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Using the short-memory augmented-rate theory (SM-ART) framework of Toiler et al. [Phys.
Rev. B 32, 2082 (1985)] we have calculated the isotope effects for diffusion in crystals over wide

ranges of the mass of the jumping atom relative to that of the host atom. Calculations have been

completed for a variety of interatomic potentials including Lennard-Jones, Morse, Finnis-Sinclair,

and hard-core forces. The similar global behavior in a11 cases points to the dominance of closed-

shell repulsive forces in determining the isotope effect for diffusion. These results also clarify the ex-

pected behavior of the isotope effect for impurity diffusion in which large mass differences are

present. An example of the breakdown of the SM-ART approximation is discussed.

I. INTRODUCTION

In recent work with collaborators we have been able to
explain the isotope effects for diffusion observed at high
temperature in fcc (Ref. 1) and bcc (Ref. 2) metals. The
general framework for this research is provided by a
theory due to Toiler et al. designated the short-memory
augmented-rate theory (SM-ART). Earlier applications
of classical statistical mechanics to this problem resulted
in the Vineyard theory, " in which the rate at which tran-
sitions take place is predicted from the single-time statist-
ical distribution function. In this simpler framework the
isotope effect is fixed by the orientation of the "saddle
surface" on the top of the barrier barring the jump path
in configurational space. Unfortunately, model calcula-
tions that determine the saddle plane normal in terms of
interatomic forces yield results that are in substantial
disagreement with the observed isotope effects. ' The
SM-ART treatment includes, in addition, the dynamics
of trajectories close to the jump condition, and thereby
corrects errors of jump counting that occur in the simpler
treatment. It turns out that the mass dependence of these
errors is the dominant factor in the isotope effect. The
present paper uses the SM-ART framework to examine
the global behavior of the isotope effect over large
changes of isotope mass, lattice characteristics and tem-
perature.

An important feature of the SM-ART treatment is that
it eliminates spurious counting of atomic jumps. In rate
theory the number of trajectories per unit time that cut
the saddle surface is counted without reference to their
future behavior. The SM-ART theory, in contrast, treats
trajectories close to the jump condition in a way that is,
in principle, exact, so that immediate reversals are elim-
inated. The locus of all trajectories that oscillate
indefinitely on the top of the barrier in phase space is
called the center manifold (CM) of the barrier. Trajec-
tories that differ from this by an infinitesimal velocity, so
that they decompose from CM, form the center unstable
manifold (CS ), and their time reversed trajectories form

the center stable manifold (CS+). The flow of trajectories
around these manifolds in phase space is illustrated
schematically in Fig. 1. Any surface X+ that extends
from CS+ to region of inaccessibly high-energy cuts all
the flux in one sense; trajectories that reverse are trapped
between CS+ and CS so they do not contribute at that
time to the flux through X+. This eliminates the princi-
pal error that is inherent in the rate-theory approach.

Figure 1 makes clear that the SM-ART treatment
focuses on short dynamical processes involving trajec-
tories close to CS (not necessarily short times ). It does
not, for example, eliminate trajectories that pass around
CS+ and CS before contributing a return jump through
X . Nor does the theory include possible turbulence of
the flow lines of the trajectories. These fundamental to-
pics are not the subject matter of this paper, and are
neglected here except for some brief discussion of the
chaotic behavior we have found for certain models of bcc
metal. These latter results are collected in the Appendix.

Calculations of the isotope effect have been reported
elsewhere for simple fcc and bcc metals. ' The methods
by which the SM-ART treatment is realized in practice
are reviewed briefly in Sec. II. For fcc metals the error in
rate theory, as specified by a conversion coefficient c that
is unity when no error occurs, is negligible at low temper-
ature and, in fact, c deviates from unity at high tempera-
ture only by —10% for fcc and 30% for bcc lattices.
Thus, rate theory is a satisfactory first approximation.
Nevertheless, corrections are required to bring the calcu-
lated isotope effect into agreement with experiment. The
isotope effect ~ is unity for independent motion of the
jumping atom and is smaller when other atoms partici-
pate in the jump dynamics. For fcc Cu, Ag, and Ar,
represented by fitted Morse and Lennard-Jones poten-
tials, the calculated SM-ART isotope effect factor de-
creases from a rate theory value of about 0.96 at T=O to
about 0.88 near T . The value near T, where most
measurements are made, agrees well with the experimen-
tal results for these metals and, more generally, for the
observed behavior of a wide range of close packed sys-
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that measures the fraction of saddle plane crossings that
lead to actual jumps (i.e., 1 —g, with q the fraction of un-

