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Damping of a crystal oscillator by an adsorbed monolayer
and its relation to interfacial viscosity
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The acoustic impedance of a monolayer adsorbed on the surface of a resonating quartz microbal-
ance produces a shift in both the frequency and vibrational amplitude of the oscillator. The relation
between acoustic impedance and fluctuations in film momentum is rigorously derived via the
fluctuation-dissipation theorem within the context of two-dimensional fluid mechanics. The calcu-
lations reveal that the film-substrate interfacial viscosity can be deduced from measurements of
acoustic impedance.

I. INTRODUCTION

Interfacial viscosity at a film-substrate boundary is a
subject which at present is highly undeveloped. Measure-
ments of this property would provide valuable informa-
tion relevant to a variety of topics, including fractal and
dendritic film growth, ' bulk fluid flow and slip near solid
boundaries, phase transitions in adsorbed films, and the
study of adsorbed monolayers on liquid surfaces. The
problem of how to measure interfacial viscosity in a
quantitative manner has remained long unsolved. In the
following we will show how this property can be deduced
from the impedance which an adsorbed film presents to
the surface electrodes of an oscillating quartz microbal-
ance.

It is well established that the frequency shift of a
quartz crystal microbalance provides a measure of the ad-
sorbed mass on its surface. For thin, rigidly adhering
films on transverse-shear-mode crystals, there is a linear
relation between the frequency shift 5f and the mass of
the adsorbed film mf,

$f mf

f M

f is the resonant frequency and M is the mass of the
quartz oscillator. The assumption that an adsorbed
monolayer film is rigidly attached to the motion of the
quartz crystal is an excellent one. Even so, a small degree
of "slippage" must in principle occur on account of the
oscillatory nature of the substrate. If the slippage can be
detected, the interfacial viscosity can be deduced. Previ-
ous experimental efforts to measure "surface viscosities"
of adsorbed monolayers have encountered major
difficulties involving the separation of the interfacial
viscosity, or "substrate drag" contribution, from the "in-
layer" two-dimensional shear viscosity. Such difficulties
do not arise for films adsorbed on transverse-shear-mode
oscillators since the adsorbed film itself does not undergo
shear.

A complete treatment of the problem requires a
theoretical computation of the dynamic acoustical im-
pedance that the film presents to the transverse shear

II. FLUID-DYNAMIC MODEL
OF TWO-DIMENSIONAL FILM FLOW

The equation of motion for two-dimensional film flow
can be written in terms of a gradient in the two-
dimensional spreading pressure (t and a viscous force Pvf
which is directly proportional to the surface velocity vf
of the adsorbed film,

mf ( d vf ldt ) = —Af grad/ Pvf . —

Dividing by the film area Af one obtains

p2(dvf ldt) = —grad/ —q~vf,

(2a)

(2b)

where gz is the interfacial viscosity and pz is the mass per
unit area of the adsorbed film.

Equation (2b) has widespread application to two-phase
fluid films and flows exhibiting fractal behavior. In such
cases it is commonly assumed that a balance exists be-
tween the viscous forces and pressure forces so that

grad/ = —gzvf . (3)

Equation (3) is known as Darcy's law, describing the con-
stant velocity flows observed at the boundaries separating
two adsorbed film phases. '

Equation (2b) is also applicable to the case which we

mode of the oscillator. Such calculations have been car-
ried out previously for three-dimensional fluids and
thick adsorbed films. In these calculations the im-
pedance was derived from the Navier-Stokes relation as-
suming no slippage occurs at the substrate surface. Such
an approach is inadequate for adsorbed monolayers
where the fluid mechanics require a two-dimensional
treatment.

