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Electronic transmission coefficient for the single-impurity problem
in the scattering-matrix approach
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The ability of a rupture of translational invariance in a one-dimensional chain to control the
through chain electron propagation is studied on the model system A A ABA A A . A
discrete formulation of the one-dimensional scattering theory is considered with the help of the
transfer-matrix technique. A tight-binding Hamiltonian, with a single orbital per center, is used to
represent the chemical nature of the perturbated chain. The electronic transmission coefficient and
the change in the chain electronic density of states induced by the defect B are analytically calculat-
ed from the scattering matrix S. The complete dependence on the electronic transmission of the en-

ergetic position of the impurity orbital and of its couplings with the chain is analyzed in detail. Pos-
sible applications of the model to the design of molecular switches are described by means of the
effective Azbel's transmission coefficient.

I. INTRODUCTION

In the last few years, polymeric systems have been the
subject of a large number of theoretical studies. Several
methods using the translational in variance through
Bloch's theorem are now available and a quantum-
chemical understanding of the structures and properties
of these one-dimensional compounds can be carried out
at different levels of accuracy. ' However, from an ex-
perimental point of view, polymers are often far from the
regular one-dimensional (1D) structures generally as-
sumed in these calculations. Impurities, defects, and to-
pological disorder can exist and the samples often appear
as amorphous systems. These defects have important
consequences on the conductive properties of the polym-
eric material. Understanding the influences of such devi-
ations from the translational invariance on the transport
properties is a problem of current interest.

Although the disorder may appear on a very large
scale, a first step toward a better chemical understanding
of the influence of'impurities and defects in polymer
chains is to study the effect of a local rupture of the
translational invariance. This is the approach which has
been chosen here. The polymer considered is a perfect
periodic chain, made of A as repeating unit, in which a
finite chemical system B has been inserted,

. AAABAAA .

For this single-impurity problem, density-of-states cal-
culations have been the subject of considerable efforts,
from the simple tight-binding model up to the self-
consistent-field (SCF) Hartree-Fock level. ' ' "Exact"
perturbative approaches, within the Green's-function for-
malism, are generally used for these calculations. Be-

cause of their topological simplicity, one-dimensional sys-
tems can be conveniently studied with recursive methods.
These methods originate from the transfer matrix tech-
nique introduced by Schmidt' and Hori' ' and have
been recently reviewed by Biczo. ' They have been main-

ly used for the study of end effects, on polymers' ' or at
cristal surfaces. They are usually considered as an alter-
native efficient mathematical tool for the calculation of
density of states or of wave-function coefficients.

However, these calculations do not provide any direct
insight into the conductance of the chain plus defect sys-
tern. Following Stone, ' the scattering matrix S is a very
useful tool, compared with the Green's function, to
characterize the elastic scattering process introduced by
the defect B. This S matrix is currently calculated with
the transfer matrix technique. The scattering channels
through the defect are associated with the modulus-one
eigenvalues of the spatial propagator of the periodic
chain. The through defect electronic transmission
coefficient can be calculated from the reduction of the
transfer matrix to these specific channels. The energy-
average of this coefficient is directly related to the con-
ductance of the chain controlled by the defect, in the
linear response approximation. Notice that the
change in the chain density of states associated with the
defect can also be derived from the S matrix.

The system . A A AB A A A . . studied here is
characterized by a monoelectronic "tight-binding" Ham-
iltonian. Many functions (or orbitals) have to be con-
sidered to model A and 8, as long as a precise chemical
description of the unit cell and the impurity is needed.
However, in this initial study, an oversimplified model
has been chosen, in which each unit (A or B) is represent-
ed by a single function. The main qualitative features of
the symmetry rupture induced by B can be extracted
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from such a simple Hamiltonian.
Within this simple approach, an analytical calculation

of the scattering matrix, and thus of the transmission
coefficient, is presented. The small number of energetic
parameters used here to describe the

A A AB A A A . . chain, and the possibility of an
analytical calculation of the S matrix, lead to a complete
analysis of the influence of B on the properties of the en-
tire system.

This study of the transmission properties is of special
interest in the field of conductive polymers, which can be
poisoned by various defects. It can help in under-
standing the influence of defects on the conductivity of
the sample. It can also give useful information for the
design of an active chemical unit to be inserted in a one-
dimensional chain in order to control the electronic
transfer. ' Our system can be used as an

oversimplified model for a molecular switch. Either a
change of the impurity energy level or a modification of
the nature of its coupling with the chain is considered,
and the associated control abilities are discussed.

