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Phonon-polariton modes in superlattices: The eÃect of spatial dispersion
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The equation of motion for phonons in superlattices including the retardation effect is derived. It
is shown that in superlattices additional polariton modes exist due to the spatial dispersion of the

optical modes of the constituent bulk materials. The reflectivity spectra of superlattices are also ex-

amined.

I. INTRODUCTION

In a polar crystal, the notion of lattice dynamics or
phonons implies that the interaction between two point
charges is instantaneous. The consequence is that the ra-
diation fields emitted by the vibration of the dipoles are
neglected. This is only valid when the wave vector is
large compared to the photon wave vector at the optical
frequency, k~—:( e„)'

coo/c, where e„ is the high-
frequency dielectric constant, coo is the TO-phonon fre-

quency, and c is the speed of light. Usually, k is several
magnitudes smaller than the size of the first Brillouin
zone; therefore the omission of the retardation effect is
justified for most of the cases.

The treatment of the retardation effect, first pioneered
by Huang, is done by incorporating the lattice dynamics
and the macroscopic Maxwell equations. While it is
misleading to think of phonon-polariton modes as the
coupled states of the external photon fields and the inter-
nal phonon modes, it is nonetheless convenient to picture
the lattice vibrating under the inhuence of the short-
range forces and emitting electromagnetic fields which
again interact with the lattice. The vibrations of the lat-
tice and the radiation fields form coherent states
(phonon-polariton modes) which are the true internal
states of the system.

Rytov and Yeh et al. studied the light propagation in
a superlattice where the dielectric constants are assumed
to be frequency independent. The study of the phonon-
polaritons within a microscopic frame began as early as
1972, shortly after the proposal of constructing superlat-
tices. In this work, however, the starting point is from
the simplest model to calculate the optical-phonon modes
and their corresponding oscillator strengths. The results
are very similar to those of polyatomic materials, only
qualitative in nature, and are very unrealistic. For in-
stance, the dielectric constant from their work is isotro-
pic which is obviously not true and the oscillator
strengths of the individual modes are too close to each
other. Recently there has been an increased interest in
polaritons in infinite and finite superlattices. Howev-
er, these works did not address the effect of the spatial
dispersion of the bulk phonon modes and the additional
boundary conditions (ABC) (Ref. 8) thus originated. The
dielectric theories with and without' " spatial disper-

sion effect have qualitatively explained some novel
features about the superlattice vibrational modes such as
the angular dependence of the long-wavelength optical
phonons and the macroscopic interface modes. Though
the spatial dispersion in a bulk material has very little
effect on the polariton modes, the zone folding in a super-
lattice system makes the spatial dispersion an important
effect for calculating the phonon-polariton modes. De-
tailed microscopic model calculations' ' have demon-
strated that the actual optical modes in superlattices are
indeed more complicated than those described by disper-
sionless dielectric continuum model. In the GaAs/AIAs
superlattice, the optical-phonon branches of the two con-
stituent materials do not overlap. Hence a model with
parabolic phonon dispersion is not a good approxima-
tion since in this model the optical-phonon branches of
the two materials must overlap, resulting in nonconfined
modes.

The necessity of the ABC can be most easily demon-
strated in the following way. In the dielectric continuum
model which neglects the retardation effect, ' the follow-
ing equations hold for the electric field (E ) and the elec-
trostatic potential (4) in the superlattice,

and

V' @74=0,
where e is the dielectric function, which has a discontinu-
ous jump across the interfaces. If we write

4(r ) =P(z)e

then P(z) takes the general form in each continuous re-
gion'

P(z)=ae " +be " +ce'q'+de

where q satisfies that e(co, kii, q)=O. Note that the last
two terms on the right-hand side of the above equation
are due to the introduction of the spatial dispersion.
Thus, we have four undetermined constants a, b, c, and d.
In order to have the problem completely determined, two
more boundary conditions in addition to the Maxwell
boundary conditions are required. The difhculty with the
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continuum model is that the ABC for the phonon modes
have not yet been properly formulated. Even if these
conditions were given, it would be difficult to extract an
analytical formula for the dispersion relations in a super-
lattice system and the asymptotic angular dispersion rela-
tion would be even more difficult to obtain. The ABC
have been adopted in several theoretical studies of the
exciton-polariton mode.

