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We have derived the dispersion relation for magnetoplasma polaritons guided by a thin semicon-
ducting film subjected to an applied, perpendicular magnetic field. The film is bounded by two
different (in general) dielectric media. The nonradiative modes are classified as surface, bulk (or
“waveguide”), hybrid surface-bulk, and “‘complex,” depending on the nature of the decay constants
in the film. The general dispersion relation is studied in the nonretarded limit and for very thin
films. In the case of a very thin film on a surface-wave active substrate there may exist resonances
between the magnetoplasmons and the substrate surface polaritons; as a result splittings occur at
the cyclotron and screened-plasma frequencies. Similar splittings are also found for a very thin, un-

supported film.

I. INTRODUCTION

This paper is the third in a series dealing with elec-
tromagnetic (polariton) modes propagating in a thin
semiconducting film, bounded, in general, by two dissimi-
lar dielectric media, in the presence of an applied mag-
netic field B,. There are three main configurations,
namely, B, parallel to the interfaces and to the propaga-
tion vector Req (Faraday configuration), B, parallel to
the interfaces and perpendicular to Req (Voigt
configuration), and B, perpendicular to the interfaces and
to Req (perpendicular configuration). In the previous
work, we have presented a detailed theoretical investiga-
tion of the propagation characteristics of magnetoplasma
polaritons in the Faraday and the Voigt geometries.'?
Most of our results are reviewed in Ref. 3. Our goal in
this paper is to present the theoretical foundation for the
magnetoplasmons propagating in a thin semiconducting
film subjected to an applied magnetic field in the perpen-
dicular configuration. We are interested in electromag-
netic (EM) modes whose fields decay exponentially away
from the interfaces.

In the past, the effect of an applied magnetic field on
surface plasmons in metals and semiconductors in the
perpendicular configuration has been investigated by
several authors.*”® The propagation of polariton modes
in a transparent dielectric film bounded by two identical
semi-infinite semiconductors in this configuration was
studied by Kanada et al.” They concluded that the in-
teraction of the magnetoplasma polaritons localized at
the two interfaces produces shifts in the dispersion
curves. It is noteworthy that, although the perpendicular
configuration is of wide current interest, particularly in
systems of lower dimensionality, we are not aware of any
study of magnetoplasmons in thin semiconducting films
in this configuration.

In this paper we will study the propagation charac-
teristics of the magnetoplasma modes propagating in a
thin semiconducting film subjected to a perpendicular
magnetic field. The exact dispersion relation is derived
for a local magnetoplasma tensor characterizing the
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semiconductor film and scalar dielectric functions
representing the two bounding dielectric media. While
we defer the exact numerical calculations to a future pub-
lication, a number of interesting special cases have been
studied in the thin-film approximation invoked upon the
exact dispersion relation. In particular, we have shown
that if the substrate is a polar semiconductor where the
dispersion is entirely due to phonons, then the magneto-
plasma dispersion curve exhibits splittings at certain
characteristic frequencies due to resonance between the
thin-film magnetoplasmons and the substrate phonons.
In the other two geometries, we have found such a split-
ting occurring at the hybrid cyclotron-plasmon frequen-
cy.!® In the case of an unsupported film we find two
magnetoplasma modes terminating at resonant frequen-
cies in the short-wavelength limit.

The rest of the paper is organized as follows: In Sec. II
we present the derivation of the exact dispersion relation
for the magnetoplasma polaritons in the geometry depict-
ed in Fig. 1. In Sec. IIT we analyze the dispersion rela-

FIG. 1. Bounded region II of thickness d is occupied by a
semiconducting film subjected to an applied magnetic field B,
that is perpendicular to the interfaces (“perpendicular
configuration”). This medium is characterized by a magneto-
plasma tensor € (w,w,,».). The bonding media I and III have
scalar dielectric constants €, and e;, respectively. The guided
modes studied in the paper propagate in a direction (Z) that is
parallel to the interfaces; they decay exponentially away from
the interfaces.
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tion in the nonretarded limit (¢ — o). In Sec. IV we use
an approximation for very thin films to simplify the gen-
eral dispersion relation and study two cases of interest:
(a) surface phonon polaritons modified by a magneto-
plasmon thin layer, and (b) a magnetized film bounded by
two identical dielectric media. We discuss our numerical
results in the respective sections. It is worth mentioning
that most of the analytic results in the present paper are
independent of any specific model. The magnetoplasma
model for the dielectric tensor (€) used in the numerical
calculations is relegated to the Appendix.

