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The absorption spectra of transition-metal-doped alkali halide systems are distinguished by
characteristic features identified with transitions between electron states localized on the impurity
ion. The theoretical description of these features depends on a realistic treatment of the host crystal
electronic structure, as well as on the treatment of the impurity ion. The success of recent calcula-
tions using the self-interaction-corrected local-spin-density (SIC-LSD) form of density-functional
theory in determining the band structure of alkali halide crystals makes SIC-LSD a good candidate
for use in the impurity problem. In this work SIC-LSD is applied to the NaCl:Cu+ impurity system,
using an embedded-cluster technique explicitly including seven near-neighbor shells of the host
crystal ions around the Cu+ site, allowing a full characterization of the low-lying impurity excited
states. The calculated values for the fundamental 3d~4s and 3d~4p impurity-ion transitions are
in close agreement with corresponding features of the NaC1:Cu+ absorption spectrum. %'e compare
and contrast our SIC-LSD results with those of other recent calculations for NaC1:Cu .

I. INTRODUCTION

In the past 20 or so years, local-density-functional
theories' have become the preeminent tools for the
study of large electronic systems. The local-spin-density
approximation (LSD) and the Slater statistical exchange
approximation (Xa) have, in particular, been widely
used in condensed-matter calculations. The utility of
these methods stems from their treatment of the electron-
ic exchange interaction. In Hartree-Fock (HF) theory,
treating the exchange interaction exactly results in a
gross complication of the single-electron Hamiltonians
and the associated self-consistent-field (SCF) equations.
The SCF equations are so complicated by exchange terms
that HF is very difficult to use without approximation in
condensed matter applications.

The local-density theories replace the complicated HF
exchange energy with a simpler expression, written as a
local functional of the electronic charge density. In the
LSD approximation, the precise form of this functional is
based on the calculated exchange energy of the uniform
electron gas. While use of the approximate exchange en-
ergy makes the LSD theory much more convenient to use
than HF theory, various problems arise in its application
to physical systems. In atomic calculations, for example,
atomic total energies and the stability of negative ions are
poorly predicted by LSD. In condensed-matter work, it
is well known that LSD-based calculations of band gaps
in insulators underestimate the experimental band gaps
by 30—50 %. A more fundamental problem of the
theory concerns the physical interpretation of the LSD
eigenvalues, i.e., the eigenvalues of the LSD SCF equa-
tions. While the eigenvalues of the HF equations may be
formally compared to electron ionization energies via
Koopmans theorem, no such interpretation is warranted
in LSD.

A partial solution to problems arising in LSD is offered
by Xe. In Xa, an adjustable parameter, a, is used to

scale the approximate local-density exchange energy.
The scaling is done to bring some aspect of the calculated
electronic structure into agreement with experiment, or
with corresponding HF results. For atoms it is typically
the electronic total energy, E, , for which such agree-
ment is sought. Calculations have been done to optimize
alpha for a large number of atoms to provide agreement
between E, and the HF total energy, E, ". Calculated
ionic crystal band gaps may also be adjusted over a wide
range by varying o.,

' allowing one to tune a for a given
system to match the calculated band gap with experi-
ment. Although it is possible to numerically remedy
selected problems of LSD by empirically adjusting cz, a
more fundamental approach to improving LSD is never-
theless desirable.

It has been recognized '" for some time that the ex-
change approximation used in LSD introduces residual
electronic self-interaction energy into the LSD total-
energy expression, E," . The HF total energy cus-
tomarily includes canceling self-interaction terms in the
Coulomb and exchange parts, to give the Coulomb ener-

gy and exchange energy separately the full system sym-
metry; for LSD, however, the cancellation of self-
interaction terms is incomplete, since LSD adopts the ex-
act HF Coulomb energy, including the self-interaction
terms, while using only an approximate form of the HF
exchange energy. The self-interaction correction (SIC)
was introduced into LSD to eliminate the residual elec-
tronic self-interaction. The SIC-LSD total-energy func-
tional is derived from E," by removing exactly the self-
Coulomb energy terms, and approximately the self-
exchange energy. SCF equations based on the SIC-LSD
total-energy functional, E,', are self-interaction
free, and only slightly more difficult to solve than the cor-
responding LSD SCF equations. Use of SIC-LSD has
proven to effectively address many of the problems asso-
ciated with LSD. The theory has been successful, for ex-
ample, in improving the LSD values for atomic total en-
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ergies, and it correctly predicts the stability of first- and
second-row negative ions. Atomic calculations also
show that the SIC-LSD eigenvalues are remarkably good
approximations of electron ionization energies, ' giving
the eigenvalues a compelling physical interpretation simi-
lar to that in HF. And in calculations on solids, SIC-
LSD yields much improved values for insulator band
gaps than are obtained using uncorrected LSD. '

Transition-metal impurities in ionic crystals have been
of interest as prototype impurity systems for many years.
Experimentalists have long probed the optical properties
of impurity ions in a variety of host crystals. ' ' Impuri-
ty crystal absorption spectra are often characterized by
structures due to impurity ion transitions appearing in
the otherwise featureless region of the host-crystal spec-
trum corresponding to the host-crystal band gap. Early
theoretical work seeking to understand these impurity
features included crystal-field' and semiempirical
molecular-orbital' calculations. In recent years, local-
density theories have been applied to these systems to ob-
tain a first-principles description of the impurity electron-
ic structure. The first local-density calculations utilized
Xa: a multiple-scattering Xa (MS-Xa) technique was
used for Cu+ and Ag+ impurities in NaC1 and later
LiCl ' a separate calculation of the electronic proper-
ties of LiC1:Cu+ was made by means of the method of
linear combinations of atomic orbitals (LCAO) and a
discrete-variation Xa (DV-Xa) method was used for a
variety of Cu+ impurity systems. These calculations
differ in many respects, for instance, in their treatment of
the host-crystal contribution to the impurity Hamiltoni-
an. Each requires, however, the use of a nonuniform ex-
change parameter, which must be adjusted to meet the
needs of both the host-crystal atoms and the impurity
ion. HF calculations for Cu+ in NaF and NaC1 appeared
very recently in the literature. ' Because of the com-
plexity of the exact HF equations, these calculations use a
simplified model for the host crystal, and a
pseudopotential-like technique to eliminate the host-
crystal core states. Finally, the SIC-LSD method has
been applied to LiC1:Cu+, in an all-electron LCAO
framework. The embedded-cluster approach used in the
SIC-LSD work explicitly includes the entire region of the
host crystal affected by the introduction of the impurity
ion into the host lattice. The results of this calculation
for impurity ion transition energies were in very good
agreement with experiments, without the use of the
empirically adjusted a.