The scattering matrix and the transmission coefficient
are presented in Sec. II. In Sec. III the transfer matrix
technique is recalled, with emphasis on the physical
meaning of the eigenvalues of the periodic part propaga-
tor. The impurity control of the chain transmission
properties is studied in Sec. IV. The analytical expres-
sions for the transmission coefficient and the differential
density of states are derived, as functions of the Harnil-
tonian control parameters characterizing the chemical
nature of the defect. The variations of the transmission
coefficient are analyzed when the nature of the defect is
modified. The two types of model molecular switches are
finally compared.

II. SCATTERING MATRIX
AND TRANSMISSION COEFFICIENT

The standard way to characterize the influence of a de-
fect embedded in a periodic chain is to plot, for a given
energy E, the eigenvector ~%(E)) of the Hamiltonian H
of the system developed on a chosen basis set, expecting a
localization effect. ' Such a direct study is cumbersome
since it may require the plotting of a huge number of
curves. One may then try to extract some reduced infor
marion from H, that would lead to an easier study. The
more common way is to analyze the density of states
p(E), ' ' ' ' following, for example, the apparition of
localized states in the gaps. ' However, p(E) character-
izes the energy repartition of the 0 eigenvalues but con-
tains no information on the modulus of the wave function
itself. For this purpose, the standard charge-bond-order
matrix can be evaluated from the Green's-function
method, ' or from cluster calculations. Although this
matrix is a very important tool for the chemical struc-
ture, it does not provide any direct information on the al-
teration by the impurity of the electronic transmission
properties of the chain.

An useful tool to extract such information is the
scattering matrix S(E) that relates the amplitudes of the
outgoing waves to those of the incoming waves on the de-
fect (Fig. 1)

defect

FIG. 1. Schematic representation of the outgoing and incom-
ing waves on the defect.

=S(E)

It provides two energy-dependent scalar quantities:
the transmission coefficient t (E), which is related to the
chain low-voltage conductance, and the well-known
differential density of states hp(E). This latter is only
considered in this paper as a tool in order to help in the
understanding of the t (E) variations.

This approach was first introduced for the study of lo-
calization in disordered solid-state systems. ' The only
condition for the determination of S(E) is the current
conservation along the chain, a condition which is easily
fulfilled for simple tight-binding systems with only elastic
scattering processes (see Appendix A). This current con-
servation is equivalent to the unitarity of the S(E) ma-
trix.

The simplest method to calculate S(E) is to use the
transfer matrix' ' which relates left to right propaga-
ting wave amplitudes,

= T(E)

The Green's function can also be used in order to derive
S(E), but is not as convenient as the transfer matrix for
such a one-dimensional single impurity problem.

Since ~%(E)) and ~%(E))' are both solutions of the
Schrodinger equation, the transfer matrix has the follow-
ing structure:

F(E) G'(E)
G (E) F'(E)

The transfer matrix is easily related to the scattering
matrix S(E) by

1 G*(E)

F~(E) —G(E) 1
S(E)=

The transmission coefficient is then

It describes the scattering properties of the defect at ener-

gy E. The electrons scattered by the impurity are provid-
ed and collected by the periodic chains, and in these
chains free carriers appear only in a small interval around
the Fermi level p. Therefore t(E) is generally averaged
to get an energy-independent transmission coefficient, the
effective transmission coefficient, first introduced by Az-
be1.21,22
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t,ff= J t(E) — dE,

bp(E)= —— arg(F(E)) .
1 d

m dE
(6)

(E—p)/kb 7.

where f (E,p, r)=(e ' +1) ' is the Fermi distribu-
tion with p the Fermi level of the periodic chain and ~
the temperature of the system.