randomized return jumps). The isotope effect factor fol-
lows as

8 lnR
8 lnM,

(2)

C g+ P

or
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al M,
' (3)

FIG. 1. Sketch showing the center stable (CS+) and center
unstable (CS ) manifolds intersecting at the center manifold

CM. The saddle hyperplane SH, comprising the saddle plane
and all velocities that lie in it, has dimensionality 6N —2 as in

CM. Added critical perpendicular moments, p &
and p &, give

trajectories on CS+ and 6 "~ . For p& &p &+, e.g., point c, a tran-

sition takes place, but for p& &p &+, e.g., point a, the trajectory is

simply a fluctuation from the initial potential well. All success-
ful transitions cut an arbitrary surface X+, that extends from
CM to regions of large energy, an odd number of times.
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where «0 is the rate theory (harmonic) isotope effect fac-
tor and M& is the mass of the moving atom. In Eqs. (2)
and (3), all masses other than M, are held constant.

A second exact result is that Ko is given by the direc-
tional cosines of the saddle plane normal in
configurational space relative to the subspace of the
jumping atom. ' Thus

tems. For bcc Fe the observed ~=0.59 at high tempera-
ture is reproduced well by the theory with a Finnis-
Sinclair potential, ' fitted to a-Fe, which gives a small
double peaking of the potential energy along the jump
path. The conversion coefFicient is again reasonably close
to unity at about 0.71. For both the fcc and bcc struc-
tures, the theory shows that the isotope effect is dominat-
ed by a temperature-dependent fraction of highly anhar-
monic trajectories.

The present work was undertaken to resolve certain
broad questions raised by these results. One puzzle, for
example, is how the isotope effect factor can be modified
so strongly while the conversion coefFicient itself remains
close to unity. A second question concerns the behavior
for large mass changes, which in practice require studies
of impurity diffusion. To characterize these processes it
is necessary to examine the global behavior of the conver-
sion coefficient as the mass of the jumping atom, relative
to that of the host atom, is varied over a wide mass
range. In what follows we report an investigation of
these properties. The theoretical methods and their ap-
plication are described in Sec. II. Section III is a discus-
sion of the results. A brief summary of the paper is given
in Sec. IV.

II. ISOTOPE EFFECT CALCULATIONS

In other work, ' we have established certain results
that are exact within the SM-ART approximation. One
is that the jump rate may be written

R =Roc,
with R o the jump frequency calculated by rate theory for
a planar saddle surface normal to the decomposition
mode at the saddle point, and c a "conversion coefficient"

with the a, directional cosines of the saddle surface nor-
mal. In Eq. (4) the index is summed over all the atoms
and the index a identifies their Cartesian coordinates.

Our earlier calculations of ~ for fcc and bcc crystals
evaluate «(M, ) for a mass M, of the jumping atom equal
to that, M, of the host atom. For this purpose an accu-
rate difference algorithm was devised to determine small
changes of conversion coefficient caused by small changes
of M, with respect to M. For our present purpose the
earlier difference algorithm no longer serves well. By
methods outlined below we have therefore made direct
calculations of c and of «as functions of M, /M, so that
the full isotope effect and its mass dependence can be de-
rived from Eq. (3).