In this paper we extend the use of SIC-LSD to the
NaC1:Cu+ impurity system. We begin in the next section
with an overview of the SIC-LSD theory, exhibiting the
SIC-LSD SCF equations, and discussing their general
solution. We also discuss the calculation of transition en-
ergies in SIC-LSD, and outline a useful computational
technique which we later employ in the impurity calcula-
tion. We illustrate the use of SIC-LSD by describing its
application to the NaCl pure crystal, the free Cu+ ion,
and, finally, the NaC1:Cu+ system. The latter calculation
adopts the embedded-cluster approach used by Heaton et
al. for LiC1:Cu+. We brieAy highlight the main points
of this method, and then take up the particular details of

At the heart of the SIC-LSD theory is the SIC-LSD
total-energy functional, E, ' " . Let us consider an
¹lectron system which is described by the electron den-
sity p, spin density p (a = 1' or $), and orbital densities

p, . The LSD total energy is

E, = T+ U,„,+ —,
' f dr dr'p(r)p(r') ~r —r'~

' 1/3

y fdr 4/3

where T and U,„, are the kinetic energy and external in-
teraction energy (due to the nuclear attraction), respec-
tively, the third term is the Coulomb energy of the X
electrons, and the last term is the exchange-correlation
energy, written in the Kohn-Sham exchange-only form.
The essence of the SIC is to add a term, U ', to E," in
order to remove the exact self-Coulomb interaction, and
an approximate form of the self-exchange, i.e.,

ESIC—LSD ELSD+ USIC

U ' = —g —,
' fdrdr'p; (r)p; (r')~r —r'~

1/3
3 6
4 m fdrp

Here,

(4)

where P, is a normalized single-electron orbital. We use
the Kohn-Sham exchange-only functional for the
exchange-correlation energy to illustrate the SIC-LSD
theory because of its simple form. Additional correlation
functionals may be appended to the Kohn-Sham ex-
change to account for the effects of electron correlation.
The inclusion of correlation terms is straightforward, and
will not be discussed further here.

SCF equations for the electronic orbitals are obtained
in the standard way by seeking to minimize E, '

through varying the P's. Introducing Lagrange multi-
pliers (LM's), A. ,", to preserve the orthonormality of the
P's, we arrive at self-consistent, single-particle
Schrodinger-like equations:

~sIc—Lsoy (HLsD+ VsIc )y

its application to NaC1:Cu
In Sec. III we present the results of our NaC1:Cu+ cal-

culation. Discussion of the results follows, where, in ad-
dition to comparing with experimental observations, we
compare and contrast our results with those of other
first-principles calculations on NaCl:Cu+. We end the
paper with our conclusions regarding the SIC-LSD calcu-
lation, and with our suggestions for future work.

II. SIC-LSD THEORY

A. General review
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HLsD = —
—,
'V' + V„,(r)+ f dr'p(r')~r —r'~

1 1/3

[p (r}]6 ]/3

V,
' = —f dr'p; (r')~r —r'~

(6)

1/3
6+ [ (r)]1j3

where V,„, is the "external" potential due to the nuclei.
The effective Hamiltonian for the orbital P; is seen to
consist of the usual LSD part, H", plus a "SIC poten-
tial" which, as is evident from Eq. (7), is simply the nega-
tive of the Coulomb and exchange self-interaction poten-
tials of the orbital density p; .

A distinguishing feature of SIC-LSD theory is the or-
bital dependence of the total-energy functional,
E, ' . This is in contrast to LSD, where E," de-

pends only on the total spin densities, p, and not on the
individual p; . This orbital dependence is inherited by
the SIC-LSD SCF equations. More concretely, while

E, is the same for any set of orthonormal orbitals giv-

ing rise to the same spin densities p, U ' takes on
different values depending on the particular choice of or-
bitals. Because of the self-Coulomb energy terms, U ' is
generally more negative for a set of localized P's than for
a delocalized set. Accordingly, we refer to the set of or-
bitals corresponding to mi i um E, ' " as the local
orbitals (LO's). Formal conditions may be generated for
the LO's by using the extremum requirement on
E, ' as first outlined by Pederson and Lin. These
conditions are called the localization equations (LE's),
and are written

where

P, g(r)=g, (r) fdr'P;(r')g(r')

and

(14)

It is possible to choose a transformation I that diago-
nalizes A,

&
in Eq. (10). The resulting g's are the canoni-

cal orbitals. The orbital eigenvalue for a given P is the
removal energy per electron of an infinitesimal amount of
orbital charge from that state. It has been shown, ' '

however, that the canonical orbital eigenvalue also well

approximates the ionization energy of the corresponding
electron. This is an important feature of SIC-LSD not
true for uncorrected LSD. In this paper, unless other-
wise stated, P and P denote the LO's and canonical orbit-
als respectively, or some approximation to them. To
solve for 1(, it is necessary to have the LO's in order to
construct b, v ' from Eq. (11). Calculating the exact
LO's requires a complicated double-iteration procedure;
however, since 6V ' is essentially a correction term, it is
possible to obtain accurate g using only approximate
LO's to construct 5 V ' .

The orbital-dependent form of the effective Hamiltoni-
ans complicates the solution of the SIC-LSD SCF equa-
tions [Eq. (10)]. Of particular concern is maintaining the
orthogonality of the g's. Many techniques are available
to solve such a set of equations, and we elect to transform
the set into an eigenvalue equation for a single operator,
using a projection-operator technique similar to that
found in open-shell Hartree-Fock theory. We write this
operator, which we refer to as the unified Hamiltonian, '

as

N

H„= g (P;H;P;+OH;P;+P;H;0),

N
O=l —g P (15)

If we seek to minimize E, '
by varying the g's and

M instead of the P's, there results

(H" +hv ' )P = gAgQp (10)

where

g Vstcy y M» Vstcy

and the additional equations

(Q ~QVSIc kvs~c~f ) 0 . (12)

The b, V ' are the SIC potentials for the g's, to be dis-
tinguished from the V ', which apply to the LO's.
Equations (12) are a transformed version of the LE's,
satisfied because M is unitary.

These equations, which must be satisfied by the exact
LO's, have no counterpart in the LSD theory.

The SIC-LSD SCF equations may be expressed in
terms of any set of orbitals

hatt
connected to the LO by a

unitary transformation M,

=+M, Q

It is easy to show that the eigenvalue equation for the
unified Hamiltonian,

(16)

is equivalent to Eq. (10) at self-consistency, with the e,
identified with the diagonal LM, A, ,';.