The density of states (DOS) is also modified by the de-
fect. The variation of the DOS associated with the per-
turbation of the periodic system can be calculated with
the transfer matrix T. In the periodic case the density
of states is the derivative of the phase 0 of the eigenvector
with respect to the energy: p(E)=dHldE. The argument
of F(E) represents the phase shift induced by the defect.
Then the change in the density of states is obtained by
the energy derivative of this phase shift,

hC„ i+(e E—)C„+hC„+i=0, Inl ) 1

hC 2+(e E—)C, +aCo =0,
aC, + ( co E—)Co+ 13C, =0,
PC0+(e —E}C,+hC~=0,

(9a)

(9b)

(9c)

(9d)

in a system of vectorial first-order difference equations.
If R„ is the vector

C„
Cn —i

the elementary propagator P(E) on the periodic chain,
defined by R„+,=P(E)R„ for In I

) 1, and the ones asso-
ciated with the propagation through the defect, defined
by R;+ i

=P;(E)R; for i = —1,0,+ 1, are given by

E —e
h

III. PROPAGATION AND TRANSFER
MATRIX

The transfer matrix technique consists in choosing, for
a given energy E, the amplitude of the wave function
IV(E) & on two consecutive units of the one-dimensional
chain. With this initial condition, all the other com-
ponents of IV(E) & are calculated by backward and for-
ward application of a spatial propagator. This technique
is applied in the following to the AAABAAA .
tight-binding chain considered in Sec. I with a Hamil-
tonian:

H =~Is, &&sol+~(ls i &&sol+lso&&s il)

+P( Iso & & s i I+ Is, & & so I )

P(E)=

i(E)=

Po(E) =

Pi(E)=

1 0

E —e

E —e
h

(loa)

( lob)

(10c)

(lod)

+ g els„&&s„l
oo

(n&0)

+ g h(ls„&&s„ il+Is„+i&&s„l) .
00

(O~n ~1)

(7)

In this case the spatial propagator is obtained by the
product of elementary propagators constructed from the
transformation of the standard second-order difference
equation system derived from the Hamiltonian (7),

This Hamiltonian is controlled by a set of five parame-
ters, e,h, co,a,P, where co is the energy of the function Iso &

chosen to model B and a (P) the cell coupling between B
and the left (right) part of the A chain (Fig. 2).

The eigenvectors l+(E) & of the Hamiltonian H (7) are
developed on the chosen tight-binding basis ls~ &,

(8)

In such a propagative procedure, the choice of the ini-
tial and boundary conditions is very important. Since the
usual cyclic boundary condition' (equivalent to intro-
duce a periodic distribution of defects B) is not used here,
the only restriction on the R„ is that I I R„ I I

must be
bounded when In I goes to infinity. At each energy E, the
propagation is initialized by the choice of two arbitrary
parameters, i.e., one of the R„(e.g., R,). Then the di-
mension of the subvectorial space associated to an H ei-
genvalue E depends on the boundary conditions. Its di-
mension is 2 when E belongs to the continuous part of
the 0 (H) spectrum, but 1 for a o(H) discrete level and 0
when E does not belong to cr(H)

When R
&

is supposed to be known, all the R„vectors
are directly calculated by products of the four elementary
propagators defined in (10),

P'" '(P, POP, }R, for n ~ 2,
R = P'"+"g.

&
for n &—

e e
h

e Cl e e e
h h

FIG. 2. Graphic representation of the tight-binding Hamil-
tonian of the chain containing the defect B.

To relate T(E) defined in (2) with the propagators ap-
pearing in (11), one needs the fundamental property that
the propagation on a periodic chain produces only, for
the allowed energies, a phase shift on the wave function
at the tight-binding level. Usually, this property is used
directly, leading to the decomposition of the R„before
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and after the defect on the incoming and outgoing plane
waves. However, the exact application of this property
must be based on a precise spectral analysis of P(E).

The relation between the propagation on a periodic
chain and the spectral properties of P(E) comes from the
identity [P(E)]"=U '[D(E)]"U with D(E) the diago-
nal form of P(E) and U the associated similarity transfor-
mation. When this transformation is applied to (11),

U 1=U R
v

w

can be chosen instead of R, as an initial condition. The

U~U=U 'R=
n n W n

are given by propagation, in a way to distinguish between
the two semi-infinite chains and the defect,

[D(E)]'" 'V2 for n & 2,
U [D(E)]'"+"V, for n ~ —1,

(12a)

V~=P(E)V (12c)

where P(E) is a new propagator, which characterizes the
defect on the U„vectors, defined by

P= U P1POP 1
U (13)

D(E)=
0 X-'

with ~A,
~
) 1, then from (12b) w„=k '"+"w

&
for

n ~ —1, and because ~~R„~( must be bounded for large
negative n, w, =0. In the same way, from (12a) and for
large positive n, v2 =0.