A different approach can be used to study polaritons
without introducing ABC. ' In this approach, one calcu-
lates the dielectric function e(r, r ) of the system including
the retardation effect, then the polariton problem can be
solved ABC-free. We have previously developed a simple
microscopic theory based on the rigid-ion model. ' ' Re-
sults for long-wavelength optical phonons obtained in
this simple theory' are in good agreement with those ob-
tained by the full-scale microscopic calculation. ' Based
on our previous work, we shall derive the equations for
the superlattice phonon modes with the retardation effect
included. We shall compare our results with those ob-
tained by the dispersionless model.

The purpose of our work is threefold. (1) To derive the
polariton modes for a superlattice system from macro-
scopic theory which can be most easily achieved. (2) To
derive phonon-polariton modes from microscopic
Maxwell equations for bulk and superlattice systems. (3)
To include the dispersion of the bulk optical phonons and
to avoid the cumbersome ABC problem.

cos(k, d, ) cos(k2d2) ——r+—1 1

Xsin(k, d, )sin(kzdz)= cos(qd), (1)

where d& is the length of material A, within a superlattice
period, d=d&+d2, and

k2
for component A, TE modes

1

e) k2
for component A„, TM modes.

e2 1

Since k~ =&eco/c is usually small, when the wave vector
k = (k„,q ) approaches zero, kz's are also small. After ex-

panding the sine and cosine functions and keeping only
the leading terms, we obtain the generalized Fresnel
equation for the TM modes (extraordinary modes) and
the dispersion relation for the TE modes (ordinary
modes), with the dielectric constants given by

e„=g d„e~/d

and

e, '= g d~e~
' with d = g dg .

II. DISPERSIONLESS MACROSCOPIC
CONTINUUM THEORY

The discussion in this section applies to any kind of po-
lariton. For simplicity, we assume that the constituent
materials are isotropic. Throughout the paper, the
growth direction of the superlattice is taken to be along
the z direction. We only consider the case in which the
wave vector k lies within the x-z plane (k =0). This is
sufficient, since the results are independent of the azimu-
thal angle of k in the x-y plane. Assume that the electro-
static potential P =0 and the vector potential is A

=(A„,A~A, )=Aoe " ' with the Coulomb
gauge V A kxc4x+kzAz 0 where' =c k /e. Thus

and

W'e shall leave the discussion until the next section.
When k„ is finite and co is close to the phonon frequen-

cies such that E~~2/C2 «k2, we have k, =ik„Then, . Eq.
(1) for the TM modes is reduced to the following form:

1
cosh(k d ) cosh(k d )+——+-

x 1 x 2 2 2 1

X sinh(k„d& ) sinh(k„d2) = cos(qd) .

This equation is the heart of the dielectric macroscopic
model. The angular dispersion and the interface modes
can both be derived from here.

Through Eq. (1) we can easily obtain the interface
modes for large k, . From the foregoing argument, it is
clear that the interface polariton modes are essentially in-
distinguishable from the interface phonon modes. De-
tailed discussions of the interface phonons can be found
in Ref. 14.

8=B=ik X A =i( —k, A, (k /k, ) A„,k„A ) .

The Maxwell boundary conditions are E~~ continuous and

H~~ continuous. Hence it is required that Ax Ay kz Ay,
and (k /k, ) A„are continuous across the interfaces. The
two components 3,A are totally independent; thus
they are treated separately. In what follows we shall use
k& for the z component of the wave vector k and e& for
the dielectric constant in material A, (A, =1,2). Note that
kz= (ezcu /c k)' ~ are in g—eneral complex. Using the
Bloch theorem we have for a Kronig-Penny model,

III. MICROSCOPIC THEORY
%'ITH DISPERSIVK MODEL

In the lattice-dynamics theory without retardation
effect, it is assumed that the interaction between two
point charges are instantaneous. This is equivalent to set-
ting the speed of light to infinity. For polaritons
(phonon-photon coupled field) the lattice dynamics is
solved in conjunction with the Maxwell equations for the
dielectric medium. Below we show that the polariton
problem can be derived from a microscopic theory.
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With the retardation effect included, the electric field

generated by a moving ion of unit charge is written as

1 BAE=—VP —— (2)
c Bt

with

The above discussions demonstrate that in a three-
dimensional solid, the retardation effect can be included
by simply replacing k with k —k0 in the macroscopic
part of the Coulomb matrix due to the electrostatic po-
tential and adding the contributions from the vector po-
tential, which is simply

ikor
e

(3)
4~Q, g, k,'