The procedures by which ~0 may be obtained are
straightforward. The dynamical matrix is diagonalized at
the saddle point and the orientation of the unstable mode
then determines directly the relevant cosines, and hence
~0. Its value is mass dependent both through the explicit
masses in Eq. (4) and through the presence of the masses
in the dynamical matrix. The latter corresponds to the
fact that the normal-mode directions in configurational
space depend on all the masses present. Values of Ko for
various interatomic potentials presented below are based
on this prescription.

Our procedure to find the second, "anharmonic, " con-
tribution to the jump rate begins with the selection of an
ensemble of representative points on the saddle hypersur-
face in phase space. This may be accomplished with
equal convenience either by molecular-dynamics (MD) or
Monte Carlo (MC) methods. The saddle hyperplane (SH)
comprises the saddle plane together with all momenta
that lie in that plane. As such it has the dimensionality
of CM (6N —2, with N the number of atoms) but is gen-
erally distinct from it. Thus SH and CM appear as
separate points in the schematic Fig. 1. Any state on SH
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can be brought onto CS by an increment p, of momen-
tum perpendicular to the saddle plane. By construction,
any state on SH with added perpendicular momentum

p )p, then gives rise to a jump (e.g. , point c in Fig. 1).
Thus, we first identify p, as the momentum that makes a
state initially on SH approach the barrier and linger there
indefinitely. The integral over X+ is obtained by repeat-
ing this procedure for the ensemble of states on SH. In
practice, we determine the fraction of all available p
values that lie between p =p, and ~, and thus obtain the
conversion coefficient directly. In this way we have ob-
tained c as a function of M, /M for several diff'erent in-

teratomic potentials.
In all cases of a simple single barrier we have found

that, to the accuracy of our calculations, there exists a
unique critical momentum p, below which all trajectories
fail and above which all trajectories for a given state on
SH lead to successful jumps. The precision with which
this observation holds is —10 of the mean thermal
momentum perpendicular to SH, which is the limiting ac-
curacy of our trajectory calculations. In the case of the
double barrier for the bcc vacancy jump, referred to
below, we found a completely different behavior. For this
case alone, and only at sufficiently low temperature, suc-
cessful and unsuccessful trajectories were found to be in-
terleaved with increasing p, so that the selection of a
unique p, proved impossible. These phenomena relate in
an interesting way to a chaotic behavior of the Aow lines
associated with the randomization of trajectories within
the well of the double barrier. A brief description of
these results is presented in the Appendix.

We now present the results of calculations performed
for particular systems using the methods outlined above.
Vacancy hopping has been investigated for both fcc and
bcc lattices using potentials that are appropriate to the
two cases. Specifically, for the bcc lattice we have em-

ployed the model Finnis-Sinclair potential fitted in our
earlier work to the parameters that describe phonon and
defect properties of a-Fe. For the fcc lattice we employ a
Lennard-Jones model from our earlier studies, which is
fitted to the properties of Ar. Details of the precise pa-
rameters that describe the potentials may be found in the
original papers. ' ' For the main part calculations were
confined to a 32-atom fcc cluster and a 54-atom bcc crys-
tallite, both with periodic-boundary conditions and the
largest cutoff' available for the specific system. Even so,
the calculations were extensive, requiring runs of many
(10—30) hours on an FPS 264 attached processor.

Figure 2 summarizes the calculated conversion
coefficients as a function of the logarithm of mass ratio
for a wide range of M&/M. While all the data in Fig. 2
correspond to a temperature close to the melting point of
the material being simulated, we have verified in auxiliary
calculations that c exhibits a qualitatively similar mass
dependence at other temperatures also. The most impor-
tant observation is that the conversion coefficient changes
rapidly with M, for M, /M —1 and eventually becomes
independent for M& for M& /M sufficiently large or small
(viz, ~ 10 or (10 ). The actual computed values, to-
gether with their uncertainties, are collected in Table I.

Our earlier investigations have revealed that the iso-
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FIG. 2. The conversion coefficient as a function of M, /M
shown for three different potentials. LJ, fcc Lennard-Jones; bcc
1, single-peaked Finnis-Sinclair; bcc 2, double-peaked Finnis-
Sinclair. In this and following figures the mass scale indicates a

power of 10.