II. GENERAL DISPERSION RELATION

We consider a semiconducting film (II) of finite thick-
ness (d) characterized by a dielectric tensor € which is in-
dependent of the propagation (wave) vector q. The film is
assumed to be bounded by two dissimilar, semi-infinite
dielectric media I and III characterized, respectively, by
the dielectric constants €; and €;. The magnetostatic field
(B,) is assumed to be oriented along the § axis which is
perpendicular to the interfaces. The wave is taken to
propagate along the Z axis (thus g, =0), i.e., parallel to
the interfaces. We are therefore concerned with the per-
pendicular configuration: It is to be noted that in the ab-
sence of B, all the three media are isotropic. The
geometry under consideration is shown in Fig. 1.

After eliminating the magnetic field variable (B) in
Maxwell’s curl field equations, we obtain the following
wave equation for the macroscopic electric field E:

VX(VXE)—gq3e-E=0, (1)

where g, =w/c is the vacuum wave vector, o being the
angular wave frequency and c is the velocity of light in
vacuum. We assume that the spatial and temporal
dependence of the fields is of the form ~e ‘97~ %", In the
configuration at hand (Bgy||¥) the dielectric tensor € is
simplified by the symmetry requirements such that
€xx =€, €, = €, and €,, =€, =€, =¢,,=0. Asare-
sult, Eq. (1) may be rewritten as

q(z)e)rx—qyz—qz2 0 qtz)exz Ex 0
0 q%€e,—4q? 4,4 E, |=|0
—qle,, 9,9. qen—q}| |E:| O

()

Equation (2) is a set of three linear, homogeneous equa-
tions satisfied by the electric field in the dispersive, aniso-
tropic semiconducting film (medium II in Fig. 1). The
same set of three equations also give valid solutions of
Maxwell’s equations in the isotropic media I and III, pro-
vided that we set €,,=0 and €,, =€,,=¢;, where i =1
and 3, respectively, for media I and III. The condition of
the nontrivial solutions applied to Eq. (2) leaves us with
the following relation:

1

26yy

—qyzzﬁ%ﬁ: i[qzz(exx+eyy)—2qéexxeyy]
i[‘];(exx €y )2+4)‘2q66i26yy ]1/2} ’

(3)
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where
M=gl-ge, @
in the semiconducting medium (II) and
—qf=a,2=q22——q(2)e,-, =13 (5)

in the bounding dielectric media. In Egs. (3) and (5) B,
a;, and a; refer to the decay constants in media II, I, and
I1I, respectively.

We write the field distributions in the three media in
the form (see Fig. 1):

ilg,z—ot)

E(r,t)=E(y)e (6)

where E(y) for regions I (y < —d), I (—d <y =0), and
III (y =2 0) is expressed as follows:

E'(y)=E""”, 7
EVyp)=Ee " +E e +Ee " +E", (8)
EM(y)=E"e ™. ©)

Analogous solutions can be written for the magnetic field
variables (B) in the three regions. The determination of
the dispersion relation requires the matching of certain
EM boundary conditions at both the y=0 and the
y = —d interfaces. The boundary conditions are the con-
tinuity of the tangential components of the electric and
magnetic fields: E,, E,, B,, and B,. Making use of
Maxwell’s curl field equations and Eq. (2) leads one to ex-
press E,, B,, and B, in terms of E, in the magnetoplasma
(region II). Similarly, B, and B, in the dielectric media
(regions I and III) are expressible in terms of E, and E,
respectively. This greatly reduces the number of un-
knowns involved. Employing the boundary conditions at
the two interfaces yields the following relations.
For y=0, we have

EJN=E\ +Ey+E; +E, , (10)

gl ,EM=A4 E +A E, +A_E,,+A_E, , (11

242
g€ €
———= |EM=—B, A E\,+B, A E,,

—B_A_E;,+B_A_E, , (12
—;E"=—BLE\,+BLE),—B_E;, +B_Ey; . (13)
For y = —d, we have
Ele “=E " "+E, e "+E, " +E, e "7,