6,-

k2 —k2 J
P 0

and

le' Bu = —ikopu,
c r Bt

(4)

where ko=co/c and u is the displacement vector of the

ion. The equation of motion for the ions in the superlat-
tice is written as

co (k)MU=C(k )U,

where M is the mass matrix and C(k ) is the dynamic ma-

trix which consists of two parts —the short-range (SR) in-

teraction and the long-range Coulomb (LG) interaction:

C(k)=C "(k)+C (k) .

The matrix elements of C" are given by

C;& (k, r)=g&Q2 g [P; J(I+r)+k05, P(l+r)]e'~"',
1

(5)

where l denotes the superlattice lattice vectors and r
denotes the relative atomic position vector which lies
within the superlattice unit cell. Q, and Q2 denote the
electron transfer charges for the two ions of interest. P, ,
(ij =x,y, z) denotes the (i,j)th second-order derivative of

The second term in the above equation is due to the
vector potential which vanishes in the absence of retarda-
tion effect (k0=0). Rewriting Eq. (5) in the reciprocal
space, we obtain

The macroscopic part of the Coulomb matrix due to the
electrostatic potential with retardation effect is then ob-
tained by simply replacing k in Eq. (8) with k —ko.
Adding the contributions from the vector potential, we
obtain in the long-wavelength limit (kd « 1)

P

k;k k0—5 5 — 5
k2 k2 lz Jz k2 k2»J

0 0

Introducing dimensionless variables s; =k, /k and n
—=k lko=ck/co (the refractive index), we can rewrite Eq.
(9) as

However, in practical calculations Eq. (6) does not work,
because the summation over ~ does not converge fast
enough for the numerical evaluation. For the superlat-
tice, a better way to evaluate the Coulomb matrix ele-
ments is to first carry out the sum over reciprocal-lattice
vectors in a plane perpendicular to z (the growth direc-
tion) for each fixed value of 13, the projection of the lat-
tice vector along the z direction, and then perform the
sum over l3 ~ Using this procedure, we have shown in our
previous paper' that the macroscopic part of the
Coulomb matrix without the retardation effect can be
written as

C, (k, r)= g[(r+k);(r+k) P(r+k)
pv

+k 5 P(k+r)]e"+"'" (6)

4~Q, Q~
C; ""'=

P

n'
S;S) 5; z5& z

n —1
' '

n —1

(10)
where v is the volume of the bulk unit cell, X is the num-
ber of bulk unit cells within the superlattice unit cell, ~ is
a reciprocal-lattice vector of the superlattice, and P is the
Fourier transform of P. We have

P(k) =
k —k

Since for frequencies comparable with the phonon fre-
quencies, k0 is very small compared to the size of the
Brillouin zone, it is therefore valid to drop k0 in all the
terms except the one with v. =0. It is obvious at this stage
that retardation will only affect the term with ~=0,
which contributes to the macroscopic part of the fields.
For the vector-potential contributions, this is the only
term that we need to keep. Note that there are additional
contributions to the macroscopic part from the ~&0
terms, but they are insensitive to k0.

Owing to the circular symmetry in the x-y plane we
only have to consider the case in which the wave vector
lies in the x-z plane. In this case, the y-component vibra-
tion is completely decoupled from the x- and z-

component vibrations, and the equation of motion for
ions in the superlattice reads

(Marco
—Co)U( J)—[C U( J —1)+C+ U( J + 1)]

4~
QJ ~ g Q U(J'),

X v Jl

where U is a four-component column vector with the first
two components describing the vibrations along the x
and z directions for cations and the last two components
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describing those vibrations for anions. J labels the posi-
tions of bilayers (each bilayer consists of one cation and
one anion atomic layer) within the superlattice period,
and M~ and Q~ are the mass matrix and the electron
transfer charge of the cation layer at bilayer J, respective-

ly. C, Co, and C+ are short-range parts of the dynamic
matrix (including the Coulomb matrix minus the macro-
scopic part), describing interaction with a bilayer to the
left, the same bilayer, and a bilayer to the right, respec-
tively. S is a 2 X 2 matrix given by