The use of SIC-LSD for calculating transition energies
has been discussed in the literature. ' ' For an N-
electron system, consider a one-electron transition from
orbital a to b, and write the initial and final electron
configurations symbolically as (N —1)(a ) and (N —1)(b ),
respectively. To allow for the orbital relaxation of the
N —1 passive electrons, the transition energy is taken as
the total-energy difference between the two
configurations. Using a generalization of the concept of
fractional orbital occupancy, it is possible to express
this total-energy difference as an integral of the relevant
orbital energies, c, and c.&, along with some correction
terms, over co, an occupation parameter specifying the
relative occupation of the ground- and excited-state
configurations. This approach avoids directly taking the
difference in total energies, which are typically 2 or more
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orders of magnitude larger than the transition energies.
This method has been used to calculate transition ener-
gies for the first- and second-row free atoms, and the
3d~4s and 3d ~4p transition energies for LiCl:Cu+.
In addition, an approximate, but much simpler method
has been developed' for calculating transition energies
(ab) between localized states. In this method, called
the ground-state unoccupied-orbital (GSUO) approxima-
tion, one uses the SIC-LSD Hamiltonian for orbital a (the
lower state) to calculate the energies (i.e., the eigenvalues
of the SIC-LSD SCF equations) of both the occupied or-
bital a and the unoccupied orbital b. Then the transition
energy is, to a good approximation, given by the simple
difference

gsIc —LsD[(~ 1 )b ] gsIc —LsD[(~ 1 )u ]
—e

(17)

where

and

( P ~HSIC —LSD~/ )

—( q HSIC —
LSD~q )

(18)

(19)

The GSUO scheme has been tested for free atoms and
LiC1:Cu+, and gives results close to those obtained by the
more rigorous procedure involving the integral over the
fractional occupacy, and in close agreement with experi-
ment. The unified Hamiltonian in Eq. (13) applies only to
the occupied orbitals. We include the unoccupied excited
orbitals by appending an additional term to H„

N

H„= Q (P;H, P, +OH; P; +P,H; 0 )+OH, „,O, (20)

where the summation covers the E occupied orbitals, and
H,„, is the SIC-LSD Harniltonian used for the excited or-
bital, according to the GSUO approximation, the Hamil-
tonian of the orbital from which the transition originates.

As mentioned above and discussed elsewhere in the
literature, ' ' while the SIC-LSD canonical orbital ei-
genvalue formally corresponds to the removal energy per
unit charge of an infinitesimal amount of orbital charge,
in practice it is found to be a good approximation to the
removal energy of a whole electron. Because of this con-
nection between orbital eigenvalues and ionization ener-
gies, it is easy to see that transition energies should be
well approximated by the difference between the SIC-
LSD orbital eigenvalues as in the GSUO approximation.
The GSUO method is adopted in the present work, al-
though we use the more rigorous procedure to check our
results (see Sec. III F below).

To study NaC1:Cu+ we start with the electronic struc-
tures of the pure NaC1 crystal and of the free Cu+ ion.
The change in the pure-crystal Hamiltonian, Hpc, due to
replacing a Na+ ion by Cu+ is introduced and the solu-
tion for the impurity crystal is obtained by the LCAO
method. The general formalism for this procedure has
been presented previously. We will review briefly in the
following sections the key points, and those that are

relevant to the specific application of the method to
NaCl:Cu+.

B. Electronic structure of the perfect NaCl crystal

Our technique for performing LCAO SIC-LSD calcu-
lations for pure alkali halide crystals has been presented
in the literature. ""' The canonical orbitals for the pure
NaC1 crystal are the standard Bloch functions. Adding
the SIC to the LSD calculation requires identifying a set
of LO's in order to obtain hV ' in Eqs. (10) and (11).
The Wannier functions (WF's), which satisfy Eq. (8), are
such a set. Because 5 V ' is a relatively small part of the
Hamiltonian, high accuracy in the WF s is not needed.
Approximate and computationally simple versions of the
WF's have been given in a previous work. '

For a simple band, Itr is labeled by the band index n and
the crystal momentum k. According to Eq. (11), hV '

depends on both n and k. For a narrow band a very good
approximation is to assign to the entire band a single po-
tential, AV„', which is the average of the individual
6 V„'k over k. In the case of a composite band there is a
third index labeling the subband, and an averaging over
this index, as well as k, is made to obtain AV„' . This
averaging process allows us to speak of a single 6 V ' for
each band with virtually no loss of accuracy when ap-
plied to alkali halides. Heaton and Lin use this averag-
ing to derive a computationally convenient, density-
weighted form for the Q VsIc For a Na+ band,

b, Vs' (r)= g V„' (r —R„)g„(r—R„)/p„(r), (21)

where the lattice sum covers all the cation sites in the
crystal. V„(r—R„) is the SIC potential based on the
local-orbital density, I)„(r—R, ), centered on the site R„.
This g„ is an approximation of the subband-averaged
Wannier density associated with the lattice site, and p„ is
the total band charge density, the lattice sum of the g„.
The analogous expression for a Cl band b, V ' sums
over the anion sites in the crystal. We use the density-
weighted form for b, V ' [Eq. (21)] in this work. The
core states are so localized that the LO's for a core band
are identical to the corresponding atomic orbitals, and
AV ' for a core band within a given unit cell is obtained
from V ' in Eq. (7) using the appropriate atomic core
function. This can readily be seen from Eq. (21) above
for 6 V ', given that core densities centered on different
lattice sites have virtually no overlap. The effect of SIC
on a core band thus amounts to a rigid downward shift in
energy. Even for the valence band (VB), the charge over-
lap between the anions in NaC1 is so small that this ap-
proxirnate technique of equating AV ' and V ' within a
given unit cell, although not used in this calculation, is
very accurate, ' providing a simple estimation for the VB
g VsIc

The experimental band gap for NaC1 is 8.6 eV. Using
LSD alone yields a band gap for NaC1 of 4.7 eV. Our
SIC-LSD result is 9.6 eV, demonstrating that the in-
clusion of SIC indeed addresses the LSD band-gap prob-
lern. In this calculation the Kohn-Sham exchange-only
functional was used. There is evidence that including
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where R covers all the cation sites and t is a vector from
a cation site to a nearest-neighbor anion site. Conform-
ing to the ionic character of NaC1, the amount of charge
enclosed by p(Na+~r) and p(C1 ~r) is constrained to 10
and 18 electrons, respectively.

C. Electronic structure of the free Cu+ ion

The SIC-LSD calculation for the free Cu+ ion is
straightforward. One advantage of the GSUO approxi-
mation is that we obtain the 3d, 4s, and 4p orbital ener-
gies with only one SCF calculation. The calculated
3d ~4s and 3d ~4p transition energies are, respectively,
3.21 and 9.21 eV, which compare well with the experi-
mental values of 3.03 and 8.81 eV. These results are
compiled in Table I for later reference.

