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We investigate theoretically the excitonic optical nonlinearity in a semiconductor quantum well
subject to an electrostatic field normal to the quantum-well plane, basing our calculation on the
Hamiltonian of interacting bosons for the system of many quasi-two-dimensional excitons. It is
pointed out that the dipole-dipole interaction between excitons plays an essential role in this optical
nonlinearity. Numerical results of the third-order optical susceptibility for a GaAs quantum-well
structure are also presented.

I. INTRODUCTION

The nonlinear-optical properties of exciton systems are
due to the exciton-exciton interaction, i.e., the deviation
from ideal boson behavior of excitons. For example, the
exchange interaction between excitons plays an impor-
tant role' in the recently discovered "optical Stark
effect, " which is an ultrafast dynamical blue shift and
a bleaching of the exciton resonances in semiconductor
quantum wells (QW's) irradiated by an intense laser beam
in the transparency region below the absorption edge.
Very recently one of the authors (M.Y.) and Chemla
et al. have proposed independently a new mechanism of
the ultrafast optical nonlinearity due to virtual (non-
resonant) excitations in QW structures biased by an elec-
trostatic field, in which the electrostatic screening field
produced by the virtually induced static dipole moment
modifies the optical properties of the QW material, as in
the quantum-confined Stark effect. When this new effect
is viewed as an excitonic optical nonlinearity, it also relies
on the anharmonic interaction between excitons. In the
present case, the anharmonicity originates from the
dipole-dipole interaction between excitons, which is
enhanced under an electrostatic field normal to the QW
plane. This is in marked contrast to the optical Stark
effect. Furthermore, the present optical nonlinearity ac-
companies electrostatic screening due to virtually in-
duced polarization through exciton states.

The aim of this paper is to present a rigorous descrip-
tion of this electrostatic-field-induced optical nonlineari-
ty, taking into account the excitonic effect. The excitonic
effect was not treated fully in Refs. 6 and 7, since the mu-
tual interaction between excitons was not considered.
This excitonic effect must be i@eluded when the off-
resonance energy is of the same order of or less than the
exciton binding energy. To be specific, considerations are
focused only on the stationary properties of this effect.
Furthermore, the electron spin is disregarded initially, al-

though it is included in the final expressions. Based on
the Hamiltonian of interacting bosons for the system
of many quasi-two-dimensional excitons, we derive the
nonresonant third-order optical susceptibility X' '(to;
to, —co, to) for degenerate four-wave mixing from first
principles. The numerical results are also presented for a
GaAs QW.

II. THEORY

First of all, 'let us consider the system of interacting
quasi-two-dimensional excitons in a seiniconductor QW.
The QW considered here is a single QW layer within a
multi-QW structure with well thickness L, and barrier
thickness Lz along the z direction, so that the quantiza-
tion length of this direction is L =L, +Lz. The Hamil-
tonian of the system of quasi-two-dimensional excitons in
the boson space is given by

H = g g s„(Kll)C„» C„»
Kll

+ ~ ~ ~ V "(Q'Kll'Kll)
3 v4 + KIIKII

XCvK +q K' vK' vK
qll 2

where V =LS with the quantization area S in the QW
plane, and C„» (C„» ) is the creation (annihilation)

II
"

II

operator for an exciton with quantum number v, transla-
tional momentum iitKi in the QW plane, and energy
e„(Kl~). This operator obeys boson commutation rela-
tions. The quantum number v represents both the inter-
nal state for the electron-hole relative motion (ls, 2s, . . . )

and the indices of electron and hole subbands (n„nt, ).
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The exciton-exciton interaction with the wave-vector

transfer Q=(q~~, q, ) is described by V„'„'(Q,Ki, K~'~).