U2 and U, are linked together through the defect by

region I

e-2/h/ e

region II

e+2/hJ E

region I

FIG. 3. Distinction of two regions on the energy axis, in-

duced by the nature of P(E) eigenvalues.

The principal (not often used) interest of the P(E) diago-
nalization is the distinction between propagative and
nonpropagative channels. This distinction comes from
the existence of both real and complex valued eigenvalues
belonging to the P(E) spectrum.

Even for the single-channel system studied here, the
two well-known energy regions associated with the no-
tion of conduction band can be distinguished, depending
on the sign of the P(E) discriminant b, =q —4, with

q =(E —e)/h (Fig. 3).
Region I. 6)0, i.e., ~E —e~ ) 2~h ~, the P(E) eigenval-

ues are real, different from 1 and —1. From the charac-
teristic equation of P(E), their product is 1: one of them
is then greater than 1 in absolute value. %hen, for exam-
ple,

0

The amplitudes on the left (n ~ —1) and on the right
(n ) 1) are related by the transfer matrix T(E) (2), which
is given from (12c) by

p —3IO p I0
11e

~21 22
(14)

The transfer matrix characterizes how much the delo-
calized eigenvectors of the periodic chain at energy E are
interrupted, reflected, by the obstacle or, in other words,
to what extent the two semi-infinite chains are electroni-
cally connected through the impurity at an energy E.

IV. IMPURITY CONTROL
OF THE TRANSMISSION

A. Control parameters of the transmission

The set of parameters (e,h, co,a,P) controlling H (7) can
be restricted to three independent dimensionless parame-
ters X =(iv —e)/ii, Y =a/h, and Z =P/a. These param-
eters have an easy interpretation: X is the energy
difference between A and B in units of h, Y is the interac-
tion on the left in units of h, and Z characterizes the
asymmetry of the interaction.

The analytical calculation of F (E), t (E), and b p(E), as
functions of X,Y,Z, is presented in Appendix 8, following
the spectral analysis of P(E). We report here the princi-
pal results. If we set

( 1 +Z2) 1 /2

v'2

P [Eq. (12c)]. Since w
&
=0, v2=P„v

&
and a nonzero

bounded solution only exists for P11=0 . P11 is a func-
tion of the energy E. Its zeros in region I correspond to a
set of discrete eigenvalues in the forbidden band of the
periodic system. In that case, the dimension of the eigen-
space associated with the eigenvalue E is 1 (w, =0).
These states are localized on the impurity: their coordi-
nates decrease as ~A,

~

'"' as ~n ~
~+ 00.

R&g&on II: & &0, i.e., [E —e[ ~2[h(, the eigenvalues
are complex of modulus one: e', e ', 0 given by the
band dispersion relation E =e +2h cos8. In that case, v„
and w„are always bounded. No condition is present. So
E is an eigenenergy of H and each pair of initial condi-
tions (v „w, ) gives an eigenvector: the degeneracy is
2.

The other consequence of the P(E) diagonalization is
that the transfer matrix T(E) can be easily related to the
transformed propagator through the defect P(E). Since
only a propagative characterization of the chain plus de-
fect system is interesting in that context, each C„(E) in
region II is decomposed from (12a) and (12b) on incoming
and outgoing plane waves on each side of the defect,

e 2i 8& e In &+ &
—2i ow e in 0 if n ~ —1

C ='
e ' v2e'" +e' w2e

'" if n 1,
or equivalently,

~&in +8+&
—rn8 jf

C ='
n P&in8+Q& —in 8 if
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the transmission coefficient is given by

r(E)=r, r,

with

1Z+-
Z

'2 7 0.5-

1

[X+q ( fV —1)]
W(4 —

q )

and the differential density of states is

hp(E) =— 1 [qX+4( W —1)]
(4 q)

1

[X+q( W —1)]
W(4 —

q )

(16)

Moreover, from Levinson's theorem, ' the change in
the total number of states (band plus discrete levels) must
be constant: AN=1. It corresponds to the addition of
the state iso) modeling B to the pair of semi-infinite
chains of A units (see discussion below).

All equations previously described are unchanged
when Y is replaced by —Y or when X and q are both re-

placed by —X and —q. The discussion will then be limit-
ed to positive values of X and Y. Moreover, t~(E) and

hp(E) do not depend independently on Y and Z but only
on W=[Y(1+Z )'/ ]/&2.

