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Jellium work function for all electron densities
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The work function and surface energy of jellium have been calculated for low (r, =12), metallic
(2 & r, & 6), and high (0.5 & r, &2) bulk electron densities. As the density increases, the work func-
tion peaks at 3.8 eV (r, = 1.7), minimizes at 3.6 eV (r, =0.9, a density higher than that of metastable
metallic hydrogen), peaks again at 3.7 eV (r, =0.6), and finally drops toward a high-density limit
around 2.0 eV (r, ~0). The self-consistent calculations, which employ an accurate electron-gas
exchange-correlation energy within the local-density approximation, are numerically challenging at
high densities. Exchange-only calculations, which display the same double-peaked density depen-
dence, are also reported. The high-density limits for the work function with and without correla-
tion (2.0 and 1.0 eV, respectively) have been estimated in two ways: (1) from an extension of
Peuckert's argument, and (2) from the Thomas-Fermi-Dirac-Gombas a,pproximation.

I. INTRODUCTION AND SUMMARY OF
CONCLUSIONS

This study extends the jellium-surface calculations of
Lang and Kohn' beyond the normal range of metallic
densities, with special attention to the high densities at-
tainable by metals under pressure. In the jellium model,
the positive ions are replaced by a uniform background of
positive charge density

n =3/4trr, =kF l3tr

(All equations are in atomic units, where tri=m =e =1.)2=
This background fills the half-space x & 0 and is neutral-
ized by the electron density n (x). Using the local-density
approximation for exchange and correlation, Lang and
Kohn self-consistently calculated n (x) as well as the sur-

face energy and work function in the range of metallic
densities, 2 r, ~6. They found that the jellium model

predicts work functions close to those measured for real
sp-bonded metals, including the alkalis and simple po-
lyvalents. In these simple metals, the work function
ranges roughly from 2 eV at r, =6 to 4 eV at r, =2.
Transition metals [(3d)"(4s) t display higher average
valence electron densities (r, = l. 3), but the jellium model

is inappropriate to such highly-nonuniform bulk densi-
ties.

Still higher densities may be sampled by materials un-

der pressure. If the external pressure is suddenly
released, the material is left in an unstable or metastable
compressed state. The mobile electrons at the surface
can presumably relax before the nuclear positions do.
For example, metallic hydrogen is predicted to have a
metastable phase at some density in the range 1.0
&r, &2.0.

Recent1y Magana and Ocampo calculated a work
function of 4.67 eV for jellium at r, =1, representing me-

tallic hydrogen. Instead of making a fully self-consistent
calculation, they varied a trial input Kohn-Sham effective
potential v,s(x) until the input and output potentials

were similar. Although Magana and Ocampo repro-
duced the Lang-Kohn work function to within 0.1 eV at
r, =2, their procedure is not necessarily that accurate at
higher densities where the work function is the residue of
a delicate cancellation. Our own calculations, which we
believe are fully self-consistent, yield a jellium work func-
tion of 3.60 eV at r, =l. (Sahni has informed us of his
elaborate unpublished variational calculation with Ma,
which yields 3.5 eV at r, =1, and work functions virtually
identical to ours for r, )2. 5. )

Our local-density calculations employ a parametriza-
tion5 of the Ceperley-Alder correlation energy E, (n) for
the electron gas of uniform density n. The Ceperley-
Alder e, (n) is more accurate than the Wigner form used

by Lang and Kohn, or the Hedin-Lundqvist form used by
Magana and Ocampo (for which we find W= 3.68 eV at
r, = l. ) Table I lists our results for the work function W
and surface energy 0 of jellium in the range 0.5 & r, & 12,
while Fig. 1 graphs 8' versus r, . An unexpected feature
is the shallow minimum in 8'at r, =0.9 In Sec. II we de-
scribe how our calculations were performed and explain
why they become numerically challenging at high densi-
ty. At the end of that section, we attempt to explain the
double-peaked density dependence of the calculated work
function.

A by-product of this work is the first careful numerical
demonstration of the equivalence of the exact expressions
(8) and (9) for the work function.