The Hamiltonian [Eq. (1})is nothing but the quasi-two-
dimensional version of the many-exciton Hamiltonian in
the bulk crystal. '

The terin V„'„'(Q,Kl, Kt~} is composed of two parts;

the purely Coulombic interaction, f„','(Q}, and the in-

teraction which contains the exchange of constituent par-

ticles of excitons. Under an electrostatic field normal to
the QW plane, the purely Coulombic interaction is
enhanced due to the distortion of the exciton envelope
function along the z direction, and it plays an essential
role in the electrostatic-field-induced optical nonlinearity
considered in this paper. Therefore, the exchange term is
skipped. When the wave-vector transfer Q is small,

f '„'(Q) is written as follows:

f.", .,'(Q)=V(Q) g g g [0:,(p —
aqua, P, —q, p, )—0;,(p+Pq~~, P, p, +q, )l

PP P,P'p, p'

X [f„(P'+aql', P,'+q„p,') f„' (p—' pqti, P—,',p,
' —q, )]f„(p',P,',p,')f„(p;P„p,), (2}

where V(Q) =4ne /(e, Q ), and e, is the static dielectric constant, a=ml, /(m, +mt, ), and P= 1 —a with m, (m„) the
in-plane effective mass of an electron (hole). The function P„(k;P„p, ) is the Fourier transformation of the v-exciton en-

velope function, %„(r;z„z„);

P„(k;P„p, ) = — d r dz, dzi, %',(r;z„zl, )exp( i k r —iP,z, +—ip, zh ),1 2

L S

where z, (z& ) is the coordinate of the electron (hole) along
the z direction (normal to the QW plane), and r is the rel-
ative coordinate of the electron-hole pair (exciton) in the
QW plane. As mentioned later, the relevant translational
wave vectors of excitons are zero so that

q~~
——0. Further-

more, we take q, ~0 in the spirit of the mean-field ap-
proximation. At that time, Eq. (2) reduces to the follow-
ing equation:

V V), V2, V3y V4

—g (pQt'C„+H. c.), (4)

mation is imposed. The total effective Hamiltonian is
thus given by

f ''(0)= P'P '
V), V2 V) V2

$

(3)

where P„"=e(%„~zt, —z,
~

qj, ), the dipole moment
which is induced along the z direction through v- and v'-

exciton states elongated along this direction. The in-
teraction term with v, =v2 ——v3=v4 ——(1,1;ls) is dominant
and represents the dipole-dipole interaction between two
excitons in the lowest state ( ls) for the electron-hole rela-
tive motion in the lowest subbands ( n, = 1, n„= 1) of elec-
tron and hole. This term vanishes in the symmetric QW
structures without the electrostatic field. On the other
hand, the interaction terms with different v's, e.g., the
terms with v, =v2=(1, 1;ls) and v3

——v4 ——(1,1;2p), are
finite even without the field but are much smaller than
the dominant one.

On the basis of the Hamiltonian [Eq. (1)] and the
effective exciton-exciton interaction [Eq. (3)], we consider
a semiconductor QW subject to an electrostatic field F
along the z direction and a classical monochromatic laser
field E*exp(ice t)+E exp( ito t) in the tran—sparency
region below the lowest exciton resonance. The laser
field is assumed to be polarized on the QW plane. The
exciton-laser field interaction is described in the dipolar
approximation. Furthermore, the rotating-wave approxi-

where translational wave vectors are dropped from exci-
ton operators because relevant translational wave vectors
are zero in the present configuration. In Eq. (4),
e„=s„(K~~——0)—i)iso~, the off-resonance energy, and p„ is
the transition dipole momentum between the v exciton
and the ground state;

&SefiMcv
p,„= fdz~P„(0;z,z),

mos, 0

where mo is the free-electron mass and Mcv is the optical
matrix element between the valence and conduction
bands. "

The ground state of the system of coherently pumped
excitons described by the Hamiltonian [Eq. (4)] is written
by U

~

0), where
~

0) is the vacuum of the exciton sys-
tern, and U is a unitary operator. We assume that U has
the following form:

U =exp g (x„Ct —x„'C„)
V

where x is the variational parameter (c number) deter-
mined by the requirement that E= (0

~

U 'HU
~

0)
should be minimized. From BE/Bx„'=0, the following
equation is obtained:
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e„x„+g F„~x; p—Q~ =0, (5)

where

vv V V Vi V2 Vl

1' 2

(6)

Here p and P ~ are assumed to be real without loss of
generality. In this case, P„"'=P„". Equation (6) is also
rewritten as

e„=e'„'+Fd ( Be„ldF),
p„=p'„'+Fd(dp„ldF) .