TABLE I. Conversion coefficients as functions of mass ratio
M& /M for the fcc Lennard-Jones model, for the single and dou-
ble bcc Finnis-Sinclair potentials, and the hard-core potential,
discussed in the text.

Mass

0.01
0.10
0.20
0.50
1.00
2.00
5.00

10.00
100.00

Lennard-
Jones

0.865
0.876
0.881
0.897
0.918
0.938
0.950
0.958
0.969

Hard
core

0.863
0.870
0.879
0.899
0.921
0.940
0.955
0.964
0.971

Single
bcc

(1 peak)

0.838
0.847
0.867
0.896
0.917
0.937
0.943

Double
bcc2

(2 peaks)

0.572
0.595
0.648
0.710
0.766
0.823
0.846

tope effect behavior is dominated by hard-core effects.
For this reason we have extended the present calculations
to a model which exhibits these characteristics clearly.
In this model the harmonic potential of the potential bar-
rier close to the saddle point is extended to all of
configurational space. It is supplemented by an infinite
repulsion of range o. between the jumping atom and all
others. Thus the true anharmonic potential is simplified
as a harmonic potential plus rigid-core effects. For the
Lennard-Jones fcc crystal near M, /M= 1 this has been
found earlier' to mimic both the conversion coefficient c
and isotope effect ~ of the conventional potential very sat-
isfactorily, for values of the core radius 0. that are ap-
propriate for the observed bulk anharmonicity. " Since
the harmonic force without the rigid core gives both c
and ~ quite incorrectly, it may be deduced from the sub-
sequent agreement that the major discrepancies arise
from hard-core effects. In the present research these re-
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FIG. 3. Comparison of conversion coefBcients for fcc crystals
with different interatomic force laws. LJ, Lennard-Jones; HC,
harmonic with hard core.

l. I

(a)
l.O —————-- fcc LJ

0.9—

0.8 —
I

0

0.7—
0,
0

0.6—

0.5-2 -I 0
log o(M, /M)

I.O

0.8—

0.4—

0.2—

p-3 —2 0 I 2

og [o ( M~/M )

FIG. 4. Isotope effect as a function of M l /M for (a)
Lennard-Jones fcc crystal and (b} Finnis-Sinclair best fit for bcc
a-Fe. In both figures the harmonic contribution separately is
indicated by the dashed line, and the total by the solid line.

suits have been extended to obtain the overall dependence
of c on M, /M for this same rigid-core potential applied
to the Lennard-Jones model fcc crystal. These results are
displayed in Fig. 3 where it can be seen that the calculat-
ed variations of c are entirely analogous to those of the
realistic Lennard-Jones potential. We note again that

this behavior must arise from the rigid core since the har-
monic term alone gives a constant value of c near unity
for all M~ /M.

We turn finally to the variation with Mi /M of the har-
monic and anharmonic contribution to the isotope effect.
As an example the value of Kp calculated for the fcc lat-
tice with the Lennard-Jones potential is shown as a func-
tion of ln(M, /M ) in Fig. 4(a). From a numerical
differentiation of the conversion coefficient mass depen-
dence it is then possible to obtain the anharmonic contri-
bution corresponding to the second term in Eq. (3). This
term added to Kp gives the full isotope effect factor which
is shown as the solid line in Fig. 4(a). Notice that the
anharmonic term makes its main contribution near
M& ——M, whereas the term Kp shows a monotonic varia-
tion all the way from M~ &&M to M, &&M. Figure 4(b)
gives the analogous results for the potential used above to
represent bcc a-Fe. The qualitative features of the results
are similar to those for the fcc case, although the quanti-
tative deviations of K from unity are of course larger in
the bcc case.

III. DISCUSSION

In this discussion of the results presented above our
main purpose is to provide insight into two features of
these calculations. These are, respectively, the physical
origins of the anharmonic term and the expected behav-
ior of impurity systems in which the mass of the diffusing
atom differs widely from that of the remaining atoms.
These two areas are discussed successively in what fol-
lows.