We have found no reliable self-consistent solution for
r, &0.5. What then is to be expected in the high-density
(r, ~0) limit? Peuckert argued that the work function
should tend to a finite constant, which he estimated to be
1.2 eV. In this limit, the work function is determined
largely by a tail of metallic or low-electron density lying 5
bohr or further outside the jellium edge (x =0).
Peuckert's estimate results from matching the image-
potential behavior 8' —1/4x far outside the surface to
the high-density expansion of u,s(x) —p. Here
p= —W+u, ir( ao ) is the chemical potential, and v, tt(x) is
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FIG. 1. Density dependence of the work function of jellium,
within the local-density approximation. X, exchange-only; XC,
exchange and correlation. For r, )0.5, the curves have been
plotted from the self-consistent calculations of Table I. For
r, &0.5, they have been extrapolated toward our estimated
high-density limits.

the Kohn-Sham effective potential, which Peuckert eval-
uated within the local-density approximation for ex-
change (neglecting correlation).

Peuckert's derivation needs to be improved in two
ways. (l) The asymptotic behavior within the exchange-
only local-density approximation is not W —1/4x but
W —[3m n(x)]' /~. We make this correction in Appen-
dix A, obtaining 1.0 eV as the high-density limit of the
exchange-only work function. (2) According to our self-
consistent results in Table I, correlation contributes

about 1.0 eV to the work function for small r, . Thus our
best estimate for the high-density limit of the work func-
tion, including correlation, is 2.0 eV.

Some insight into the high-density limit may be
gleaned from the Thomas-Fermi (TF), Thomas-Fermi-
Dirac (TFD), and Thomas-Fermi-Dirac-Gombas
(TFDG) approximations. All three involve a local-
density approximation for the kinetic energy, which is
valid when the electron density varies slowly over the lo-
cal Fermi wavelength A.F =2m/kF =3.27r, (i.e., when

~

Vn
~

/2kFn && l ). Since the characteristic decay length
of the jellium surface is the Thomas-Fermi screening
length k, '=(4kF/m) ' =0.64r,', the condition of
slow density variation is most nearly achieved in the
high-density limit. As demonstrated in Appendix B, the
TFD value for the density ratio n (0)/n is realistic for
high bulk density n, and unrealistic for low. Similarly,
the relative error of any TF-based value for the electro-
static surface dipole barrier approaches zero in the high-
density limit.

Within the TF approximation, which neglects both ex-
change and correlation, the work function of jellium is
identically zero. Within the TFD approximation, which
includes exchange, the work function is 1.3 eV, indepen-
dent of the bulk density. Within the TFDG approxima-
tion, which incorporates correlation as well, the work
function is 2.1 eV. These values were first obtained by
Smith, following an argument due to Sheldon' which is
outlined in Appendix B of this paper. We propose that
the TFDG and TFD work functions are estimates of the
high-density limits with and without correlation, respec-
tively.

II. SELF-CONSISTENCY PROCEDURE

Our self-consistent local-density calculations for the
jellium surface have been made with an enhanced version
of the Monnier-Perdew computer code. " As in the

TABLE I. Density dependence of the work function W, surface dipole barrier b, (() =P( ~ ) —P( —~ ),
and surface energy o within the local-density approximation. X, exchange only; XC, exchange and
correlation. r, =(3/4mn )' is the bulk density parameter. (1 hartree = 27.21 eV, 1 hartree/bohr
=1.55692X 10 ergs/cm .) For purposes of interpolation or fitting at small r„ the most useful quanti-
ties to consider are (hP)r,' and (cr)r, ~ The last . significant figure is usually the last nonzero digit.

X
W (eV)

XC X
b.P (eV)

XC X
o (ergs/cm )

XC

0.50
0.625
0.75
0.875
1.00
1.25
1.5
2.0
3.0
4.0
5.0
6.0

12.0

2.73
2.77
2.70
2.64
2.62
2.69
2.79
2.81
2.50
2.15
1.87
1.63
0.92

3.71
3.73
3.66
3.60
3.60
3.69
3.80
3.78
3.35
2.90
2.54
2.25
1.34

169.93
104.46
69.62
49.09
36.12
21.46
13.98
7.03
2.53
1.13
0.55
0.25

—0. 12

168.58
103.26
68.54
48.12
35.24
20.77
13.40
6.59
2.21
0.86
0.31
0.04

—0.25

—2 140 250
—735 280
—302 460
—140 655
—71 430
—22 055
—7911
1186.7

126.7
122.7
77.4
48.4

5.8

—2 123 730
—726 300
—297 040
—137 140
—69 026
—20 782
—7161
—861.5

224.6
163.4
97.5
59.4
6.6
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Lang-Kohn calculation, ' the density n (x) is constructed
as the solution of the Kohn-Sham equations:

[——,
' V + v, s( x) ]g, ( r ) =E, Itj, ( r ),

v,s(x) =Q(x)+p„,(n(x)),
n(r') n—+ (r')

P(r)= d r'
r' —r/

p„,(n) =d [n E„,{n)]/dn .

(3)

(4)

(5)

(6)

Here n+(r) =n8( —x) is the density of the positive back-
ground, and s„,(n)=s, (n)+s, (n) is the exchange-
correlation energy per particle in an electron gas of uni-
form density n. In the Monnier-Perdew code, however,
the electrostatic potential P(x) is constructed via the
solution of an integral equation"' which is iterated
along with the density n (x) and effective potential u,ff(x).
The intended surface charge density

g = —f dx [n (x } n8( ——x)]

(which is zero for a neutral surface) is achieved only at
the self-consistency limit, as a result of the boundary con-
ditions"' imposed upon P(x}. This iteration scheme is
stabler and more automatic than the Lang-Kohn scheme
in which P(x) is obtained directly from Eq. (5).

The work function W may be evaluated via two
different expressions which agree only at self-consistency.
The change in self-consistent-field expression' is

8 =do. /dX,

ed as an asymptotic Friedel oscillation' about n for
x (xo, and as a decaying exponential for x &x, . The in-
tegration mesh in real space is extremely fine, with inter-
val b,(x/A. z)=0.00125. Equation (3) is solved by the
Numerov method, and all numerical integrations are
evaluated with the help of a six-point polynomial rule.

The sum over one-electron quantum numbers i in Eq.
(2) may be reduced' to a numerical integral over wave
number k:

kF
n (x)=, f dk(k~ —k') g„(x)

~

', (10)

where

gi, (x)~ sin[kx —I (k)]

as x ~ —oo . At high density, the phase shift I ( k ) rises
steeply as k approaches kF, so a fine integration mesh is
required, with interval b, (k /k~) =0.0025.

Covergence is hastened by optimizing the arbitrary
screening parameter K in the integral equation"' for
P(x). For r, )2, E =k~ suffices, but for r, =0.5 conver-
gence is faster with K=0.6k+. Stable self-consistent
solutions are obtained after 99 iterations.

We adopt several criteria for a self-consistent solution.
(1) The work function and surface energy must be con-
verged with respect to iteration and refinement of in-
tegration meshes, and stable under variation of other in-
put parameters. (2) The actual surface charge density
must lie within 2)&10 electrons/bohr of the intended
surface charge density. (3} The surface dipole barrier
computed as P( ~ ) —P( —~ ) must lie within 0.02 eV of
the surface dipole moment'

the derivative of the surface energy o with respect to the
surface charge density X, evaluated at X=0. The
Koopmans-theorem expression' is

W=u, tr( ~ ) —u,s( —~ ) —s~(n )

=P( oo ) —P{—oo ) —s+(n }—p, „,(n ),

4vr f" dx x[n(x) —n8( —x)] .

(4) The Budd-Vannimenus theorem, '

$(0)—P( —00 ) =nd[ —,'sz(n )+E„,(n )]/dn,

(12)

(13)

where s~(n ) =kz/2 is the Fermi energy.
Both expressions for the work function are hard to

evaluate accurately for high bulk density n. In Eq. (8),
the surface energy o. diverges like r, as r, ~0, ' yet
its derivative with respect to surface charge density tends
to a constant. In Eq. (9} the surface dipole barrier
P( ~ ) —P( —~ ) and Fermi energy s~(n ) diverge like r, ~,

the exchange potential p,„(n ) = k~/7r dive—rges like r, ',
and the correlation potential p, (n ) like 1nr„yet the self-
consistent work function tends to a positive constant in
the high-density limit. Incorrect negative divergences
have been obtained from restricted variational calcula-
tions. ' ' Thus calculations of the work function at high
density must be performed self-consistently and with
great care.