(8a)

(8b)

Substituting Eqs. (8a) and (8b) into Eq. (5),
x =x'„"+x'„'+ is obtained as follows:

(0)
) EpPV

(0)e„
(9a)

where

e„ e ~ e„
(9b)

and

I Ep I
'Po

as V
(10)

F~ —— P"„. g (0~ U '(P„'C~ C„)U
~

0) =F~P-„", .
Ve,

1~ 2

(7}

This expression represents the interaction energy between
the dipole moment P& and the depolarization field Fd
which partially screens the applied electrostatic field.
This means that the real electrostatic field which works
along the z direction is not F, but F +Fd. Therefore, e„
and p„ in Eq. (5) should be evaluated at F+Fd. To solve
Eq. (5) by the iteration in E, e„and p, are expanded in

F;

where Po is defined in Eq. (11). Note that X' ' is indepen-
dent of S. Also it is noted that the effect of damping is
neglected in Eq. (13). This is justified as long as the off-
resonance energy is much larger than the linewidth due
to the transverse relaxation of the exciton. The third-
order optical susceptibility J' ' is composed of three
terms; the first term represents the saturation effect
through the exciton-exciton interaction, which is always
negative. On the other hand, the second term and the
third term correspond, respectively, to the effect of exci-
ton level shifts and that of the transition dipole moment
changes due to the depolarization field Fd. It should be
noted that, for small off-resonances, X' ' is determined
mainly by the first and the second terms.

III. NUMERICAL RESULTS

In this section, the numerical results are presented for
a GaAs QW structure, consisting of a GaAs well layer
and Alo 6Gao &As-clad layers. Both the QW thickness L,
and the barrier thickness Lz are set to be 100 A. In the
numerical estimation, it is sufficient to retain the lowest
(1,1;ls} exciton state as long as the off-resonance energy
is of the same order of or less than the exciton binding
energy, although the theory is not restricted to this case.
The envelope function for the (1,1;ls) exciton state is
written variationally:

%(r;z„zi, ) =y(2/m )' e "f,(z, )fi, (zi, ),
where r =

~

r ~, f,~i, ~(z) is the electron (hole) envelope
function, and y is the variational parameter in the trial
function used in the variational calculation of the exciton
binding energy. " The numerical parameters used in the
calculations are the same as cited in Ref. 11, except for
the static dielectric constant of the QW material (GaAs):
e, = 12.4.

First of all, let us present the electrostatic-field depen-
dence of P(&'&'. &', ), which determines almost the whole

0.3

In Eq. (11), the factor 2 in front of the summation is the
spin weight. The polarization density P driven by the
laser field is given by

P =—g p„(0 (
U 'C U

~
0) =—g p~

V V

(12)

X (co;co, —co, co)=

From Eqs. (8b) and (9},P is calculated as a function of
E, from which the third-order optical susceptibility
X '( co; co, —co, co } is obtained as follows:
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FIG. 1. The electrostatic-bias-field dependence of P(»'. &&)e

(solid line) and p(». &,)/e&S (dashed line) in a GaAs(100 A)
quantum-we11 structure.
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FIG. 2. The electrostatic-bias-field dependence of g"' (solid
lines) and Fd/I~ (dashed lines) for two off-resonance energies
6=5 and 10 meV, in a GaAs(100 A)-Alp6Gap4As(100 A)
quantum-well structure.
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effect. The calculated results are shown in Fig. 1 (the
solid line). As a reference, the electrostatic-field depen-
dence of p~». &,~

is also included by the dashed line in this
figure. The application of the electrostatic field normal to
the QW plane causes the distortion of electron and hole
envelope functions along this direction; the positive and
negative charges are pushed against opposite walls of the
QW. This results in the increase of P~", ,".,",

~
but the de-

crease of p~ & &. &,~, which is proportional to the overlap be-
tween electron and hole envelope functions. Figure 2
shows the electrostatic-bias-field dependence of 7' ' and
Fd /I~, the induced depolarization field normalized by the
laser field intensity Iz, for two off-resonance energies,
6=5 and 10 meV, with respect to the lowest exciton res-
onance. The laser field intensity I is given by
I& cn

