the spa-
tial tight-binding theory with a cutoff of R, =2a.

eludes the local-pseudopotential Hamiltonian in addition
to the nonlocal piece and the spin-orbit interactions.

V. CONCLUSIONS

%e have presented in this paper a complete treatment
of the local-pseudopotential Hamiltonian by the tight-
binding theory in the spatial representation. We have
demonstrated that good agreements with the band struc-
ture obtained via the plane-wave basis can be obtained if
the lattice cutoff is sufficiently large. Convergence to
better than 0.05% can be attained if the cutoff is about
1.85a (number of neighbor lattice sites of 135) and beyond
for GaAs. This study shows that the tight-binding theory
when properly formulated produces reliable results which
are based on a few adjustable form factors in the momen-
tum space. This study also shows that intermediate-
range interactions are important and has to be included
in the tight-binding theory so to properly account for the
full local-pseudopotential band structure. This study
brings out a deeper relation of the tight-binding theory
with the pseudopotential Hamiltonian system and also in-
dicates to some degree the potential application of the
present formalism to nonlocal-pseudopotential Hamil-
tonians and more complicated structures involving de-
fects, heterojunctions, and microstructures.
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