1 + sin 8
n

n —1 n —1

n
sin8cosO

n —1

n
sint9 cosO

n —1

1 n—1+ cos 8
n —1 n —1

where L9 is the angle between k and z.
As discussed in Ref. 14, the homogeneous equation in-

volving only the short-range forces can be easily solved.
Since k is small compared with the size of the Brillouin
zone, we can approximate the short-range interactions by
their values at k =0. We denote the homogeneous solu-
tions by

U(A. )(J)-f (1)(J)P(A. )(J) —T

where f„' '(J) is called the "envelope function, "
A, =1,2

for GaAs-like and A1As-like modes, respectively, n is the
principal quantum number (n =1,2, 3, . . . ), v= T,L
denotes the transverse and longitudinal modes, and
P'„„'(J) is a four-component column vector describing the
polarization in bilayer J. If f„'"'(J) is properly chosen,
P',„'(J) would be almost independent of J. The associated
eigenfrequency is denoted by ~( „'.

For optical modes which are confined in either the
GaAs or AlAs slab, it is a good approximation to write

4m Q~

N (Nq+ I ) )Mqu

2

N N+1

A„O
SP,

Z

(15)

where

d(A, )

=

+ping,

, v=x, z (or T,L) .
2 (~)

(16)

Note that the dipole moment in a superlattice unit cell
in a homogeneous mode (A, , vn) is P(,„)=d„p',, ', where

p denotes the dipole moment within a bulk unit cell as--(A, )

sociated with the vth branch in material A, (assumed to be
k independent). Thus the total dipole strength in a ~oiar-

Equation (14) now takes the form

f„' '( J)= sin (12)
Introducing

where N& is the total number of bilayers in material A,

and J runs from 1 to N&. The total dipole moment in the
nth mode is then proportional to

n
S = —S —5 5 =(n 1)5 — ss—1J I J 1Z JZ &~J 2 ~ &' Jn 1

we can rewrite Eq. (15) as

(17}

J 2N)+I (13)

Furthermore, P',„' can be approximated by the polariza-
tion vector of the bulk optical mode at the zone center.

To solve Eq. (11},we expand the eigenfunction U in
terms of the solutions to the homogeneous equation, viz. ,

U( J)—g C(iE)f (k)(J)P(k)
k, n, v

P

P, + A, P,

which again yields

A

A,

1+3,

0 A ~
SP,

Z

SP =4~ySP .

Substituting the above equation into Eq. (11) and multi-
plying the equation by U' „' from the left, we obtain

Anologue to the bulk case, we see that (see, for example,
Ref. 16)

4&SP =E
n' is the total macroscopic electric field. It is then clear that

where

(14) A„O
0 A, /(I+ A, )

(20}
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is the susceptibility of the lattice. Thus the dielectric
constant is

e= 1+4m'= 0 1/(1+ A, )
(21)

With the use of Eqs. (17) and (21), Eq. (18) can be put into
the bra-ket form

(n e 1)~P—)+~s) (S~P)=0,

where a bra (ket) is a two-dimensional column (row) vec-
tor. The generalized Fresnel equation (see the Appendix
for derivation) gives for the extraordinary polariton
modes

Hence we have

2 2

Ma) —Ho+ V Pi= — E .
U(1 —a Vo) U(1 —a Vo)

(26)

Thus for the phonon-polariton modes the effective charge
1S

which has different values for the vibration along the two
different directions. The optical-phonon frequencies at
the zone center are

sin t9 cos 8
1 1 1 1

(22) 4m
CANTO &0

n n 4m.
pv 1 — a

3
which is easily transformed to the following form:

e„e, n(—E, sin 8+6, cos 9)=0 .