Our numerical calculations are performed inside a re-
gion extending from xo ———3.5k+ to x, & +0.5k+, where
A, I; =2~/kI; is the bulk Fermi wavelength. The outer
edge x, is increased along with the bulk density to a max-
imum of +6k,z at r, =0.5. The density n (x) is represent-

must be satisfied to better than 0.01 eV. (5) The work
functions computed from expressions (8) and (9) must
agree within 0.01 eV. This last criterion is imposed only
for r, ~1. At higher densities we use only Eq. (9), since
the surface energy cr needed in Eq. (8) is not computed to
sufficient accuracy.

From these considerations, the numerical error of the
computed work function is estimated to be 0.02 eV for
r, ) 1, and a bit larger (possibly 0.04 eV) for r, & 1.

The minimum in the calculated work function at
r, =0.9 (see Table I or Fig. 1) seems to be too pro-
nounced, too regular, and too reproducible to be an ar-
tifact of numerical error. This minimum is not found in a
restricted variational calculation of the work function, '

in which the work function rises with increasing density
to a single maximum around r, =1.6, then plunges mono-
tonically to negative values for r, &0.8. The minimum
and second maximum found in the present calculation
may result from a feature of the self-consistent density
that is absent from the restricted variational calculation:
The development of a long, Thomas-Fermi-like
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[(x+a) ] tail, which makes an additional contribution
to the surface dipole barrier of Eq. (12).
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where P(r) is the electrostatic potential of Eq. (5) and

e(n)= ,'eF—(n)+c.„,(n) . (B2)

We seek a density n (x) which for x &x is positive and
satisfies the Euler equation

APPENDIX A: PEUCKERT'S HIGH-DENSITY LIMIT
6E/5n(x) =g(n)+P(x)=p,

where

(B3)

Within the local-density approximation for exchange,
the Kohn-Sham effective potential v, tr(x) at a distance x
outside the jellium edge is

v ~(x) p=P(—x) —P(oo ) —(3m n)' /m+. W . (Al)

Here W is the work function, p= —W+P(~) is the
chemical potential, and P(x) is the electrostatic potential,
which obeys Poisson's equation

g(n) =d[ne(n)]/dn . (B4)

E[n]—p f d r n(r) =0
dx

For x )x, n (x) is identically 0 and g(n)+p(x)) p.
E[n] p f—d r n(r) must be minimal with respect to vari-
ations of x:

d Pldx = —4n.n .

In the high-density limit, (A 1) may be expanded as

v, tr(x) —p = —277. 5826x +2. 708 333x

(A2)
= A[ne(n)+nP pn—] ~

where A is the surface area and, according to (B3),

(B5)

+0.007 419 275

+ ( 6.465 X 10 ')x + (A3)

(B6)

is the chemical potential. Substitution of (B6) into (B5)
yields

According to Peuckert, the first four terms of this ex-
pansion suffice for x & 14 bohrs. Expression (A3)
diverges as x ~0, but is finite for any positive x. In the
high-density limit, the bulk density n =3/4nr, diverges. ,
as does the density at the jellium edge [n(0)~ .046 n5],
but the density at any positive x tends to a finite limit be-
cause the decay length vanishes like r,'

For very large x (say, x R 14 bohrs), the electron densi-
ty decays exponentially:

d
E(n) =0 .

dn
(B7)

p=g(n )+P( —~ ) .

X

Thus, as x increases, the density n (x) approaches a criti-
cal value n(x ) =n, the root of Eq. (B7), and then vanishes
for x gx.

To find the work function for n ~ n, note that from
(B3)

n (x)=P exp( —2&2Wx ),

as does the solution of (A2):

(A4) Substracting (B8) from (B6) yields

W=P(X) —P( —oo ) —g(n ) = —g(n ) = —c,(n ) . (B9)

p(x ) =p( ca ) —4~p exp( —2&2 Wx ) /8 W . (A5)

We seek P, W, and x to match u,s(x}—P,
d[u, tr(x) —p]/dx, and d [u,tr(x) —p]/dx at x =x, us-

ing expression (A3) for x &x and expressions (Al), (A4),
and (A5) for x ~x . The result is P=0.00206 bohr
8'=0.0367 hartree = 1.00 eV, and x =13.15 bohrs.
The computed density at x =x is extremely low, corre-
sponding to a local r, =52.