With regard to the anharmonic term we note first that
the results presented in Sec. II explain very directly how
its contribution to the isotope effect can be large while
the conversion coefficient remains close to unity. In the
diverse cases shown in Figs. 2 and 3, all the conversion
coefficients change most rapidly with mass precisely in
the region M, -M, where measurements of the isotope
effect in self-diffusion is necessarily determined. For this
reason the anharmonic contribution to the isotope effect
near M, =M has the same typical size as the deviation of
the conversion coefficient from unity, which is much
larger than the deviation of Kp from unity near M, =M.
The net result is that the full isotope effect near M, =M
has a dominant contribution from the anharmonic term.
This is not the case when M i is very different from M, as
discussed in more detail below, after further analysis of
the anharmonic contribution.

The global character of the anharmonic term in K is es-
tablished unambiguously by Fig. 5. This figure shows
that the two bcc and two fcc systems represented in Figs.
2 and 3 all give rise to the same functional form of the
anharmonic term. In Fig. 5 the variations with M&/M
have been scaled to the same amplitude and shifted in

height, so that the changes from M~ /M small to M, /M
large are similar for all four systems. It is apparent that
the results for the different systems have identical depen-
dencies on M, /M, within the small uncertainties of the
computational results. The precise scale shown in Fig. 5

is chosen so that a line representing the reduced mass
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FIG. 5. The conversion coefficients from Figs. 2 and 3 shifted

and scaled by factors w to make them fall close to a common
trend. The line shows the variation of p=MM~/(M+M, ).

MM)

M+Mi

passes through the data. Now the reduced mass is per-
tinent to energy transfer in two-particle collisions be-
tween the jumping atom of mass M

&
and its neighboring

host atoms of mass M. It is useful to recall, in addition,
that for one set of data in Fig. 5 the mass dependence is
almost entirely the consequence of rigid repulsive forces
between the diffusing atom and the remaining lattice
atoms. Thus, Fig. 5 provides conclusive evidence that
the anharmonic isotope effects described here arise in ma-

jor part from the influence of core forces on the probabili-

ty with which unrandomized return jumps take place.
Numerical values of c for different mass ratios are collect-
ed in Table I.

The final picture of the isotope effect that emerges
from these studies is thus very different from the views
that prevailed until very recently, but nevertheless one
that can be expressed in simple physical terms. It has
been demonstrated that anharmonic effects due to deep
closed shell collisions exert a dominant influence. The
value of Kp is close to unity throughout a wide range of
M, that spans M. This shows that the decomposition
mode at the saddle point, along which low-energy trajec-
tories pass, lies almost wholly in the subspace of the mi-

grating atom. For M, &~M, deep collisions between M&

and its neighbors scatter the system far out of this sub-
space into other jurnp directions that involve less motion
of M, . These events reduce the sizes of the conversion
coefficient for M, small. As M, is increased to exceed M,
however, this scattering becomes less effective, the con-
version coefficient increases, and the decomposition
motion scatters less out of the M, subspace. Because the
conversion coefficient thus increases with M, the anhar-
monic term give a negative contribution to I«.. The effect

is large only near M, =M because this is the domain in
which the effectiveness of the hard-core scattering
changes from one regime to the other.

We turn now to the expected behavior of the isotope
effect for diffusion of atoms with masses very different
from the host atom mass. In practice, this must neces-
sarily be impurity diffusion. The model forces employed
above are not generally suitable for this case because the
impurity-host interaction may in general be expected to
differ from the host-host forces, which is not the case for
the models described in Sec. II. We believe that some of
the physical characteristics revealed by the calculations
wi11 nevertheless remain relevant to the case of impurity
diffusion. In particular, the fact that the anharmonic
effect from deep collisions becomes of negligible impor-
tance when M& differs greatly from M should carry over
to impurities also. This is the case because the behavior
is a consequence of the mass ratio and the hard-core
forces alone, so that the general strength of the bonding
is not relevant. The isotope effect observed for impurities
with masses very different from the host mass must there-
fore be determined mainly by the harmonic term Kp.