D. Electronic structure of NaCl:Cu+
1

Our first step is to construct the LSD Hamiltonian for
the impurity crystal system. We reference the impurity
crystal electron density to that of the pure crystal as

Pic Ppc+ &P (23)

where the subscripts IC and PC refer to the impurity-
and pure-crystal systems, respectively. The correspond-
ing increment to the LSD potential consists of a nuclear
term arising from the difference in nuclear charge, bZ,
between Cu and Na, a Coulomb term, and an exchange
term:

0LSD H LSD + fi VLSDIc pc 7

6V = — +f dr'6p(r')~r —r'~sD AZ

(24)

1/3

[[P1C«)]'"—[PPC«)]'"I . (25)

Since the Cu+ ion is known to be an on-site substitution
in the NaC1 lattice, ' the above expressions reAect our
choice of the impurity site as the origin of coordinates for
the calculation. In this paper we neglect the possible lat-
tice relaxation of the ions neighboring the impurity. This

correlation in the calculation brings the SIC-LSD result
closer to the experimental value. ' We do not investigate
here the use of correlated functionals in the pure-crystal
calculation; however, the Kohn-Sham functional gives
very good results in calculating atomic transitions, ' '

and we expect a comparable performance for transitions
between the localized impurity states in NaC1:Cu+. The
self-consistent NaC1 charge density, PN, c~, which serves
as a reference density in the impurity calculation, is little
changed by using correlation in the pure-crystal calcula-
tion.

For use in the NaC1:Cu+ calculation, we decompose by
curve-fitting pN, c& into a lattice summation of localized
densities around the cation sites, p(Na+~r), and around
the anion sites, p(C1 ~r):

pN, c1(r)= g [p(Na ~r
—R„)+p(C1 ~r —R„—t)], (22)

point will be discussed in Sec. III E. An initial approxi-
mation to fip is the difference between the electron densi-
ty of the free Cu+ ion and p(Na+ ~r) defined in Eq. (22).
We calculate 5V from Eq. (25) on a mesh of points

2
around the impurity site and fit it to (b,Z—lr )e r plus— r2a number of e ' Gaussians. Since our basis functions
are also in Gaussian form (see below), the matrix ele-
ments of 6 V" reduce to multicenter Gaussian integrals,
which can be evaluated analytically. Hpc has already
been obtained in terms of Gaussian functions in our
pure-crystal calculation, and its matrix elements for the
impurity crystal are readily evaluated.

Determination of 6 V ' requires identifying a set of
LO's for the impurity crystal. In the case of a pure crys-
tal the LO's are the WF's, which are well approximated
by modified forms of the atomic orbitals. With a point
defect in the crystal, the LO's are the generalized WF's
(GWF's), ' which are site dependent because of the loss
of translational symmetry. The GWF's for the point-
defect system approach the perfect-crystal WF's ex-
ponentially with increasing distance from the defect
site. The GWF's for NaC1:Cu near the Cu+ site are
expected to be atomiclike, but rigorous calculations are
very difficult. In Ref. 23 a method for obtaining approxi-
mate LO densities is given. (The computational pro-
cedure is straightforward, but the equations describing
the procedure are lengthy and will not be reproduced
here. ) From the approximate LO densities at each site
the corresponding V ' is calculated from Eq. (7) and in-
serted in Eq. (21) to find the band-averaged b V ' . For
this purpose each of the 1s,2s, . . . , 3d manifolds of the
Cu+ levels is considered a separate band.

The impurity-crystal wave functions are expanded in a
basis set that includes atomic orbitals for the occupied
states of the impurity ion and the host-crystal ions out to
the seventh-nearest-neighbor shell [(220) in units of the
Na-Cl near-neighbor distance, dN, c~]. In addition, we
include atomic Cu+ 4s and 4p orbitals on the defect site.
To further strengthen the variational freedom, we supple-
ment the basis functions by single Gaussian orbitals
(SGO's) of exponents: P, =2.608 63, P2 = 1.829 02,
Pq = l. 2849, P4 =0.997 212, Ps =0.950 083,
p6 =0.448 205, p7 =0.444 62, ps =0.430 941,
f39=0 189 272, ./3&0=0. 140 12, p» =0.096, and
p12=0.050791. These SGO's are distributed on the vari-
ous sites in the following way. Four s-type
( p4 p7 f10 f312 ), four p-type (p, ,p4, p7, p, o ), and three d-

type (p4, p7, p, o) SGO's are placed at the defect site. We
use four s-type and four p-type SGO's (f35 P6 P9,P») to
augment the atomic orbitals on the nearest-neighbor Cl
shell, and add three s-type and three p-type SGO's
(p~, p6, p9) to the next Cl shell. Finally, for the nearest
Na+ shell, three s-type and three p-type SGO's (p2, p3, p9)
are appended.

The cluster basis described here, with significant varia-
tional freedom near the impurity site and minimal atomic
basis sets "cushioning" the outer edge of the cluster, is
used to properly embed the impurity cluster in the bulk
crystal. The use of such a basis has been shown ' to mini-
mize surface eft'ects which arise from representing the
states of an infinitely extended Hamiltonian [see Eq. (24)]
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with a finite basis.
With the initial approximation for 6V" and the

LO's, we construct the zeroth-order Hamiltonian, which
includes [H" ]' ', [5P' ]' ', and [gv ' ]' ' as a sum-

mation of Gaussian-type functions centered on different
lattice sites. With the basis functions expressed in terms
of Gaussian orbitals, the Hamiltonian and overlap matrix
elements are evaluated analytically. Solving the LCAO
secular equation gives rise to the first-iteration electron
density, pI&', and hence 5p'" [see Eq. (23)]. 5p"' is of
very short range, and can be accurately fitted to a super-
position of exponential-type functions centered at the
Cu+ site and at the first-nearest-neighbor —shell sites.
The second term in Eq. (25) can then be integrated
analytically, yielding a mesh of numerical values of
[5VLso]'", which is fitted to a mixture of Gaussian-type
functions centered at the Cu+ site and the six surround-
ing Cl sites. Likewise, from the first-iteration eigen-
functions we determine a set of first-iteration LO s, which
yield [b V ' ]"' through the use of Eqs. (7) and (21). The
iteration cycle continues until self-consistency is reached.