(14)
q(z)eszzIe—ald:A+Elxeﬁ+d+A+E2xe~ﬁ+d
+4 Eye’
B_d

+A4_Ege (15)
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q(z)}\'zexzel —a,d B.,d Ai:kz_Bi (18)
——=— |Ele "=—B.A E,e"

€,,0, and
—B.d
tBi A Eye 7T k*=g2—qle,, . (19)
—B_A_E, ™
-a-Bie Equations (10)—(17) are eight homogeneous equations in
_ : LRl gl
+B A _E,.e /Ld’ 16) terms of eight unknowns; E!, EI, E" EM E, E,,

1, 0d_ Byd —B.d d
aEce "=—B.E et +B,E,e * —B_Eheﬁ’

—B_d
tB_E,e , (17

where

AL (B +aa)T_ +B_(a;+ay) [(Biaasz€;, + A% €3) T, +B. (a6;+aze)) A%

E,,, and E,, . Setting up these equations in compact
(matrix) form and employing the condition of nontrivial
solutions gives us the required dispersion relation for the
magnetoplasma polaritons. After laborious algebra we
arrive at the following form of the general dispersion re-
lation:

,V,V]

+ AL [B +aa3)T, B, (ot a) [[(BLajase], +Ate6)T_ +B_(aye;+az€) A%, ]
— A, A _|[(BLaje,, + A ae)T_ +B_(a1as€,, + A 2e)(Brase,, + 1 2a,6)T , + B (aya5€,, +12%€;)]
+[(Brase,, +A%a€)T_ +B_(a,aze,, +A26) [(Bhaje,, +A2aze) T + B (a a5, +A%€))]}
+24, 4_B.B_(Me —ale,, ) (Me;—ade, (1-T2)VA1—T2)2=0, (20)

where
T, =tanh(B.d) . 2D

We have examined Eq. (20) by subjecting it to various
special limits, viz., d=0, d — «, and B,=0. It can readi-
ly be shown that the general dispersion relation, Eq. (20),
for these limits reproduces exactly the proper results pre-
viously reported in the literature for a surface (By0)
and for a thin film in the absence of an applied magnetic
field.#®1112 A careful inspection reveals a close analogy
between Eqgs. (10)-(17) in the present paper and the corre-
sponding equations of Ref. 1 in the Faraday config-
uration. This leads us to conclude that the present
dispersion relation, Eq. (20), can be obtained directly
from the general dispersion relation, Eq. (19), derived in
Ref. 1. It is found that redefining 4, in Eq. (18) of Ref.
1 such that it is given by Eq. (18) in the present paper and
replacing a,€,, /€; [in Eq. (19) of Ref. 1] by A%, /a;€,,
yields Eq. (20).

It is worth pointing out that we are interested in the
situation where g, is real when the absorption is neglect-
ed. Then a, and «;, given by Eq. (5), are either real or
pure imaginary. The latter case is of substantial interest
in waveguide theory.!! In the present work we will
confine our attention to the solution for which the EM
fields decay exponentially away from the interfaces. Such
solutions are characterized by both a,; and a; being real
and positive; see Egs. (7) and (9). In the presence of
damping the conditions Rea; >0 (i=1,3) must be im-
posed and Ref3. >0 may be imposed with no loss of gen-
erality.

The magnetoplasma modes with real ¢q,, a,, and a3
may be further classified according to the nature of ..

f
Depending upon the spectral range in the w-g plane the
following possibilities may arise: (i) 8, and B_ are both
real and positive, (ii) 8, and B_ are both pure imaginary,
(ii1) B, is real and B_ is pure imaginary, or vice versa,
and (iv) B, and B_ are complex conjugates of each other.
We have classified the magnetoplasma modes correspond-
ing to the aforementioned possibilities as surface modes,
bulk (waveguide) modes, hybrid surface-bulk modes, and
generalized (or complex) modes, respectively.! It is evi-
dent that with regard to the classification of the modes,
the situation in the perpendicular configuration is identi-
cal to that in the Faraday configuration. '

In general, the three components of the electric field in
the media I, II, and III, Eqgs. (7)-(9), are all nonvanishing.
Hence the electric field is elliptically polarized in a tilted
plane (neither parallel, nor perpendicular to the surface).
Similarly, the magnetic field of the wave is polarized in
another tilted plane. Our dispersion relation, Eq. (20), is
even in the propagation constant g,, that is, w(—g,)
=uw(q,) for a given solution. For such “‘reciprocal” prop-
agation we may limit the discussion, without loss of gen-
erality, to the case g, 0.