Thus the impurity case for large mass differences is the
exact opposite of the situation for host atoms described
above.

As ~p is expected to vary in a specific manner with

M, /M, we are now able to make qualitative predictions
about the isotope effect for impurity diffusion. When the
jumping impurity is very light, for example, the decom-
position mode must lie almost wholly in the subspace of
M, . It follows for M, /M ~0 that i~~ l. For sufficiently
large M&, on the other hand, the fast motion of neighbors
must play an increasingly large role in promoting jumps,
and for M~/M~ oo, Kp must tend to zero. Finally, for
impurities of intermediate mass, M „close to the mass M
of the host atoms, the behavior must again be modified by
the anharmonic contribution, and the isotope effect fac-
tor ~ takes a value similar to that for self-diffusion. These
are indeed the qualitative features revealed by Fig. 4. It
is our belief that the global behavior does not depend in a
critical way on the fact that impurity-host forces must
differ from host-host forces. Therefore the trend in Fig. 4
provides a qualitative guide to the isotope effect for im-
purity diffusion also.

Experimental results for the isotope effect of impurities
with M, /M very large or very small are not yet available
for comparison with these predictions. Future efforts
might, with advantage, focus on cases such as heavy im-

purities in Li, and Li in heavy-host lattices, where mass
ratios of order 30 appear to be accessible for study.
These should be sufficiently large that the mass ratio
overshadows effects of local impurity-host interactions,
and that the global behavior described above [Figs. 4(a)
and 4(b)] dominates the isotope eff'ect.

IV. SUMMARY

By means of model calculations based on the SM-ART
approximation we have examined the dependence of the
isotope effect factor ~ on the mass M, of the migrating
atom, relative to the mass M of host atoms, over a wide
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range of M&/M. In the region M& -M relevant to self-

diffusion the isotope effect is dominated by an anharmon-
ic contribution caused by hard core collisions that take
place between the migrating atom and its neighbors dur-
ing the jump process. These scattering events reduce the
conversion factor for M, small, and therefore give a neg-
ative contribution to ~ in the region M

&
-M. On the oth-

er hand, for impurity diffusion with M~ very different
from M, the anharmonic contribution is expected to be
small. Then K Ko and the isotope effect must vary from
near unity for M&/M~O to near zero for M& /M~ oo,

as does ~o.
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APPENDIX

shows a typical series of trajectories with systematically
varying p where the fate of an apparently critical trajecto-
ry is changed progressively from one final state to the
other. The chaotic nature of the transition is more clear-
ly evident in Fig. 7(b). This shows the times at which the
fates of trajectories near p, become apparent, in a way
analogous to Fig. 6(b). Unlike the former example, how-
ever, no sharp transition occurs. Instead, trajectories
with opposite fates are interleaved over a substantial
range of p. Thus a transition to a chaotic regime of be-
havior appears to have taken place.

It is clear that the observed effects are connected with
the randomization of trajectories that oscillate in the po-
tential dip on top of the barrier. At sufficiently low tem-
peratures complete randomization is expected. Exactly
half the transitions over one peak to the dip will retrace
the initial step. Since this applies to all isotopes, the iso-
tope effect in the jump rate for T~O must be just the iso-
tope effect for either of the peaks separately. This value
is Ko for the particu1ar peak, as the anharmonic term
must become negligibly small at low temperatures.

At present we lack methods to calculate the isotope
effect in the intermediate regime above T=0 where ~T is

The SM-ART treatment is based on the presumed
smooth behavior of the Aow lines close to the center man-
ifold. Even for simple systems it cannot be expected that
the trajectories necessarily behave monotonically as a
function of some momentum coordinate, once they pass
around either CS+ or CS to lie in the region of oscillat-
ing motion. Rather, smooth behavior is guaranteed only
in the neighborhood of CM on jump trajectories that pass
through the harmonic potential close to the saddle point.