III. RESULTS AND DISCUSSION

A. Energy levels and transition energies

The ground state of the free Cu+ ion has the closed-
shell configuration 1s~2s 2p63s23p63d &0 In the impurity
system the crystal field breaks the degeneracy of the free-
ion d orbitals into doubly- and triply-degenerate states
corresponding to the Eg and T2g representations of the

Oz group, the T2g states lying at lower energy in the crys-
tal field. In our NaC1:Cu+ calculation, eigenstates corre-
sponding to the occupied Cu+ free-ion states are highly
localized on the Cu+ site, so that, for example, it is mean-
ingful to speak of Cu+ 3d states in the impurity crystal.
Eigenstates corresponding to the Cu+ 4s and 4p free-ion
orbitals are somewhat less localized on the defect site (see
the discussion below), but we shall nonetheless refer to
them as impurity Cu+ 4s and 4p states for simplicity. In
this work„we are concerned with the energy of transi-
tions between the Cu+ 3d and Cu+ 4s and 4p impurity
states, i.e., 3deg 3dt2g ~4s, and 3deg 3dt2g ~4p Al-
though the 3d ~4s transitions are dipole forbidden in the
free ion, they are made partially allowed in the impurity
crystal through vibronic coupling to odd-parity phonon
modes.

Figure 1 is a portion of the eigenvalue spectrum ob-
tained in our fully-self-consistent calculation of the
NaC1:Cu+ electronic structure. Using the LCAO eigen-
vectors, the atomic-orbital parentage of the eigenstates is
easily traced, allowing clear identification of states associ-
ated with the Cu+ ion. The positions of the Cu+ 3d, 4s,
and 4p eigenvalues are shown explicitly in Fig. 1. The
positions of the impurity-crystal valence-band (VB) states
are also shown, with the pure-crystal VB and
conduction-band (CB) boundaries shown for reference.

The calculated 3de ~4s and 3dt2g~4s transition en-
ergies are 4.77 and 5.28 eV, respectively, in good agree-
ment with the corresponding experimental values of
4.36 and 4.77 eV. For the 3deg~4p and 3dt2g ~4p tran-

' 0.0

—O. B
tg
Q

—0.4 ~~3d 8g~—Sd ta

FIG. 1. Calculated energy levels of the 3d, 4s, and 4p impuri-

ty states and the host-crystal valence-band states of NaCl:Cu+.
The ranges of the valence bands and conduction bands of the
pure crystal are indicated.

B. The nature of the impurity states

Table I exhibits a characteristic feature of all
NaC1:Cu+-type impurity systems: the increase in the
3d ~4s transition energy in the impurity crystal over the
corresponding free-ion transition. This general feature
has been previously explained ' by an argument con-
cerning the mixing of the Cu 3d and 4s orbitals with the
3p orbitals centered on the nearest-neighbor, or ligand,
Cl ions to form bonding-antibonding pairs of impurity
eigenstates. The energy of the bonding partner in such a
pair is lowered as a result of the mixing, and that of the
antibonding partner is raised. Because the Cu+ 4s orbital
is more diffuse and has greater overlap with the ligand or-
bitals, the effect of this bonding-antibonding is more pro-
nounced for the Cu+ 4s than for the Cu+ 3d states, and
the antibonding Cu+ 4s eigenvalue is therefore raised by
the interaction with the ligand orbitals relative to the 3d
eigenvalues, resulting in the observed increase in the
3d ~4s energy. In this argument, the Cu+ 3d states are

TABLE I. Theoretical and experimental values of the
3d~4s and 3d~4p transition energies {in eV) for a free Cu
ion and for NaC1:Cu+.

Transitions
Free Cu+

The or. Expt.
NaC1:Cu+

Theor. Expt.

3deg ~4s
3dt, g ~4s
3deg ~4p

3.21
3.21
9.21

3.03
3.03
8.81

4.77
5.28
8.21

4.36
4.77
7.29

sitions, our calculated values are 8.21 and 8.72 eV, re-
spectively. Experimentally, a broad peak (2.5 eV wide) at
7.29 eV was attributed to the 3d ~4p absorption. The
poorer agreement between theory and experiment here
may be partly due to the uncertainty in determining the
experimental value for the transition energy because of
the very large width of the observed absorption signal. In
Table I we summarize the calculated and observed values
of the 3d ~4s and 3d ~4p transitions.
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assumed to be antibonding, but, as we discuss in subsec-
tion D below, this depends on the specific system being
considered. We note here that the general argument pre-
dicts an increase in the 31~4s energy whether or not the
Cu+ 3d states are distinctly antibonding, so long as the
Cu+ 4s remains more strongly antibonding than the Cu+
3d state. The SIC-LSD results for NaC1:Cu+ support the
general explanation for the shift in the impurity transi-
tion energy. We show this by considering in this section
the nature of the Cu+ 3d and 4s impurity states, demon-
strating that the Cu+ 4s state is less localized and has
a larger admixture of ligand orbitals than the Cu+ 3d
states. To determine the degree to which the Cu+ orbit-
als mix with the ligand orbitals in the impurity eigen-
states, we performed a Mulliken population analysis on
the self-consistent eigenfunctions. The population
analysis gives the distribution by ion shell of the charge
associated with each of the eigenstates. The Cu+ 3d
states are well localized on the impurity site, with 95%
and 99% of the electron charge associated with the Cu+
ion for the 3de and 3dt2 states, respectively, reflecting
the small mixing of the ligand 3p orbitals into these
states.

The Cu+ 4s and 4p orbitals are more diffuse than the
3d orbitals, and undergo heavier mixing with the ligand
orbitals in the impurity eigenstates. The standard Mul-
liken analysis breaks down for these states, because of the
large overlap of the long-range SGO's contributing heavi-
ly to the respective eigenfunctions. We may investigate
the nature of these states using an alternative method, '

however, by systematically monitoring the dependence of
the computed 4s and 4p eigenvalues on the presence of
various SGO's in the fixed-basis set. The nature of the
fixed basis is such that the occupied eigenstates of the im-

purity system are represented almost entirely by the cor-
responding atomic orbitals in the basis, while the unoccu-
pied eigenstates are represented by the Cu+ 4s and 4p
atomic orbitals and the various SGO's. (This reflects the
fact that the atomic orbitals are good approximations of
the LO's for this system. ) Removing SGO's reduces the
variational freedom of the basis, greatly degrading the
representation of the unoccupied states. As a result, the
eigenvalues for these states become less negative. By es-
tablishing the sensitivity of the 4s and 4p eigenvalues to
the presence of SGO's centered on specific shells, we
therefore indirectly determine the spatial extent of the
eigenfunctions. Starting with the full basis set as listed in
Sec. II D, called set (a), we first remove all the SGO's in
the third-nearest-neighbor shell to form set (b). Removal
of the SGO's in the second- and third-nearest-neighbor
shells generates set (c). Set (d) contains SGO's only on
the impurity site, i.e., none on any of the host-crystal
sites, and set (e) is the minimal set with all SGOs re-
moved. The Cu+ 4s eigenvalues for basis sets (a) —(e) are
—0.2647, —0.2646, —0.2645, —0.2624, and —0.2545
a.u. , respectively. The 4s energy level is seen to depend
most on the SGO's from the Cu+ site; the ligand-shell
SGO's are seen to be less important, and the SGO's on
the second- and third-near-neighbor shells have almost
no effect on the eigenvalue. From this we see that the irn-
purity Cu+ 4s state is well localized on the Cu+ site and