In the following we wi11 employ two-dimensional film
fluid mechanics to explore the acoustic impedance
presented by an adsorbed film to an oscillating quartz mi-
crobalance. We will show how the interfacial viscosity
can be deduced from measurements of acoustic im-
pedance and relate these results to characteristic decay
times for film momentum fluctuations, as presented in a
recent publication.
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P2
92 (5)

where the "slip time" ~ is a relaxation time associated
with film-momentum fluctuations. It will be instructional
to first describe the shear impedance which a bulk fluid
presents to a resonating surface.

consider here, a single-phase adsorbed film. Neglecting
boundary effects, Eq. (2b) implies

Jd A p2(d vf /dt) = —fd A i)zvf . (4)

In the following sections we will consider how g2 can be
probed via the acoustic impedance which the film

presents to a resonating quartz oscillator. Our central re-
sult will be

The mechanical reactance

X = (tUM —1/AC ) (12)

coM

R
NL

R
(13)

It is within this framework that shear oscillations of a
planar surface in contact with a viscous fluid (gas or
liquid) are generally studied. " For a plane oscillating in
the x direction with velocity uccos(cut), the motion of the
surrounding fluid obeys the classical Navier-Stokes rela-
tion

is associated with the inertia of the oscillator. The
"mechanical Q factor" is analogous to the electrical Q
factor

III. ACOUSTIC IMPEDANCE
OF A THREE-DIMENSIONAL FLUID

Bu BU
3 dt )3 (14)

Under steady conditions the velocity at a given time wi11

be

Fv=
R i (cUM ——1/coC )

(7)

and the velocity amplitude is given by

Fo

[R +(toM —1/coC ) j' (8)

Equations (6)—(8) are identical in form with those
which represent an electric circuit composed of a resis-
tance R, a capacitance C, and an inductance L in series
with an alternating emf V. The ratio

Z =F/u (9)

is consequently termed the "mechanical impedance,
" and

may be written as

Z =R —iX

The acoustic impedance of a three-dimensional viscous
fluid to shear-mode oscillations of a planar surface has re-
ceived extensive treatment within the realm of ultrason-
ics. In this section we will summarize the major points in
order to draw later analogy with the two-dimensional
case.

Oscillations of a planar surface ca be related to the os-
cillations of a mass M suspended from some fixed sup-
port by a spring having compliance C and subjected to
some light damping force R v, which is proportional to
the velocity u. '0 If a periodic force F =Focos(tot) is ap-
plied to the mass, the latter experiences forced oscilla-
tions of that frequency and the equation of motion is

Focos(o t ) =M +R +d x dx x
m

d 2 m

Z3 R=i iX3 =—(1—i)Qn fp3i)i, (15)

where f is the frequency of oscillation. The average ener-

gy dissipated by the fiuid per unit time is

E= &voAR3 (16)

Equation (15) is inadequate to describe the actual im-
pedance of a gas at low pressure. After gas molecules
collide with the oscillating surface, they may rebound
with a nonequilibrium component of translational
momentum P„'. Such molecules can only relax to the
equilibrium state by collision with other gas molecules,
and this process takes time. If the time taken is com-
mensurate with the period of oscillation, then the gas ex-
hibits a finite unrelaxed shear modulus and behaves as a
viscoelastic fluid. This situation is treated phenomeno-
logically by replacing the viscosity g3 with a complex
quantity g3 defined by

n3 =93
1 l COTr

(17)

where ~, is the time for the excess particle momentum to
relax to 1/e of its initial equilibrium value. Substitution
of Eq. (17) into the equation of motion for the fluid re-
sults in modified expressions for the acoustic impedance
of the viscoelastic gas,

where p3 is the three-dimensional mass density of the
fluid and g3 is the bulk fluid viscosity. The mechanical
impedance of the fluid to shear oscillations is generally
expressed as Z =Z3 A, where Zi is the mechanical im-

pedance per unit area, or "acoustical shear impedance,
"

and A is the surface area in contact with the fluid. The
solution to Eq. (4) yields the classical shear impedance of
the fiuid,

It can be shown that the "mechanical resistance" R is
proportional to average energy dissipation per unit time

CO'Tr

R3 ="(/ttf p, rt, .
1+(co~„)

1 +1
(to~„)

' 1/2

R ~E. (18)
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Ct)'T„

X3 =Qrrfp3rt3. 1+(cur„)

1/2 1/2

(19)

We take this opportunity to derive the results in com-
pletely quantum-mechanical form.