APPENDIX B: THOMAS-FERMI-DIRAC-GOMBAS
THEORY OF THE WORK FUNCTION

With a local approximation for the kinetic, exchange,
and correlation energies, the total energy functional for
jellium is

Equation (86) applies not only to a surface but also to a
neutral atom: '' p=g(n ) for P(,x)=0.

With Ceperley-Alder correlation, ' the critical density
n corresponds to a local r, =4. 18, and the work function
of Eq. (B9) is 2.11 eV, independent of the bulk r, for
r, & r, . Without correlation (Thomas-Fermi-Dirac ap-
proximation), r, =4.82 and W=1.29 eV. With neither
exchange nor correlation (Thomas-Fermi approximation),
r, = ao and W=O. These are the r, -independent esti-
mates of the work function from Ref. 9 (with a small
difference arising from the use of Wigner correlation in
Ref. 9).

In Sec. I of this paper, we propose that the TFDG
work function is an estimate of the high-density limit.
We now argue that the TFDG approximation becomes
increasingly less realistic at lower bulk densities n. Con-
sider the electron density at the jellium edge n (0). Table
II shows n(0)/n versus r, =(3/4mn)'~, as ca.lculated
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TFD TFDG KS-X KS-XC

TABLE II. Ratio n (0)/n of the electron density at the jelli-

um edge to that in the bulk. r, =(3/4mn )' is the bulk density

parameter. TFD: Thomas-Fermi-Dirac. TFDG: Thomas-

Fermi-Dirac-Gombas. KS-X: Kohn-Sham with local exchange

alone. KS-XC: Kohn-Sham with local exchange and correla-

tion.

g(n )+p( —ao ) =p,
g(n(0))+P(0)=p .

(811)

(812)

Equation (812) holds so long as n (0) &0, i.e., so long as
X &0. Subtracting (811) from B(12) and inserting the re-
sult into (810) yields an equation for the TFD value of
n (0):

0.5
0.75
1.0
1.5
2
4
6

12

0.4701
0.4732
0.4769
0.4858
0.4980
0.6712
0
0

0.4704
0.4740
0.4783
0.4897
0.5067
0.8818
0
0

0.4651
0.4654
0.4656
0.4611
0.4514
0.4108
0.3802
0.3163

0.4654
0.4662
0.4669
0.4622
0.4512
0.4023
0.3612
0.2607

g(n(0))=e(n) . (813)

Equation (813) is just a quadratic equation for n(0)'~,
and its solution is displayed in Table II. As r, ap-
proaches r, =4.82 from below, the ratio n( 0)ln ap-
proaches unity and x approaches zero. For lower densi-
ties (r, & r, ), it appears that x is negative, n (0)=0, and

W= [$(0)—P(x )]—g(n )

2nn—x g(—n) . (814)

P(0) —P( —ao )=n de(n )ldn, (810)

is true within any self-consistent scheme, including TFD.
From Eq. (83), the TFD density satisfies

self-consistently within the Kohn-Sham formalism using
local exchange and correlation (XC) or exchange along
(X). Shown for comparison are the TFD values of
n (0)/K. In the high-density limit, all three approxima-
tions yield n(0)in =(—', ) =0.4648, which is the TF
value for all n. But the TFD values become increasingly

less realistic at lower densities n.
The TFD values of n (0) have been computed from the

following argument. The Budd-Vannimenus theorem of
Eq. (13),

Thus, for r, gr„ the TFD work function begins to fall
below its high-density value of g(n )—.

An alternative way to solve for n (0)ln is to find the
root of Eq. (813) numerically. This method was checked
out on the TFD problem and then applied to the TFDG
problem, with the results shown in Table II.

%hen density-gradient corrections to the kinetic ener-

gy are incorporated along with local exchange and corre-
lation (Thomas-Fermi-Dirac-Gombas-Weizsaecker ap-
proximation), the work function depends upon the bulk
density in a way that may be calculated either variational-

ly ' ' or exactly. ' In the normal metallic range, this
density dependence is qualitatively similar to that of
Table I, in which the kinetic energy is treated exactly.
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