We have explored this point to a limited extent by
studying trajectories close to p =p, for some members of
an ensemble initially selected on SH, in accordance with
the discussion of Sec. II. Figure 6(a) shows the typical
behavior. Trajectories with p close to p, adhere accurate-
ly to the same path for a long-time interval before veering
over to one equilibrium site or the other. The two trajec-
tories shown differ by only -0.0003 of the mean thermal
momentum. The sharpness of the transition from one fu-
ture location to the other is further illustrated in Fig.
6(b). There, the time at which the future location be-
comes clearly apparent is shown for a continuum of tra-
jectories near p, . An unambiguous transition from one
fate to the alternative one is found to occur abruptly
within the computational resolution of 6p, —10 (p),
with (p ) the mean thermal momentum at the ternpera-
ture chosen for the calculation.

Our calculations for bcc metals in the case of a
double-peaked potential barrier reproduce the experimen-
tal high-temperature isotope eAect satisfactorily. Within
the precision of calculation we again observe that, at high
temperatures, a unique p, can be identified for transitions
over the double peak. At lower temperature, however,
when the thermal energy per particle becomes compara-
ble with the well depth between the peaks, we observe
that the fate of individual trajectories no longer depends
so simply on p in the neighborhood of p, . Indeed, a
unique value of p, can no longer be identified. Figure 7(a)

I (

-8 —6 -4 -2 0 2 4 6 8

time (psec)

12-
(b)

0 027 0.53 0, 80 I.07 I 53 1.60

FIG. 6. (a) At high temperature for the double-peaked poten-
tial, trajectories with slightly differing perpendicular momenta
of 0.13677 and 0.13673 depart to opposite fates after a long
common trajectory. The mean thermal value of p for this exam-
ple is p =0.15. (b) The times at whch the fate becomes evident
for a series of trajectories with differing perpendicular momen-
ta. The approximate positions of the well bottoms in (a) are
marked A and B. Dark and light boxes in (b) pertain to these
wells as eventual equilibrium sites.
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FIG. 7. (a) At low temperature ( —,
' of the dip) for the double-

peaked potential, the fates of trajectories vary unsystematically
with perpendicular momentum through the series a,P, y, 6 (a
apparently lies on CS+). (b) The times at which the fates be-
come apparent also vary erratically with pl and no unique p, is
evident. For this example the mean thermal momentum is
p=0.08. The approximate positions of the well bottoms are
marked A and B.

-0.5 4 6 8 IO I2

time (psec)

FIG. 8. Times at which transitions take place over the two
peaks of the double barrier (a) summed, as a fraction of the total
jumps, and (b) the fractional difference, showing how dephasing
damps the oscillation faster than the escape rate in (a).

comparable with the potential dip. The results of some
further investigation of this regime are displayed in Fig.
8. In order to examine the randomization process itself
we define quantities N+(t) and N (t). Given an ensem-
ble of systems that initially cross a particular peak at time
t=0, N+(t)dt and N (t)dt measure, respectively, the
numbers that pass over the second peak and the number
that pass back over the initial peak in the time interval
t ~ t +dt Figure 8.(a) shows how N(t) = [N+ ( t)
+N (t)]/N varies with time at T= ,'To, with To=0.—02

eV the depth of the dip. The time —6 ps taken for N(t)
to fall off to e of its initial amplitude measures the de-
cay rate of states out of the potential dip by transitions
over one or the other of the peaks. Also shown in Fig.
8(b) is the quantity

N+(t) N(t)—
P(t)=

N t
(A1)

The different states are started out in phase as they cross
the initial peak. Therefore P(t) gives some measure of
the way the ensemble dephases to spread across the phase
space available to state in the dip. It is apparent that the
dephasing is much faster that the escape rate, so that the
system has time to randomize and produce chaotic inter-
leaving of future transitions over the alternative peaks.
From our results at high temperature, we conjecture that
for T»TO the escape rate must exceed the dephasing
rate. Under those circumstances, the chaotic behavior
can no longer dominate the dynamics and the system
must act then as if it has a single center manifold.
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