In what follows, we will quote a number of equations
directly from Ref. 1 (hereinafter referred to as I) and
specify them as (L.n), where n stands for the number of
the equation in L.

III. NONRETARDED LIMIT

In the nonretarded (NR) limit we assume that g, >>gq,
which is mathematically equivalent to taking c¢-— .
Then

a=ay=k =B_=gq,
and

Bi=(e,/€,)"?

q; -
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As such, Eq. (20) reduces to
( I/Zqu]

)12(e,+€)=0. (22)

€..€,, T €€ )tanh[(€,, /€,

te, (e /€,

This is the dispersion relation for the magnetoplasma po-
laritons in the NR limit for an arbitrary thickness of the
semiconducting film. Note that the off-diagonal element

., has dropped out of the calculation. This leads us to
conclude that, in the NR limit, the transverse (Hall) field
is absent just as in the Faraday configuration.! Thus
there is no dynamical Hall effect and we do not expect
heliconlike modes for g, >>g,. This, however, does not
preclude the long-range propagation under suitable con-
ditions. We now analyze Eq. (22) in two cases.

The case q,— . First we consider the case g,, >>1/d,;
taken together with g, >>gq,, this implies that g, — .
The hyperbolic tangent in Eq. (22) reaches a limiting
value (one) only when its argument is real; that is, B4
must be real. Therefore €,,(w) and €,,(w) must have the
same sign. Moreover, because of our conventions that
q,>0 and B, >0 we must choose the positive root:
(€xx /€y )1”2>0. Then Eq. (22) reduces to

[(ex /€,,) %€, T € 1€, /€,,) %€, +€,]=0 . (23)

Equation (23) may be written in the form

)12 i=1,3. (24)

(€xx /€,,) 7€, = —€;,

yy

In the case B;=0 and hence ¢,, =¢,
(24) reduces to €,(w)=

vy = €6(w), say, Eq.
—€;, as 1t should be.'’ Equation
(24), for €;=1, gives the solutions for the asymptotic
modes at the semiconductor-vacuum interface as
specified by Egs. (28) and (46) in Ref. 12.

In this section €, and €, are taken to be positive. Then
it follows from Eq. (24) that €,,(w) must be negative.
Thus the correct behavior is given by

<0, €,<0 (g,—o). (25)

In view of this, the asymptotic solutions predicted by Eq.
(24) must lie in the frequency window specified by
w0, <o<w, /V/€L; therefore propagation is not possible
for 0. >0, /V'e,. For the magnetoplasma model,
spec1ﬁed in the Appendix, Eq. (24) may be solved to ob-
tain the same result as in the Faraday configuration.'

The case q,<<q,<<l/d. Assuming that |e, /

|l/2q2d << 1, Eq. (22) yields an explicit solution for ¢,,

1 €,(€1e)

q,=—— Teen (26)

d (e

xx Eyy

Because the NR limit requires that

9o <<gq, <<(€,, /€, )"?/d ,

€, (a;taz)(a 65+ aze)) Hd[(a) taz)(aaz€,,€,,

+d [(a1a3+k )(a|a36
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this result holds for very thin films, namely, g,d <<1.
Equation (26) when solved using €, and €yy> 8S given in

the Appendix, yields a biquadratic equation in @, which
predicts two branches w(q,) and can be studied numeri-
cally for the asymmetric (€,54€;) and the symmetric
(€,=€3) cases.

It is useful to look at the limiting cases gq,=0 and
q,— o, although these are really outside the range of va-
lidity of the present approximation. For g, =0, we must
have either €,,=0 or €,, — », as may be seen from Eq.
(26). This gives, respectively, for the higher and the
lower branches

w=a)p/\/6_L, o=w0, for g,—0. 27

where w. and w, are, respectively, the cyclotron frequen-
cy and the unscreened plasma frequency, defined in the
Appendix. It should be pointed out that the asymptotic
frequencies, as predicted by Eq. (26), are given by
€.x€,, T €,€;=0. This is clearly wrong, since we know
that the asymptotic frequencies are correctly given by Eq.
(24). This discrepancy is hardly surprising because the
present approximation is limited to g, <<1/d.