B. Quantum-mechanical derivation

Equations (18) and (19), derived by Stockbridge, ' are
essentially identical to those derived earlier by Herzfeld
and Litovitz' for liquids with a complex shear modulus.

It is useful to take the ratio R3 /X3 which may be
thought of as a "dissipation per unit mass. " For small
co~„&&1 this ratio reduces to

R'
3 —1+$7 pX3

(20)

The term co~„may therefore be interpreted as the "ex-
cess dissipation per unit mass" arising on account of
momentum-relaxation effects.

Consider once more a film which is adsorbed on a pla-
nar substrate which is oscillating back and forth in the x
direction with velocity u, =uocos(cot). What will be (to
lowest-order perturbation theory) the rate at which the
"shaking" heats up the film? This heating rate is equal in
magnitude to E, the rate at which the film dissipates ener-
gy. The quantum-mechanical expression for the heating
rate yields a rigorous expression for the real part of the
acoustic impedance. A dispersion relation can then be
employed to obtain both the resistive and reactive parts
of the full impedance.

Let 0 represent the Hamiltonian for the film when the
substrate is not shaking back and forth. The film is then
described by the quantum states

IV. ACOUSTIC IMPEDANCE OF AN ADSORBED FILM Hln ) =E„ln & . (23)

A. General considerations

We now consider the case of a film adsorbed on a pla-
nar surface oscillating in the x direction with velocity
vocos(cot). The classical shear impedance presented by
the film is denoted

Z2 —R 2
—

&X2 —0—
I, coP2 . (21)

That R2 =0 implies the film is rigidly attached to the sur-
face and dissipates no energy. The reactive term
X2 =cup2 is obtained in analogy with Eq. (12), remember-
ing that Z =Z2 A.

The case of a rigidly attached film is in fact an approxi-
mation to the true physical situation. Consider a film ad-
sorbed on a substrate which is moving at constant veloci-
ty. If the substrate suddenly stops, the velocity (and
therefore momentum) of the film will fall exponentially to
zero. The time constant ~ for this exponential decay will
depend on the friction between the film and the substrate,
and may be thought of as a characteristic "slip time, " i.e.,
a characteristic length of time that the film slips before
stopping. Equation (21) will therefore be an adequate ap-
proximation only if the period of oscillation remains
much longer than ~. When ~ becomes comparable to the
period of oscillation, film slippage will start to become
observable. To convince oneself that this is indeed the
case, one need only think of a tablecloth being snapped
out from underneath a table setting. We write, in analo-
gy with Eqn. (20), an expression which reflects momen-
tum relaxation effects, yet yields the classical result for
~=0,

When the substrate moves at velocity u„ the film Hamil-
tonian reads

A=H v„P„. — (24)

To lowest-order perturbation theory, Eq. (24) implies
transitions at a rate

W+(i~f)=,' I&flP. t &I'&(~—«f —E;)/&),

p, =exp(F E, )/k& T, —

there will be an averaged heating rate in the film of

E= gp; g(Ef E; )[W+(i~f)—W(i~f)—j .
i f

Introducing the spectral functions

S+(~)= & &p;1&f IP. Ii & I'fi(~ —(Ef—E, )/&),
f

(~)= g g p; I(f I p, lt & I'o(ru+(Ef E; )/&), —
i f

Eqs. (28)—(30) read as

(27)

(28)

(29)

(30)

(25)

which increase the film energy, and transitions at a rate

W (i~f)= l(flP li)l 6(rv+(Ef E;/fi), —
2A

(26)

which decrease the film energy. Because the film is in an
initial state with probability

R*
2

2

(22) E=
2

Uo
cv[S+(co)—S (cv)] . (31)

In the following we will rigorously derive this rather
phenomenological result which relates film momentum
fluctuations ~ to film dissipation R2. The fluctuation-
dissipation theorem' has not, to our knowledge, been ap-
plied to acoustic impedance in the standard literature.