When L9=0 the above equation also gives the dispersion
for ordinary polariton modes, viz. , e —n =0,

and

8~
COLO

=COp+
8m.

pv 1+ a

IV. CORRECTIONS DUE
TO THE ELECTRONIC POLARIZABILITY

and

( M co Ho )PI = ——2

V
(23)

The derivation so far is based on the rigid-ion model
which does not treat the electronic polarizability proper-
ly. This model may give good dispersion relations for
phonon modes, but the results for polaritons will be er-
roneous even for bulk systems. For if the electronic po-
larizability is ignored, the high-frequency dielectric con-
stants will be unity so that the slope of the polariton
dispersion at higher frequencies will be unity instead of
I/(e„)' . Furthermore, the coupling region will also be
shifted to a smaller wave-vector region. This problem
can be remedied with the dipole model. In this model it
is assumed that the electron clouds are massless. For
bulk material we have

This is also the result of a shell model for the bulk materi-
als. The ion charge can be obtained from the following
relations:

4mQ 8m a
vP 3

4m. 2 4m.
1 — a bee, a=

3
'

3

Hence for each mode vn we have

4m [1—a V(0) +a V,„]Q+
1 —a V(0) (1—aVO) pv

2 2
N CO„

(27)

where V „ is the expectation value of V in mode vn.
Note that the index A, has been omitted in the above
equations.

In Eq. (16) the following replacement should be made:

P =P, +P, =PI+aEI, (24)
4mQ

UP(~ ~vn )

where Ho is the short-range interaction matrix, M and Q
are mass and charge matrices, subscripts I and e stand for
ion and electron, respectively, a is the electronic polari-
zability, and EI =F, +El is the net local electric field due
electrons and ions. We next write

EI = V(k )PI + V(0)P, +E, (25)

where V(k) is the short-range part of the Coulomb ma-
trix and E is the macroscopic electric field. Here we use
V(0) for the electronic term, because we can view the
electronic polarization as a continuum field. At k=0,
Vo= V(0) =4m. /3, —4'/3 for the transverse and longitu-
dinal parts, respectively. Equations (24) and (25) lead to

(1 —aVO)P, =aE+aVPI .

The dielectric functions for the two symmetry directions
are

e„=l—A = +St 'e„=e„

RL„'1 (g) 1 1—=1+A =gSI ' = +g
(~)&Ez A. , n n, z oo, z A, , n CO

where Sj '=2d„' ' /N (N&+1) and

R„„=b,co (1—4~a/3+ V „a), v=L, T

is the oscillator strength for the mode vn (omitting index
A, ),
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,
x=

and

z

Phenomenologically, e„,co „, and R „can be adjusted
to fit the experimental data.

When the retardation effect is neglected, we have

(1—A„)(1+A, ) sin 8+ cos 8=0,
which is just the result we have obtained in a previous pa-
per' for the angular dependence of the optical phonons
in superlattices.

V. RESULTS

A. Dispersion curves

We solve the generalized Fresnel equation using the
standard numerical method (see Ref. 16). The polariton
dispersion curves for a (5,5) GaAs/A1As superlattice for
wave vectors along the z direction (8=0) are plotted in

Fig. 1 along with the results obtained from the disper-
sionless macroscopic model (dashed lines). Several
features in this figure deserve mention. First, the micro-
scopic calculations with spatial dispersion effect give rise
to more polariton branches than those obtained by the
dispersionless model. Second, there are three polariton
branches which have substantial dispersion, correspond-
ing to coupled modes derived from the photon, the

GaAs-like principal (n =1) TO phonon, and the A1As-
like principal (n =1) TO phonon. The dispersions of
these polariton branches obtained in both models are
similar. The remaining polariton branches are either
pure LO phonons or coupled modes derived predom-
inantly from the n&l TO phonons, which are nearly
dispersionless. This can be explained as follows. We see
that without the macroscopic field, each individual mode
can be viewed as an independent oscillator whose dipole
strength is approximately proportional to d„. (This can
be clarified by comparing the equation above with the
cases with polyatomic unit cells' where each dipole can
be physically identified. ) Thus the main contribution is
originated from the principal modes (n =1) which have
the largest dipole strengths. If we ignore the dipole
strengths of the n&1 modes, then the microscopic model
becomes qualitatively equivalent to the dispersionless
macroscopic model. Third, the frequencies of the polari-
ton modes at k =0 are given by

(A. }2
co ( 1 —A„) g (co —co' „)=0 .