This means that the general case (Z&1) can be derived
from the symmetric one (Z =1) just by a change in the
scale of the Y axis. Only t, explicitly depends on Z (Fig.
4). This factor t, diminishes the transmission coefficient

t(E) as soon as Z is no more equal to 1. We will thus
study the case Z = 1, X and Y positive.

An important indicator to understand the t (E) varia-
tions is the change in the number of states within the
band, when the defect is inserted. From (6)

g~ = f '
b p(E)dE = ——[arg(F (E) ) ]qq =

77

then from (23) and (24)
T

1 if lXl &2lW' —ll and l~l &1,

0 if lxl &21~'—ll .

FIG. 4. First factor t l of the transmission coefficient
t (E)=t, tz as a function of Z =P/a.

pears out of the band. The impurity B introduces one
state in the continuous spectrum that can be seen as a
sharp peak in the density of states. The mixing between
B and the chains is weak and the defect state appears as a
5-like function. The chain is "disconnected" by the im-

purity in a large range of energy: t(E) is very weak ex-

cept for a small interval, centered on the energy level of
the impurity, where a narrow resonance is present. This
is a tunneling effect through the defect B.

When Y increases (e.g. , 0.4, 0.6), so does the mixing be-
tween the impurity B and the semichains. This mixing is
mainly antibonding because of the nonsymmetric position
of state iso ) in the band. Consequently, the peak in b,p is
shifted to higher energies, is broadened, and is gradually
spread over the whole band in a "U-like" function,
characteristic of the DOS of a 1D system. In the same
way the resonance in the transmission coefficient becomes
larger and is shifted up.

A new phenomena appears suddenly as soon as Y is
larger than &2/2 (-0.707). Figure 6 shows that a
discrete level has emerged upon the band. State B has
been ejected out of the band by antibonding mixing with
the chains. The change in the number of states in the
band is accordingly zero. The change in the density of
states then has a positive and negative part that counter-
balance upon integration. The resonance in t(E) is lost:
the value 1 is not reached anymore.

As the coupling Y goes beyond &3/&2 (-1.22) a
second level appears below the continuous spectrum; a
state of the band has been pushed down by bonding com-

B. The case X =1

Let us first take X=1 and increase the coupling Y.
For X =1, the state iso) associated with the defect is at
the —,

' position within the band, located between q = —2

and q = +2 (Fig. 5).
Figure 6 shows the energetic position of the discrete

levels as a function of Y, Figs. 7 and 8 are samples of t (E)
and

l
h

l Ap(E) curves for selected values of Y.
For small values of the coupling Y, no discrete level ap-

FIG. 5. Position of the impurity level B within the band of
the period system [—2, +2] in the case X = (co —e)/h = 1.
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5 a.

-5--

Y

bination with the state introduced by B. Hence, the
change in the number of states in the band is —1. The
Ap is a "U-like" negative function and the transmission
coefficient is a broad curve that again reaches 1 because
tunneling occurs through the removed state.

As an example we plot in Fig. 9 the electronic density
IC„ I as a function of site position for the two discrete
levels in the case Y =1.35. The higher level (q =2.66) is
mainly centered on 8, while the A contributions dom-
inate in the lower one (q = —2.03), in complete agree-
ment with the previous discussion about the nature of
these states.

C. The X,Fplane

t(E

1.6
.4

/
OI
-2

— )L
02'

2

FIG. 6. Energetic position of the discrete levels out of the
band, as a function of Y=a/h, in the case X =(co—e)/h =1
and Z =P/a= l.

What happens when X, the energy level of the defect B,
is modified?

Figure 10 shows the change in the number of states b,N
as a function of X and Y. The previous sample of curves
is located there on the dotted line. The zone where the
impurity state is added to the band (AN =1) is reduced
when X increases and disappears when the defect level is
located out of the band (X)2). The position of the
discrete levels as a function of Y, in the case X =2.5, is
presented in Fig. 11: The level upon the band is always
present. In the same way the ejection of a bonding
discrete level below the band occurs at higher Y when the
level X is increased.

The value of the maximum of the transmission
coefficient t (E), all over the band, is given in Fig. 12 as a
function of X and Y. Notice that this maximum is 1 as
soon as the change in the number of states in the band is
different from zero (1 or —1). Its variations are very fast
in the region where Y is small, that is, when the interac-
tion between 3 and 8 is small compared with the 3-A
interaction along the chain.