Equations (27), (29), and (30) imply that the transition
rates for film cooling are smaller than the transition rates
for film heating by precisely the Boltzman factor

(32)
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Introducing the symmetric spectral function

S(co)= —,'[S+(co)+S (co)],

Eqs. (31)—(33) imply an average heating rate of

2
'7TU p Ado

AS(cu)tanh

From the viewpoint of acoustic resistance

R z (co) =ReZz (co+i0 ),

(33)

(34)

(35)

R f (co)=p2co f dt cos(cot)G(t) . (45)

Both the reactive and resistive components of the
acoustic impedance may be obtained by expressing the
impedance in terms of a complex frequency g, and then
taking the limit of real frequency co,

which is the rigorously exact microscopic expression for
acoustic resistance of an adsorbed film. In the classical
limit Ace«kBT, it is suSciently accurate to write Eq.
(44) in the form

the heating rate for velocity amplitude Uo of the sub-
strate, and adsorbed film area A is given by Eq. (16),

E=—,'AR2 (co)vo . (36)

By comparing the macroscopic Eq. (36) for the heating
rate to the microscopic Eq. (34), one finds the Callen-
Welton-Kuba Auctuation-dissipation theorem for acous-
tic resistance in completely quantum-mechanical form,

AR& (co)= cotanh Sco) .
2" Ado

(37)

To relate S(co) to momentum fluctuations in the film

when the substrate is not oscillating, one may proceed in
the following manner. From Eq. (29),

f + oo

S+(co)e ' 'dcv

Z2 (g)=Z2 (a)+i0+)=R2 (co) ix—
2 (co) . (46)

The complete acoustic impedance obeys the Kubo for-
mula

Z2 (g) =(igpz) f e'~'dG (t), (47)

p, dGD(t) /dr = ri, GD(r),— (49)

and is determined by the acoustic resistance via the
dispersion relation

Rq (co)
Z~ (g)= i (2(A—)f .

2
dc@ .(~' —g')

The correlation function G(t) is directly proportional
to the excess film momentum and therefore is directly
proportional to jdA vf. Employing Eq. (4) and the nor-

malization G (0)= 1, we may write

f S+(co)e ' 'den

or equivalently an exponential decay
38

G (r)=e (50)

f S (co)e ' 'dc@=(P„(t)P„(0)) . (40)

= g g p; (i IP„(t) If ) (flP„(0)li ), (39)
i f

with the correlation time r=p2/ri2, thus confirming Eq.
(5). Substitution of Eq. (50) into Eq. (47) allows the
acoustic impedance to be expressed in terms of film
momentum fluctuations,

Similarly,

f S (co)e '"'des= (P, (0)P„(t)) . (41)

lP2COZ~(co+i0+}=
1 1 CO'T

(51)

Equations (33), (37), (40), and (41) yield the Kubo formula
for acoustic resistance in completely quantum-
mechanical form,

AR z (co)= tanh
1 %co

2A B

The resistive and reactive components of Z2 are

p2co v

1+Ci) T
(52)

(53)

X co f dt cos(cot)(P„(0)P„(t}

+P„(r)P„(0)) . (42)

The ratio R2 /X2 =co~ confirms our phenomenological
result, Eq. (22}.