In the NR limit, the decay constants a,, a3, and B_ all

have the value g,, so they are real and positive. However,
— 172
B+ _(exx /6yy) / q:

is real (and positive) or pure imaginary depending upon
whether the quantity (€, /€,,) is positive or negative.
This quantity is positive for a) <w<w /\/eL [In the
case ® /\/eL <w<w, we should have €., >0 and

y >0, and then Eq. (22) cannot be satisfied.] As such
the two modes, as predicted by Eq. (26), propagating in
this window correspond to surface polaritons. Neglect-
ing the damping and using Eq. (26), our approximation
may be expressed as follows:

le,, (€, +€3)

god << <<(€,, /€)% . (28)

|exx €,, T €6

The first inequality always fails for 0=0), /V'€e; and
o=w,. This is reasonably expected because, for g, —0,
the phase velocities for both the modes are enormous,
whereas the NR limit requires that ¢,>>w/c. The
second inequality is satisfied for © =0, w,, w, /\/e,_, and
wy. With this understanding, we may conclude that this
approximation works well provided that we do not ap-
proach too closely one of the asymptotic frequencies.

IV. APPROXIMATE DISPERSION RELATION
FOR VERY THIN FILMS

In this section we invoke the thin-film approximation
(TFA) tanh(B.d)~f.d. With this approximation, the
general dispersion relation, Eq. (20), reduces to

+A? €,€3)t€,, (aay+ k) (a e+ as€,)]

w €y TAE€) —ajasqdel,€,]1=0 . (29)
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Note that in writing Eq. (29) we have omitted a prefactor
(P) given by

P=A B\ —B~)B.B-

and treated it as a nonvanishing quantity. We will ana-
lyze Eq. (29) in two different cases of interest.

(30

A. Surface phonon polaritons modified
by magnetized overlayer

In this case we assume that medium III is air (€;=1.0)
and that medium I is surface-wave active (€, <0). We use
an ansatz specified by Eq. (1.36) for a film of small thick-
ness (qod <<1). Substituting in Eq. (29) and following the
procedure stated in I leads to the following formula:

€ 172  (god)el”?
~ —1
qz q() l 1+€1 (1+€1)2(1_€1)

1
X e, |——1]—1+e, | |.

yy
(31
Note that —ie}’>=—i(—l|e, ) —ile;|'"*)=]€|*’% and

hence the right-hand side of Eq. (31) is a real quantity.
Thus the propagation constant g, is linear in the film
thickness, to the lowest order in d. Equation (31) is a
good approximation provided that g,d <<1. For the spe-
cial case of B,=0, Eq. (31) reduces to Eq. (I1.39) which is
an exact analogue of Eq. (3) of Lopez-Rios,'* provided
that €, the dielectric constant of medium III in his nota-
tion, is equal to 1. This is a justification of our TFA.

It should be pointed out that the requirement of the va-
lidity of Eq. (31) (i.e., god << 1) implies that the first term
in the curly bracket predominates over most of the
spectral range of interest. An exception, however, occurs
at o, and_o, /V'eL. This is because €, vanishes at
w=w0,/V € and €, —© at ©=w.. Consequently, by
Eq. (31), g,— 0. It is thus understood that although our
perturbational approach breaks down, the dispersion re-
lation of the surface magnetoplasmon polariton must ex-
hibit splittings at these frequencies provided that they are
within the surface-polariton region of the substrate.
Therefore there may be two, or one, or zero splittings, de-
pending on whether o, and w,/V/ €, both fall inside the
surface-polariton pass band (@, ) ), or only one of these
frequencies is within the pass band, or both frequencies
are outside this band. The splittings correspond to a res-
onance between the magnetoplasmons of the thin film
and the surface polaritons of the bare substrate.!> This
will be shown in the numerical examples discussed later.