D. The defect B as an active switching element

FIG. 7. Transmission coefficient t (E) within the band

q =(E —e)/h = —2, +2 for different values of the cell coupling
Y=a/h (X =1,Z =1).

Two conditions have to be simultaneously fulfilled to
give a high value for the effective transmission coefficient
t,tf (5): a resonance must be present in t (E) and its ener-
getic position must be close to the Fermi level

[—(Bf/BE) is a 5-like function of width —kbr].
The Fermi level is introduced by the dimensionless

3

1.6
1.4

1.2
1.0

Ic„l'

Q 5 ~ a

A =40~
8 =6OX

Q 5 ~ e
A —83/
8 =17/

2 q

0.1 .
AA

g

5 1Q

q =2.66

ti p
Q.i " p pa

5 1Q

q = -2.03

FIG. 8. Change in the chain density of states within the
band, ~h ~hp(E), associated with the presence of the defect 8,
for different values of the cell coupling Y =a/h (X = 1, Z = 1).

FIG. 9. Electronic density
~

C„~' as a function of the site posi-
tion and 3/8 ratio for the two discrete levels in the case
Y =1.35 (X = 1, Z = 1). n =0 corresponds to the site of the de-

fect 8.
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3 ~ ~

2

2

FIG. 10. Change in the number of states within the band AN,
when the defect is inserted, as a function of X =(co—e)/h and
Y=a/h (Z =1).

q
5--

Y

-5-"

FIG. 11. Energetic position of the discrete levels out of the
band, as a function of Y =a/h, in the case X =(co—e)/h =2.5

and Z =P/a= l.

variable q„=(p—e)/h. At low temperature t,fr-t(h).
Figure 13 shows t,ff(X, Y), in this low temperature case,
for Z = 1 and q„=1: t,ff reaches the value 1 only on the
curve

X=q„(1—Y ) .

As it was noticed before, the decrease of t, ff- when one
leaves the above curve is fast in the case of small A-B in-
teraction, and in this case t,ff is high only in the close
neighborhood of the Fermi level. The effect of a nonzero
temperature is only sensitive in this region of small Y,
that is, in the case where t (E) allows rapid variations,
and appears as a smoothing of the t,~ surface.

From Fig. 13, t,& can be a fast varying function of the
parameters X, Y (and Z) defining the nature of the system.
Hence, even a small change in the electronic characteris-
tics of the impurity 8 (co, a, and P) can lead to an impor-
tant variation of the transmission coeScient t,ff.

Two types of elementary variations can be produced in
order to model an active defect. ' The first one is asso-
ciated with a change in the energy level of the impurity
B. We then need to study t, ff as a function of X. The
second one is associated with a change in the interaction
between B and the neighboring A. This can be represent-
ed by a Z variation, going from a symmetric coupling
(Z = 1) to an asymmetric and (Z&1).

The comparison of the switching ability of this model
with the control of the dynamics of the isolated ABA
system has been presented elsewhere. In the following
we underline the qualitative behavior, with a different set
of parameters that facilitates the chemical interpretation.

The control of t,ff by X is directly apparent in Fig. 13.
Three vertical sections are presented in Fig. 14(a) in the
case q„=1 and for r=10 and 300 K (Z =1). The curve
is sharp in the case of small Y: A small variation in X
may have important consequences in t,ff. The maximum
is close to X = 1. In the case of small interaction the nar-
row resonance in t (E) is near X and then coincides with
the Fermi level if X =q„.

For larger interactions the curve is broadened: The

p1 p5
X
3 ~ ~

0.1 0.5

3 ~ ~

CO

9

-3"
0.1 0.5 0.9

FIG. 12. t(E) maximum over the band, as a function of
X =(co—e)/h and Y=a/h (Z =1).

FIG. 13. Effective transmission coefficient t,ff (X, Y) in the
low-temperature case for Z = 1 and q = 1.P
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eft1--

Y=O.2

2 X

eff
~ ~
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case, t,ff. only depends on Z and q„at low temperature.
However, the t2 contribution is flat and no real improve-
ment of t i can be achieved [Fig. 14(b)] except if the Fermi
level is close to the band edge. On the other hand, no de-
struction of the switching effect occurs for high coupling
Y. If X, Y, and q„depart from relation (17), the decrease
of the switching ability is abrupt only in the case of small
coupling Y.