A, , n

They are no longer angular dependent (as opposed to the
cases where the retardation effect is neglected). Fourth,
the angular dispersion of the optical phonons are given
by the polariton modes in the limit ck= ~. This is of
course not in contradiction with the definition of the
long-wavelength optical phonons since when the phonons
and'photons are well decoupled the wave vector k is still
substantially smaller than the size of the Brillouin zone in

O
C4

(5,5} GaAs-

AIAs

NT 0

3

GaAs

(5,5) GaAs-AIAs Superlattice

0=
(a) (b)

8=90
(c)

0 200 200 0

20 40
ck (THz)

60 80

FIG. 1. Polariton dispersion curves for a (5,5) GaAs/A1As
superlattice along the growth (z) direction.

ck (THz } ck ( THz }

FIG. 2. Polariton dispersion curves for a (5,5) GaAs/A1As
superlattice: (a) 0=0, ck=0—80 THz; (b) 0=0 —90', ck= ~;
(c) 0=90, ck =80—0 THz.
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a typical superlattice with period less than a few hundred
angstroms.

To demonstrate the relation between the polariton
dispersion and the angular dispersion of long-wavelength
optical-phonon modes, we plot in Fig. 2(a) the polariton
dispersion curves at 0=0' with ck varying from 0 to 200
THz, in Fig. 2(b) the angular dispersion curves for long-
wavelength (k =0) optical phonons (without the retarda-
tion effect, i.e., ck = ~ ) with 8 varying from 0 to 90', and
in Fig. 2(c) the polariton dispersion curves at 8=90' with
ck varying from 200 to 0 THz for the (5,5) superlattice.
We point out here that if the high-frequency dielectric
constants of the two materials are not much different, the
effect of the electronic polarization is not significant as
far as the mechanical phonon modes are concerned. It is
easy to see from Eq. (26) that if the dielectric constants in
the two materials are the same and if we let V„„=V(0)
then the formulas for the phonon dispersion are exactly
the same with or without including the electronic polar-
ization.

B. Reflectivity

The reflectivity spectrum of a solid can be influenced
by the structure of the surface and the spatial disper-
sion. ' In the discussions below, we shall ignore the
effects due to the reconstruction and the roughness of the
surface. For incident light with polarization along the
direction v ( =x,z), the reflectivity can be obtained
through the following relation:

l —[e„(co)]'R=
1 + [e,(cu) ]'

Note that for incident light propagating along the growth
(z) direction, only the x polarization is possible, whereas
for incident light propagating in the plane (perpendicular
to the growth direction), both the x and z polarizations
are possible. For damped phonon-polariton modes,

R (A, )

&x =~x
2 (A. ) (k)

A., n co coT„+l 2I „co
1 1 R (&)

+g
~,.~' —m[~'„' +~2r'„",a

where I '„,' are the damping parameters for the corre-
sponding modes.

The numerical results are plotted in Figs. 3 and 4 for
incident light polarized along the x and z directions, re-
spectively. The damping factors used are 0.01 THz. It is
found that when the broadening is large the main contri-
bution comes from the principal modes independent of
the size of the superlattice. Only when the broadening is
suSciently small can the contributions from other modes
be observable.

VI. SUMMARY

In summary, we have shown that the equation of
motion for polaritons can be obtained from microscopic
theory. When the spatial dispersion effect is included, the
number of phonon modes are proportional to the size of
the period.

(5,5j sL

x Polarization

(5,5} SL

z Polarization

C)
O

C4

O

O
O

10 12

~ (THz j

14 18 10 12

~ (THz )

14 16 18

FIG. 3. Reflectivity spectrum of a (5,5) GaAs/AlAs superlat-
tice for incident light polarized along the in-plane (x) direction.

FIG. 4. Reflectivity spectrum of a (5,5) GaAs/A1As superlat-
tice for incident light polarized along the growth (z) direction.
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APPENDIX

Consider the following type of equation:

Aix)+is) (six)=0.

Letting B= 3 ', we obtain

Ix )+~ ls & (six & =0,
which is then transformed to the form

( s~ x)+ ( s~B
~
s) (s~x ) =0 .

The nontrivial solution is

I+ (s ~a~s ) =0 .

If ~s ) is normalized we have

(s ~( I+a ) ~s ) =0 .

If B is diagonal we then have

g(1+8;)s; =0.
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