We consider the substrate (region I in Fig. 1) to be an
undoped polar semiconductor wherein the dispersion is
entirely due to phonons. Neglecting the damping, we
have

wz—a)i
elw)=€,—5—, (32)
W —wr

where € is the high-frequency dielectric constant and
o and w; are, respectively, the transverse and longitudi-
- nal optical phonon frequencies at the center of the first
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Brillouin zone. The thin film is assumed to be strongly
doped and we neglect in it the phonons. This is a good
approximation provided that o’ >>w%_f, oy, being the
longitudinal phonon frequency of the film semiconductor.

In what follows, we discuss the two cases. (i) w, <wy:
This leads to one resonance at ®=w, /Ver. (i) 0, > wr:
This is the situation where one finds two resonances, one
at =, and the other at =0, /V €. We choose the
following parameters in our calculation: €; =15.7,
€,=9.65, or=12 THz, w;=21.6 THz, w,d/c=2xw
X107%, o, (<or)=0.50,/V €, and o, (>w07)=0.8
w, /V €;. This corresponds to a strongly doped InSb
film on an undoped MgO substrate.

i) 0, <or<w,/Ve <Q, where Q, is the limiting
frequency of the surface-phonon polariton: In this case
the numerical results in terms of rationalized variables
are shown in Fig. 2. The dotted line is the light line in
the vacuum (medium III), and the dashed curve is the
surface phonon-polariton mode (in the absence of the
film). The solid curve, representing the magnetoplasma
polariton mode, starts at wy, rises to the right of the light
line (and to the right of the surface phonon-polariton
mode), and approaches resonance at ®=w,/V €, im-
plied by €,,=0 in Eq. (31). Although our perturbational
approach breaks down [at w=w), /V €, the correction
term in Eq. (31) diverges], it is clear that a splitting
occurs due to the resonance with the thin magnetoplasma
transition layer. Thus we have a lower branch w_(q) and
an upper branch w, (gq). The upper branch starts on the

W, =05 w, /e

L

|.2F Wrtl2TH

mp/[{; 16 THz

[N © = 21.6 TH:

07 08 09 10 LI 12 1.3 14 15 16

Ve €a;/ Wy

FIG. 2. Normalized frequency vs normalized propagation
constant for a very thin, strongly doped semiconducting film
(InSb) on an undoped, polar semiconductor substrate (MgO).
The dashed line is the substrate phonon polariton that starts at
the transverse phonon frequency (7). The magnetoplasma po-
lariton of the film (continuous line) closely follows the dashed
line, except for v ~w, /V €,. In this region a splitting occurs
due to a resonance between the thin-film plasmon and the sub-
strate phonon polaritons. In this case (w. <wy) the applied
magnetic field does not play an important role. By definition,
we define the “splitting” as the vertical distance between the
two circles (amplified in the inset). The dotted line is the vacu-
um light line. The plasma frequency w,/V €, has been chosen
within the surface-phonon polariton range; therefore a splitting
in the magnetoplasma-polariton dispersion occurs at this fre-
quency.
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FIG. 3. As in Fig. 2, however, in addition to the plasma fre-
quency @, /V €, the cyclotron frequency o, now also falls in-
side the propagation window of the substrate surface polariton.
As a result we observe two splittings at the corresponding fre-
quencies.

light line; say, at the wave vector ¢, . We define the
splitting between the two branches as

Ao=0,(qg,)—w_(g,). (33)

Note that this is just the vertical distance between the
two branches evaluated at the initial point (w=cq) of the
upper branch. It is noteworthy that we have retained our
definition of splitting, used in the Faraday and the Voigt
geometries, ' which is quite different from that of
Agranovich;'> the reason being that, in the Voigt
geometry, the definition of Ref. 15 is not applicable (see
Fig. 3in Ref. 10).

(i) o7 <o, 0, /V €, <Q,. In this case we encounter
two resonances: one at w~w, and another at
w~wp/V €;. The former is implied by €, — o and the
latter by €,,—0. The numerical results in terms of ra-
tionalized variables are displayed in Fig. 3. In general,
the repulsion in the two branches at both resonance fre-
quencies is a consequence of the resonance between the
thin-film magnetoplasmons and the substrate phonons. It
is worthwhile mentioning that we have disregarded, both
in Figs. 2 and 3, the solutions with g, < g, the reason be-
ing that, by Eq. (5), these would give an imaginary decay
constant a3. This would result in radiative polariton
modes in the medium III.