the ligand shell. The importance of the Cu+ SGO's indi-
cates the distortion of the impurity 4s state in the region
around the Cu+ ion due to the interaction with the
ligands. (For comparison, the Cu+ 3d energy level is vir-
tually unchanged upon removing all SGO's from the
basis. ) With the strongly overlapping SGO's removed
from the basis, the Mulliken analysis shows 85% of the 4s
charge centered on the Cu+ ion, and 15% on the ligand
shell. While these numbers do not provide a detailed
charge distribution for the true 4s state, they are an add-
ed indication that the 4s state has a larger admixture of
ligand orbitals than the more localized 31 states. For the
4p eigenvalues the five basis sets (a)—(e) give —0. 1319,—0. 1312, —0. 1310, —0. 1182, and —0.0956 a.u. , respec-
tively. Here the SGO's on the nearest neighbors are in-
dispensable, and even the SGO's on the second nearest
neighbors (Na+) have an appreciable influence. In the
pure-crystal calculation, the SGO's represent conduction-
like states. The importance of SGO's centered on the
ligand shell and the Na+ shell suggests that the 4p state
has some CB character. The decrease in the 3d~4p
transition energy in the impurity compared with the free
ion is the result of the mixing of the Cu+ 4p orbital with
CB states. This mixing produces an impurity state ex-
tending over the first few ion shells around the defect site;
through the mixing, the eigenvalue of this impurity 4p
state is lowered relative to the Cu+ 3d eigenvalues.

C. Comparison ~ith other NaCl:Cu+ calculations

Many calculational schemes have been applied to
NaC1:Cu+-type impurity systems. In the past few years,
three separate calculations specifically treating
NaCl:Cu+ have been presented in the literature, two' '

using Xa-based methods, and the other a LCAO
Hartree-Fock (HF) formalism. To aid in the compar-
ison of the various results, it is appropriate to first discuss
a few points concerning each of these calculations. Cher-
mette and Pedrini' use a multiple-scattering Xa (MS-
Xa) cluster method in their calculation of NaC1:Cu+.
MS Ja is a muffin-tin-based formalism: the Xa potential
seen by the electrons is assumed spherically symmetric
inside muflin-tin spheres centered on the impurity crystal
ion sites, and constant in the region between the spheres.
The exchange parameter a takes on different values in
the muffin-tin spheres for each of the different ion types
in NaC1:Cu+. The cluster method used in the work of
Chermette and Pedrini explicitly treats only the central
Cu+ impurity ion and the six surrounding ligand ions;
the remainder of the host crystal is modeled by a 9 X 9 X 9
array of uniformly charged spheres centered on the crys-
tal lattice sites around the CuC16 cluster. The host-
crysta1 contribution to the impurity potential is taken to
be the classical electrostatic potential due to the charged
spheres. The Xa SCF equations are solved using stan-
dard multiple-scattering techniques, and transition ener-
gies are calculated using Slater's transition-states method.

The discrete-variation Xa (DV-Xa) treatment of
Payne, Goldberg, and McClure for NaC1:Cu+ shares
many of the features of the MS-La method, including the
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TABLE II. Comparison of the 3d ~4s transition energies (in

eV) calculated by different methods. The energy spacings be-
tween the 3deg~4s and 3dtzg ~4s transitions, denoted 6, are
included.

LSD' SIC' HF DV Xa' MS Xa' MS Xa

3deg ~4s
3dt 2g ~4$

4.77 3.08
5.28 3.23
0.51 0.15

3 35'

0.41

4.26
5.25
0.99

3.74
4.31
0.57

'GSUO approximation.
Average of the singlet and triplet transition energies (see text).

'Average of the singlet and triplet transition energies (see text).
Cu-Cl distance 5.31 a.u.
Average of the singlet and triplet transition energies {see text).

Cu-Cl distance 5.79 a.u.
'Average of the 3deg ~4s and 3dt, g ~4s transition energies.

simple model for the host-crystal contribution to the im-

purity potential and the transition-states method for cal-
culating transition energies. The DV-Xa method, how-
ever, employs a different computational procedure for
solving the SCF equations.

As in the two Xa calculations, only the Cu+ and the
six ligand ions are treated explicitly in the HF calculation
of Winter, Pitzer, and Temple. In fact, only the valence
electrons on the Cl ions are included: the core orbitals
are removed from the calculation via a pseudopotential-
like technique. The Cl 3p orbitals appearing in the
basis set are pseudo-wave-functions which coincide with
real 3p functions in regions outside the range of the Cl
core electrons, but which are smooth inside the core re-
gion, lacking the orthogonality spikes of true atomiclike
3p orbitals. The host crystal in this calculation is
modeled by an array of point ions and total ion potentials
(again similar to pseudopotentials) centered on 125 lattice
sites around the impurity ion. Transition energies are
calculated directly by taking the difference in HF total
energies of the ground and excited states.

In Table II transition energies for the Cu+ 3d~4s
transitions are compared. The GSUO approximation
used to obtain the transition energies in our SIC-LSD cal-
culation is effectively spin polarized, with the active elec-
tron assigned the same spin in the ground and excited
configurations. Our transition energies therefore
represent an average of the transitions to the spin-singlet
(S=0) and -triplet (S=1) excited states. ' In the HF
and MS-Xa calculations, the singlet and triplet transi-
tions were considered separately. In order to compare
with the SIC-LSD results, the average of the singlet and
triplet transition energies found in these calculations is
shown in Table II. The DV-Xa calculation reports only
the average of the 3de and 3dt2 ~4s transitions; this
average is the value appearing in the table. The bottom
row in Table II is the energy difference between the tran-
sitions originating from the 3deg and 3dt2g states, respec-
tively, i.e., the spacing between the two main peaks (the

Eg and Tzg peaks) in the NaC1:Cu+ absorption spectrum.
(For HF and MS-Xa, this difference is calculated using
the spin-multiplet-averaged values for the E and T2
transitions appearing in the table; virtually the same
value is found by taking the difference between the singlet

or triplet transitions individually. )