~ Ez——~

/(2n) where n is the refractive index and
assumed to be 3.5 in the actual calculation. It is apparent
from Fig. 2 that ~g' '~ and

~
Fd/I

~

reach a maximum
around F=60 kV/cm, and there is no quadratic depen-
dence of X'3' on F, except for F 520 kV/cm. This sug-
gests that the numerical estimation of 7' ' with an as-
sumption of quadratic dependence reported by Chemla
et al. is no longer valid. The decrease of

~

X' ' and

~
Fd/Iz

~

under large F ( ~60 kV/cm) comes from the
decrease of p~». &, ~

with increasing F as shown in Fig. 1.
Figure 3 shows the dependence of 7' ' on the off-
resonance energy h. The electrostatic bias field is set to
be 60 kV/cm. For an off-resonance energy 6=5 meV,
the absolute value of 7' ' is about 5.5)& 10 esu, which is
large enough to be observed. Under smaller off-
resonance g' ' is mainly determined by the first and the
second terms of Eq. (13), both of which behave as b,
and the contribution of the third term, which behaves as

, is not so large. Although 6 must be much larger

FIG. 3. The off-resonance energy dependence of X' ' (solid
line) for an electrostatic bias field of 60 kV/cm in a GaAs(100

)-Alp 6Gap 4As(100 A) quantum-well structure. The contribu-
tions of the first term, the second term, and the third term of
X"' [Eq. (13)] are, respectively, denoted by the dot-dashed line

( ——.—), the dotted line ( . .), and the dashed line

( ———)

than I", the linewidth due to the transverse relaxation of
the exciton, this condition is satisfied even for 6 of a few
meV at low temperature, because it has been found that
I is below 1 meV at low temperature ( - 50 K). '

IV. CONCLUSIONS

In conclusion, we have formulated the excitonic optical
nonlinearity in electrostatic-field-biased semiconductor
QW's. The third-order optical susceptibility P' ' is com-
posed of two parts; the saturation effect due to the
dipole-dipole interaction between excitons and the effect
of the depolarization field. These effects depend on the
distortion of exciton envelope functions due to the appli-
cation of the electrostatic field normal to the QW layer.
This means that suitable QW designing would further
enhance 7' ' in the present mechanism, offering impor-
tant applications in optical and optoelectronic devices.
Such an exploration has just started. '

ACKNOWLEDGMENTS

The authors thank Dr. Roy Lang for his continual en-
couragement throughout this work. Two of the authors
(E.H. and M.Y.) acknowledge financial support by a
Scientific Research Grant-In-Aid for Specially Promoted
Research from the Ministry of Education, Science and
Culture of Japan.

~S. Schmitt-Rink and D. S. Chemla, Phys. Rev. Lett. 57, 2752
(1986).

~S. Schmitt-Rink, D. S. Chemla, and H. Haug, Phys. Rev. B 37,
941(1988).

A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T.
Masselink, and H. Morkoq, Phys. Rev. Lett. 56, 2748 (1986).

4A. Von Lehmen, D. S. Chemla, J. E. Zucker, and J. P. Heri-
tage, Opt. Lett. 11,609 (1986).



38 EXCITON-EXCITON INTERACTION AND OPTICAL. . . 1245

~K. Tai, J. Hegarty, and W. T. Tsang, Appl. Phys. Lett. 51, 152
(1987).

M. Yamanishi, Phys. Rev. Lett. 59, 1014 (1987).
7D. S. Chemla, D. A. B.Miller, and S. Schmitt-Rink, Phys. Rev.

Lett. 59, 1018 (1987).
D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard,

W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev.
Lett. 53, 2173 {1984).

E. Hanamura, J. Phys. Soc. Jpn. 29, 50 (1970).
~oE. Hanamura, J. Phys. Soc. Jpn. 37, 1545 (1974).
'T. Hiroshima and K. Nishi, J. Appl. Phys. 62, 3360 (1987).
L. Schultheis, A. Honold, J. Kuhl, K. Kohler, and C. W. Tu,
Phys. Rev. B 34, 9027 (1986).

'~M. Yamanishi and M. Kurosaki, IEEE J. Quantum Electron.
QE-24, 325 (1988);Superlatt. Microstruct. (to be published).