= 0.5

2X 2 Z

= 0.8

Z=1

(a)

2 X

t =3oo K
~ ~ ~ ~ e t 1O

qv-1 (b)

2 Z

FIG. 14. Switching ability of the effective transmission
coefficient t,& for q„=1 and K=0.2, 0.5, and 0.8. (a) shows the
switching ability as a function of X for Z=1. (b) shows the
switching ability as a function of Z for optimal X. Two different

temperature cases are shown: ~=300 and 10 K.

switching effect is rapidly less effective. The maximum is
displaced to X & 1. Due to the antibonding nature of the
interaction, the energy level of the impurity must be
lower than q„ in order to get a t(E) maximum around

q„. The case Y & 1 gives a very fiat maximum for a nega-
tive value of X (see Fig. 13).

The influence of a finite temperature (dotted line in
Fig. 14) is only sensitive in the case of small Y, as was ex-
plained before. It partially destroys the good switching
effect in that case.

Notice that, with a given chemical system, a change in
the Fermi level of the chain shifts the position of the
maximum of t,ff as a function of X. The switching effect
is improved as ~q„~ is increased within the band, but the
temperature effect becomes more effective.

Things are quite different when we want to control t,ff

by Z, that is, to study the influence of an asymmetric in-
teraction (a&P). A first control is done by the function
t& (Fig. 4) that only depends on Z. It implies that the
maximum 1 for t,z can only be reached for Z =1. For
the second factor t2 in t(E) [Eq. (15)] a variation of Z is
equivalent with a change in the scale of the Y axis.
Therefore it can be seen in Fig. 13 as a shift in Y. In or-
der to coincide with ti maximum (Z =1), t,fr must reach
1 in the X-Y plane, i.e., X, Y, and q„must verify (17).
This imposes a severe condition on the system that could
be carried out by varying the Fermi level q„. In that

V. CONCLUSION

In this paper the consequences of a local rupture of
translational invariance on the transmission properties of
a one-dimensional chain have been studied. The system

AAABAAA . has been modeled at the tight-
binding level. The presence of a single defect on a chain
keeps the energy band intact but scatters the Bloch waves
that built the solution of the periodic system at each al-
lowed energy E. In the band, the defect 8 is then charac-
terized by a scattering matrix S(E) that describes its
effect on the Bloch functions of the periodic chain. The
transmission coefficient t(E) of an electron at energy E
through the defect, which is directly related to the chain
conductance, can then be extracted from S(E), to-
gether with the differential density of states. From a
technical point of view we have extracted from the Ham-
iltonian the elementary propagators of the system. The
transfer matrix technique was then used: The scattering
channels originate from the modulus-one eigenvalues of
the period chain propagator. Analytical expressions were
then derived for the transmission coefficient t (E) and the
change in the density of states bp(E). Following Az-
bel, ' an energy-averaged transmission coefficient teff
has also been considered.

The variations of these quantities have then been dis-
cussed as functions of the parameters characterizing the
chemical nature of the defect: The influence of the ener-
getic position of the impurity level and of its coupling
with the chain have been analyzed. The transmission
coefficient is strongly dependent upon the energetic pa-
rameters: a small coupling induces a sharp resonance
while broader transmission curves occur for larger cou-
pling. Furthermore, the maximum value 1 for t(E) can
only be reached when the number of states added to the
band by the defect is 1 or —1: tunneling happens
through the defect state or the removed band state.

The Fermi level of the chain is considered through the
effective transmission coefficient t,~. A high t,f[ value can
only be reached when a resonance in t (E) is close to the
Fermi level, where the free carriers can be found.

Finally we have shown how a control in the effective
transmission coefficient t,~ can be produced by varying
either the energy level of the defect or the symmetry of
its coupling with the cha~n. The first case seems ap-
propriate for systems where the coupling between the
chain and the defect is small: abrupt variations are
present. The position of the narrow transmission max-
imum can be tuned by the Fermi level. However, this be-
havior is temperature dependent. In the second case,
condition (17) must be, at least roughly, fulfilled in order
to get a good control of the transmission coefficient t,ff.
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A change in the Fermi level can help in this way. The
control is less effective than in the first case and large
couplings are better since they allow greater deviations
from (17}and avoid a temperature-dependent effect.

This model approach shows that, in order to under-
stand the influence of an impurity on a polymer chain, we
need a good knowledge of the involved interactions. The
design of a molecular device with an adjustable Fermi
level appears to be an important goal. An improved
model, more realistic on a chemical viewpoint, is under
investigation.
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I
~ I' —I&l'= F(E~+G *(E}&l' —

I
G(E~+F*(E)&I'

= [IF(E)I' —
I
G(E)I'](l~ I' —I&l') .