Defining

ksTAp, G(t)= —,'(P„( )0P(t) P+, (t}P„(0)) (43)

as the quantum-mechanical correlation function of
momentum Auctuations for a film with mass density p2,
Eq. (42) can be written as

T

2p i6co
R ~ (co ) =kB T co tanh dt cos(cot)G (r),

2kB T o
L

(44)

V. DAMPING OF A QUARTZ MICROBALANCE

In this section we discuss how the acoustic impedance
is measured via the frequency and amplitude shifts of a
quartz crystal microbalance. The resistive and reactive
components of the acoustic impedance of an adsorbed
film [Eqs. (52) and (53)] are plotted in Fig. 1 as functions
of ~~. The upper diagram shows X2 /X2=X2 /p2~, a
ratio indicative of the mass sensitivity of the oscillator.
Essentially all of the mass of the film is detected for
~~ & 0. 1, where X2 /X2 is quite close to unity. This is re-
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1 2R
5

Q NPq tq

X*
CO=

Pqtq

(54a)

(54b)

where p and t are the density of quartz and the thick-
ness of the quartz crystal, respectively. For film or fluid
exposure on both sides,

1 2R'
5 —=2

Q &pq rq
(55a)

I I I III I I I I I III I I I I I III I I I I I III I I I I I III I I I IIIII I I

ferred to as the "motionally narrowed regime. " As co~ in-

creases beyond 0.1, the mass sensitivity drops precipi-
tously. The oscillator is no longer useful as a microbal-
ance in this regime, as the film is no longer able to track
the motion of the substrate.

The dissipative term R2 /X2 is plotted in the lower

portion of Fig. 1. This term is nearly equal to co~ in the
motionally narrowed regime and reaches a maximum at
co~=1. As co~ further increases the dissipation decreases.
This latter result indicates that the film is no longer shak-
ing and, as a result, does not dissipate energy. In order to
measure both mass adsorption and dissipation effects,
data must therefore be recorded in the motionally nar-
rowed regime, co~ & 0. 1.

Stockbridge has solved for the shifts in frequency and

Q of a quartz crystal microbalance in terms of the acous-
tic impedance Z* presented to an oscillating planar sur-
face. For film adsorption on, or fluid exposure to one side

only,

X5' —2
Pq tq

Dividing Eq. (55a) by Eq. (55b),

(55b}

5(1/Q ) 2R '
5~ ~p, t,

X*

Pqtq

2R* =2q. , (56a)
cd

1
5 —=2r5(o . (56b)

'fif IrIf
f Mq

P2

Pqtq
(57)

Equation (57) corresponds to film adsorption on one side
only. When adsorption occurs on both sides of the crys-
tal, the term on the far right must be multiplied by a fac-
tor of 2.

As a final note, we describe a situation which is typical
for these types of measurements. A quarts crystal whose
resonant frequency is 8 MHz and which is driven by a
conventional Pierce oscillator circuit' is typically stable
to +0. 1 Hz for a period of several hours to several days.
Changes in dissipation 5(1/Q) ~ 1 X 10 are easily
detectable. A monolayer of krypton (pz=105 ng/cm )

adsorbed on both sides of the crystal will produce a fre-
quency shift of 30 Hz (5co=188.4 rad/sec). We employ
Eq. (56b) to predict the minimum slip time which will be
observable, '

Equation (56b) is the primary result of our earlier
work. Simultaneous measurement of quality factor and
frequency shift will therefore allow determination of v.
The interfacial viscosity g2 is obtained from Eq. (5),
where p2 is the mass per unit area of the films as deter-
mined by Eq. (1),

1.00

0.75
&(1/Q);„

min
1X10

6
2(188.4 sec ')

0.50

0.25

0.00

10-1
Cg

10

(58)

Our work has in fact been inspired by experimental ob-
servations of the damping of quartz oscillators by physi
sorbed monolayers. Krypton monolayers adsorbed on
gold at 77 K exhibit slip times on the order of 1 X 10
sec, the exact time depending on the manner in which the
substrate is prepared. Equation (5) allows us to deduce
an interfacial viscosity near 100 g/scm, or "surface
poise" per unit area. The complete experimental details
will be published in a future work.
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