In Table II is shown the range of 3d ~4s transition en-
ergies predicted by the various calculations. While the
SIC-LSD results slightly overestimate the observed tran-
sition energies, the other calculations underestimate ex-
periment to varying degrees. The largest deviation from
experiment is seen in the HF results, where the calculated
transition energies undercut experiment by about 1.3 eV.
This underestimate is attributed by Winter et al. to the
neglect of electron correlation in the HF treatment.
They show that the corresponding free-ion transition en-
ergies are also underestimated by HF, by 1.52 eV. Since
the discrepancy in the free-ion transition energy relative
to experiment is attributed to electron correlation, it is
reasonable to expect the neglect of correlation to produce
a similar problem in the impurity-crystal calculation.
The HF calculation also underestimates the energy spac-
ing between the E and Tz peaks in the absorption spec-
trum. This, too, may be due to the neglect of correlation.
Winter et al. cite a calculation by Shaskin and God-
dard on a Cu + impurity in a fluoride crystal in which
configuration interaction (CI) is used to account for elec-
tron correlation. The use of CI in that work increased
the spacing between the Ez and T2 peaks, leading to
better agreement with experiment. No attempt to use CI
in the NaC1:Cu+ calculation was made.

The 3d ~4s transition energies determined in the two
Xa studies are also significantly smaller than the SIC-
LSD results. The MS-Xa results' are closer to both ex-
periment and SIC-LSD than those of DV-Xa. The MS-
Xa calculation was done using a series of values for the
Cu-Cl spacing, dc„c~, in order to determine the equilibri-
um spacing (see the discussion below of lattice relaxa-
tion). Chermette and Pedrini' found the transition ener-
gies to be sensitive to the Cu-Cl distance, decreasing with
increasing dc„c~. The authors determined the transition
energies over a range of dc„c~ values. The transition en-
ergies given in the last column of Table II were obtained
for their equilibrium value for dc„c~, 5.79 a.u. , which is
much larger than the Na-Cl distance in the host crystal,
dN, c~, 5.33 a.u. In the fourth column of Table II are the
MS-Xa results for a spacing of 5.31 a.u. Using this value
for dc„c~, they calculate 4.26 and 5.25 eV, respectively,
for the 3deg~4s and 3dt2 ~4s transitions, in reasonable
agreement with our results and with experiment. (In our
calculation, we set dc„c~ equal to dN, C, .) The DV-Xa
transition energy, calculated with dc„c, equal to dN, c~,
is much smaller than those of either SIC-LSD or MS-Xa.
We are unable to explain the discrepancy between the
DV-Xa calculation and the MS-Xa calculation for
dc„c~=5.31 a.u. The transition-state formalism is used
in both calculations to determine the transition energies.

We note that energies for the 3d ~4p transitions were
computed only in the SIC-LSD calculation. This rejects
an advantage of our embedded-cluster technique over the
other methods in including a number of host-crystal
shells around the defect site. Because we include a
significant portion of the impurity crystal explicitly in the
calculation, we are able to represent the Cu+ 4p state and
investigate its mixing with conductionlike states. By con-
trast, the single-shell models for the host crystal used in
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the HF and Xa calculations are inappropriate for treat-
ing the rather more extended Cu+ 4p impurity state.

As the transition-energy comparisons in Table II are
limited to the 3d ~4s transitions, discussion of the
electron-population results from the different calculations
must be limited to the Cu+ 3d impurity states, since only
these states are comparably represented in all four calcu-
lations. Because we include VB orbitals on three near-
neighbor Cl shells, whereas the other calculations in-
clude only ligand-shell VB orbitals, the VB states in our
SIC-LSD calculation have a much different character
than those in the other works, making a detailed quanti-
tative comparison. of population results for those states
meaningless. For the Cu+ 3d eigenstates, all the calcula-
tions show the 3d charge density predominantly localized
on the impurity ion, with a much smaller amount of
charge attributed to the ligand shell. The MS-Xa calcu-
lation' allots 93% of the 3de charge and 97% of the
3dt2 charge to Cu+, whereas the corresponding charge
apportionment is 86% and 98% in the DV-Xa study.
Both Xa calculations are in good agreement with the
SIC-LSD results of 94% and 99%. In each of the local-
density calculations, the Eg state has more charge attri-
buted to the ligand shell than does the T2g state, indicat-
ing a greater mixing of Cu+ and ligand orbitals in the
Cu 3de eigenfunctions. This is in accord with the
geometrical fact that the 3deg orbitals have greater over-
lap with the ligand 3p orbitals than do the 3dtz orbitals.
In contrast to these results, the HF calculation shows
the T2 state to have the larger ligand-shell charge com-
ponent. Also, the HF results show a much greater delo-
calization of the Cu+ 3d charge generally than seen in
the other calculations. Only 78% and 75% of the charge
is attributed to the Cu+ site, respectively, for the 3de

g
and 3dtzg states. The enhanced mixing of Cu+ and Cl
orbitals in the T2 state in this calculation may result
from a near degeneracy of the Cu+ 3dt2g and the ligand
Cl 3p orbitals; such a degeneracy would lead to strong
mixing of the orbitals in the eigenfunctions. Since the
3deg orbitals lie at higher energy than the 3dt2g orbitals,
near degeneracy with the Cl 3p orbitals would not con-
tribute as much to the mixing in the E states. One may
speculate that the use of the pseudopotential-like tech-
nique in the HF calculation may be partly responsible for
the increased delocalization of both the Cu+ 3d states
over the other calculations. In the SIC-LSD calculation,
for example, the impurity states arising from the mixing
of the Cu+ 3d and ligand 3p orbitals are constrained to
be orthogonal to the Cu+ and Cl core states. In the HF
calculation, the Cl core states do not appear explicitly
in the basis, so that the orthogonality constraint is not
directly enforced through the SCF process. This may
lead to greater mixing of the orbitals as a way to concen-
trate charge near the Cl nuclei, thereby lowering the to-
tal energy.