So

K„„,= det[T(E)]K„f, .

But from (13) and (10)

[det[ T(E)]= det(P ) = det(P, ) det(PD ) det(P, )

Then K„z&, =K~,«and K„ is a translational invariant of
the chain with the defect.

APPENDIX B

APPENDIX A

Let us introduce K„,a function of the C„,

1K„=—(C„*C„+,—C„C„*+i) .
l

(Al)
P[PQP

q
—YZ

1 0

q
—X
YZ

1

1

Z
q 1

Y

1 0

Let us first calculate P, PDP
&

from (10) with
X =(co—e)/h, Y =a/h, Z =P/a, and q =(E —e)/h:

K„ is a translational invariant of the system chain plus
defect. To demonstrate this result, let us first show that
K„ is an invariant of the periodic chain. The C„are then
related by the second-order difference equation (9a),

h ( C„ i+ C„+,) = (E —e)C„,
or (with h, e, and E real)

h ( C„*+,+C„*,)C„=(E —e }C„'C„=h ( C„,+C„+,)C„' .

Therefore

q (q —X) 1

ZY2 Z

q(q —X) 1

ZY2 Z

C

q (q —X)
ZY

(q —X)
ZY

and

h (C„'+,C„+C„*,C„)=h (C„,C„"+C„+,C„')

C„* iC„—C„ iC„*=C„*C„+)—C„C„*+i,

Region I Iq I
) 2, d. etermination of the localized states

out of the band.
The eigenenergies are solutions of P» =0 that is, cal-

culating P» from (13),

which means that d=aA, +b —c ——=0 . (B1)

K„ i =K„.
If K„ is rewritten

K„=—.[C„' ( C„+,—C„)—C„(C„"+)
—C„' ) ] .

1

l

(A2)
A. is the P(E) eigenvalue of modulus greater than 1,

1/2

q + sgn(q) q
—4

E„appears as a discrete equivalent of the probability
current

+1 if q)0,
with sgn(q) = '

. ('@*V%—'IVAN*) .
2ml

Then Eq. (A2) is the discrete equivalent of the conserva-
tion law

divJ=O .

The "current" associated with the solution of the period-
ic chain C„=Ae '" +Re™is K„=2 sin 8( IA I

For a chain with a defect, the current on each side of it
can be related by the transfer matrix [(2) and (3)]

After the substitution of this value of A, in (Bl), one ob-
tains the equation

q (a d)+2(b —c)= —s—gn(q)(q —4)' (a +d), (B2)

(q —X) —q(q —X)Y (1+Z )+ Y4(1+Z~)~=0 . (B3)

whose solutions determine the energetic position of the
discrete levels out of the band.

In order to solve (B2), one may in a first step take the
square of this equation. After some manipulation one
gets
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Consequently the number of localized states is less or
equal to 2 (second-degree equation for q). Furthermore,
one can easily see that the two solutions of (83)are real
and indeed located out of the band. However, condition
(83) is not sufficient: spurious solutions have been intro-
duced when taking the square of (82). We need to test
back Eq. (82) on each solution of (83): this determines
the number of localized states out of the band [—2, 2] (see
discussion in Sec. IV).

Region II. ~q~ (2. In order to study the delocalized
states in the band we need to calculate again P»(E).
P, PoP, was calculated already but, now, A, [eigenvalue
of P(E)] is different,

q+i (4—
q )'

2

therefore

a +d . (d —a)q+2(c b)—+l
2(4 q2)1/2

and if we replace a, b, c,d by their values

and after some algebra one can write

Re(F) = —Z +—1 I

2 Z
(84)

Im(F)=, [X+q ( W —1)] .
1

Z Y2(4 q2)1/2

The transmission coefficient t(E) given by (15) and the
differential density of states bp(E) given by (16) are then
derived from (4), (6), (84), and (85).

(85)

Re(P„)= [(q —1)(q —X)—qY (1+Z )]
2ZY2

1Im(P„) =
2Z Y2(4 q2)1/2

X[(—
q +3q)(q —X)+(q —2)Y (1+Z )) .

In order to calculate the transmission coefficient and the
change in the density of states we need

F =e "'P» with cose=
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