In Fig. 4 we compare the splitting Aw as a function of
the normalized w, in the present geometry with that in
the Faraday and Voigt geometries.'® The curves desig-
nated as F, V', and P, refer, respectively, to the Faraday,
Voigt, and perpendicular configurations. It is evident
that Aw in the Faraday and Voigt geometries depends
strongly on the intensity of the applied magnetic field By,
The situation in the perpendicular geometry is rather
different. For w. <7, where one finds only one splitting
at v =, /V €, Aw is a very slowly varying function of
By. This behavior may be understood from the fact that
in the vicinity of the resonance =0,/ V4 €, the last term
in the square brackets of Eq. (31) is negligible, resulting in
a field-independent expression. This expression is essen-
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tially the same as the one obtained for B,=0.'* For
©, > o7 (with both o, and o, /V/ €, now being inside the
surface-phonon polariton range) there are two reso-
nances, as we have seen in the example of Fig. 3. The
curves labeled as P, and P. correspond to the split-
tings at w, /\/eL and w,, respectively. In the special

case 0, =w, /V €, there is only one resonance; the corre-
sponding value of Aw has been marked by a dot. This
causes a discontinuity in the_curves P, and P, at
w,=w,/V €. For w,>w,/V €, the curves P, and P,
“exchange roles.” It is interesting to note that the two
curves exhibit opposite behaviors: when P,(w, ) increases
then P,(w.) decreases, and vice versa. Generally speak-
ing, Fig. 4 shows that the splitting depends in a qualita-
tive way on the direction and magnitude of the applied
magnetic field.

B. Magnetized film bounded by identical media

Here we have €, =€;=¢, and hence a;=a;=a,. Asa

result Eq. (29) assumes the form

0.150

0.125

0.100

0.075

A WAE [wy

0.050

0.025

0.0 0.2 0.4 0.6 0.8 1.0 1.2
w, {eL VAR

FIG. 4. The splitting Aw, as defined by Eq. (33), as a func-
tion of the normalized cyclotron frequency. We compare re-
sults for the perpendicular geometry (curves labeled P, or P.)
with former calculations'® in the Faraday (F) and Voigt (V1)
configurations. The splittings arise as a result of a resonance be-
tween a magnetoplasmon of the thin film (w,, or @, or ®y) and
the surface-phonon polariton of the bare surface. In the Voigt
configuration different results obtain for propagation in the pos-
itive and negative directions (nonreciprocity). In the perpendic-
ular configuration there is only one resonance at o, /V'e, for
o, <wr (curves P,). For w. >y an additional resonance is ob-
tained at o, (curves P.). At o .=w, /V €, there is only one res-
onance, and the corresponding value of Aw is marked by a dot.
Notice the strong dependence of Aw on both direction and mag-
nitude of B,,.
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4€q€, a0+ 200d [afe, €, + A€+ (a

We now use an ansatz specified by Eq. (I.43) for a film of
small thickness. Taking into account the discussion after
Egs. (I.43) and (1.44), we derive the following dispersion
relations to be satisfied simultaneously:

(god)? & |
4P =g |eff 1+ o/ [1- =~ 35a)
8 6}’)’
and
(god)?
g9 ~q, |2+ 8;’,/2 (€, —€)? (35b)
0

Equation (35a) is the same as the formula derived!® for p-
polarized surface polaritons in the limit of a very thin
film. In the absence of an applied magnetic field €,
=€,,=¢, where € is the dielectric function of the thin
film. Then Eq. (35b) reduces to the corresponding expres-
sion for s-polarized waveguide modes. '

It is possible to prove that the above-mentioned polar-
ization properties are preserved even in the presence of
an external magnetic field. In other words, Eq. (35a) de-
scribes p-polarized modes, while Eq. (35b) corresponds to
s-polarized modes. The former (for our very thin film)
are independent of By; the contrary is true for the latter
solutions. Another important distinction: the p-
polarized solutions exhibit a resonance at ), /V €7, On
the other hand the s-polarized modes resonate at w, (the
pole of €, ). Due to these simple polarization properties
for a very thin film it should not be difficult to excite
these modes optically.

We have calculated the dispersion curves using Egs.
(35), for a given value of B;. For this purpose, we employ
the following material parameters: €L =15.7, ¢,=1.0,
wpd /c =27X 1072 and o, =0.50, /\/eL The parame-
ters describe an unsupported InSb film. The numerical
results in terms of dimensionless variables are depicted in
Fig. 5.

Corresponding to Egs. (35a) and (35b) we obtain two
values of g, for each value of w. It is observed that one of
the two values effectively coincides with the light line
(w=cq,). The other solution deviates from the light line
and gives resonances at the cyclotron and screened-
plasma frequencies.

We find_that just above the higher resonance (at
0=~w, /\/eL neither Eq. (35a) nor Eq. (35b) give bona
fide solutlons This situation corresponds to the fact that,
in this region, the decay constant «, attains negative
values for both modes. Because of the very small thick-
ness of the film a is a perturbational quantity, given by

€,
af'=1lgid)e, [1——= (36a)
€y
and
ay’=1(gld) e —€) , (36b)

3+ kege,, 1+d?[(af+ k) age
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- yy+k 60) qoaoex, yy] 0. (34)

—

(35a) and (35b).
<0 in the range specified by

_60)11/2.

corresponding, respectively, to Egs.
Analysis reveals that

0, <o <[w? +wp /(e
Similarly, a{f’ <0 in the interval defined by

w,/€;* <o<w,/(e, €)' .

Since according to the prescribed form of the fields, Egs.
(7) and (9), a, has to be real and positive, we disregard
the solutions of Egs. (36) in the range where a;<0. The
result is that a gap opens up in the spectrum in the range
specified by w, /Ve <o <w, /V €, —€y; where o and
af’ are both negatlve 7" As mentioned above, while our
perturbational approach breaks down at both resonances
(e,,=0 and €,, — «), it is clear that splittings occur in
the dispersion curves of the magnetoplasmons propaga-
ting in an unsupported film.

For sufficiently high frequencies a “fork” is seen in Fig.
5; a similar behavior was found in the Faraday
conﬁguration.1 Of course, for 0 >>ow,, ), /\/e,_ we have
€xx =€, ~€, and €,,~0, that is, 51mply a very thin
dielectric slab in vacuum. Then it is clear that the two
high-frequency solutions correspond to the p- and s-

20

L € 157
1.8r € =1 €y

W, = 0.5 u,//?;_

- 105 wp 4e2me10?
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FIG. 5. Dispersion relation for magnetoplasma polaritons
guided by a very thin, unsupported film corresponding to highly
doped InSb. One solution practically coincides with the vacu-
um light line, except for being interrupted by a gap just above
the screened plasma frequency; see inset. The arrows labeled p
and s indicate the points at which modes of the corresponding
polarization resume. The second solution exhibits resonances at
the cyclotron and screened plasma frequencies. Note that, in
the limit of a very thin film the modes are either p- or s-
polarized, as marked.
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polarized modes of a “single-mode,” planar dielectric
waveguide.

We conclude with the remark that although we have
presented some numerical results in special cases (e.g., in
the TFA), we have not classified the magnetoplasma
modes as surface, waveguide, etc. In a future publication
we intend to report detailed (exact) numerical results for
the dispersion relation given by Eq. (20) and specify there
the nature of the magnetoplasma modes.

APPENDIX

The dielectric tensor elements relevant to the present
geometry (Fig. 1) are

a)lz,(a)-i-iv)

€xx — €~ €L . ’
“ [w+iv)—o?]

2
€.,=I Dp e

. )
o ol(o+iv)—w?]

(A1)
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2
Dp

€ olw+iv)

= €L~
Here €; is the background dielectric constant of the film
medium, v is free-carrier collision frequency, and w, and
w, are, respectively the cyclotron frequency and un-
screened plasma frequency, defined as follows:

4rrne?

m

_ e|By|

m,c

(A2)

2
o, y W=

e

Here e, m,, and n are, respectively, the electronic charge,
effective mass, and free-carrier concentration in the semi-
conducting film (region II in Fig. 1). In Egs. (A1), if we
also consider the effect of phonons, which, in a way, al-
lows the coupling of the magnetoplasma polaritons to op-
tical phonons, then the background dielectric constant €,
has to be replaced by a frequency-dependent expression,
given by (I.A3).
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