D. The impurity density of states

Figure 2 is a density-of-states (DOS) plot for the SIC-
LSD impurity eigenstates lying in the energy range
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FIG. 2. Density of states of the valence bands of the pure
NaCl crystal {dashed curve) and of NaCl:Cu {solid curve).
The small structure in the solid curve below —12.7 eV is associ-
ated with impurity-related states {see Sec. III D).

spanned by the pure-crystal VB, obtained by a 0.1-eV
Gaussian broadening of the discrete impurity-crystal ei-
genvalues. For comparison, a similar plot for states ob-
tained from the pure-crystal Hamiltonian is also shown.
The similarity of the two plots is striking. The most
significant difference between the two is the slight bump
appearing at the bottom of the impurity VB and not
present in the pure-crystal plot. The Xa work of Har-
rison and Lin' on LiC1:Cu+ provides a qualitative guide
to interpreting the NaCl:Cu+ DOS. In that study, a
number of small bumps appeared just below the pure-
crystal VB in the impurity DOS. These features were
identified with the bonding partners of the Cu+ 3d and
Cu+ 4s impurity states, the energies of these states
suSciently lowered through bonding that they were split
off below the bulk of the VB. The single extra feature in
the NaC1:Cu+ impurity DOS can likewise be identified
(using the LCAO eigenvectors) with the bonding partner
of the Cu+ 4s state; however, no evidence of bonding
partners for the Cu 3d states can be found below the VB
in Fig. 2. The absence of extra features in the NaC1:Cu+
DOS may be explained by considering the relative posi-
tions of the Cu+ 3d and the VB states in the eigenvalue
spectrum. As seen in Fig. I, the Cu+ 3d states lie in the
middle of the impurity VB. Analysis of the LCAO eigen-
functions for the relevant VB states shows that the Cu+
3d orbitals contribute to states both above and below the
impurity 3d levels in energy, so that the 3d states have
neither clearcut bonding nor antibonding character. Ac-
cordingly, the Cu+ 3d orbitals are only weakly admixed
into any given VB state. By contrast, the Cu+ 4s state is
clearly antibonding, and its bonding partner is readily
identified in the impurity DOS. The charge associated
with this state is well localized on the Cu+ ion and ligand
shell (8% and 72%, respectively) as a result of the bond-
ing. The fact that the Cu+ 3d states are not clearly anti-
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bonding in NaC1:Cu+ does not affect the explanation for
the increase in the 3d ~4s transition in the impurity: As
mentioned above, the 4s state must simply be more anti-
bonding than the 3d states for the transition energy to in-
crease. Clearly this condition is satisfIed for NaC1:Cu+,
where the Cu+ 3d states are neutrally bonded. Indeed, as
the lattice constant increases in the series
LiC1:Cu+~NaC1:Cu+~KC1:Cu+, the change in the
Madelung shift of the various energy levels (due to the
electrostatic interaction with the net +e and —e charges
on the ion sites) will move the Cu+ 3d levels from a posi-
tion above the VB to a position below the VB. The char-
acter of the impurity 3d states can thus be expected to
change from antibonding to neutral to bonding in this
series. At the same time, the Cu+ 4s level remains well
above the VB in all three systems, so that the Cu+ 4s
state remains antibonding in each. The net effect of
bonding-antibonding in all three cases is therefore an in-
crease in the impurity Cu+ 3d ~4s energy over the free
ion, and such an increase is seen experimentally for each
system. ' '

E. Lattice relaxation

The equilibrium distance between the Cu+ ion and the
near-neighbor Cl ions, dc„c1, in NaCl:Cu remains an

open question at the present time. The close comparison
of the Na+ and Cu+ ionic radii, 1.85 and 1.81 a.u. , re-
spectively (0.98 and 0.96 A), suggests dc„c, should be
very close to the near-neighbor sPPcing in NaC1, dNa c&,
5.33 a.u. (2.82 A). Calculations predicting dc„c, have
not, however, yielded consistent results. The HF (Ref. 2)
and MS-Xa (Ref. 19) calculations discussed above both
seek to determine the equilibrium Cu-Cl spacing by sys-
tematically computing the total energy of the impurity
system for a range of dc„c, values. The HF calculation
Predicts dc„c] to be nearly equal to dN, c&, while the
MS-Xa calculation predicts a substantial outward relaxa-
tion of the Cl ions in the impurity (5.79 versus 5.33
a.u. ). Considering the near equality of the free-ion radii
for Na+ and Cu+, the HF result is intuitively reasonable,
whereas a significant outward relaxation of the ligands is
quite unexpected. Because of the discrepancy in the ex-
isting theoretical values of dc„c,, and because we are
presently unable to determine an equilibrium value for
d c c] in the SIC-LSD calculation, we choose instead to
rely on the near equality of the Na+ and Cu+ radii and
Set dCU-C1 equal tO dNa-cl.

F. Comments on the use of SIC-LSD

In this subsection we examine more closely some of the
approximations to the full SIC-LSD formalism used in
this work. We begin with the GSUO approximation, the
technique we have used to calculate the transition ener-
gies given in Table I. The GSUO technique is physically
motivated, rather than formally derived from SIC-LSD
total-energy expressions. Its use is based on the
identification of the SIC-LSD eigenvalues with electron
ionization energies; thus, the GSUO transition energies
are represented simply as differences in the relevant ei-

g SIC-LSD(~ e
) g SIC-LSD(~ ) &4s ~3de (26)

where

—( g lHLsD[+e]+ I/sIcl g ) (27)

3de ( 03de l
H " + ~3de l $3de (28)

and
1//3

6 f drI —,'[p(X) ' p(N') ]—
+ 1 [(p )4/3

( )4/3]

+P4,P(&*)'" P3d, P(»'"] . —(29)

In the above equations, p(E*) and p(X) are the excited-
and ground-configuration spin-up densities, respectively,

genvalues. It is appropriate to carefully consider the re-
lationship between GSUO transition-energy results and
SIC-LSD total-energy differences. In Ref. 26 a more
rigorous scheme for calculating transition energies in
SIC-LSD is presented. In this scheme, the exact SIC-
LSD total-energy difference between two electronic
configurations, differing by the excitation of a single elec-
tron from an orbital a to a higher-lying orbital b, is cast
in the form of an integral over an occupation parameter
specifying the relative occupation of the two config-
urations. The integrand used in this procedure involves
the eigenvalues for the active orbitals, c., and c.b, and a
correction term, all readily calculated. This integrand
has the important property that it is a nearly linear func-
tion of the occupation parameter ~, making the integral
(i.e., the transition energy} easy to approximate by
evaluating the integrand at a few values of co. This is
demonstrated numerically in Ref. 26 for selected transi-
tions in first- and second-row atoms. The results of one-,
two-, and three-point approximation schemes used in that
work are in very good agreement with one another, and
with the exact SIC-LSD transition energies obtained by
total-energy differences. By representing the transition
energy as the difference between the eigenvalues of the
active orbitals (along with the correction term in the in-

tegral method}, both the integral technique of Ref. 26 and
the GSUO approximation avoid directly calculating
E ' (N') —E ' (N) (X" and X refer to the orbit-
als of the excited and ground configurations, respective-
ly), which, in the case of large, multiatom systems, re-

quires prohibitive accuracy in determining the respective
total energies. The particular utility of the GSUO pro-
cedure is that it allows the simple determination of all the
excited-state energies from a single SCF calculation. The
method of Ref. 26, by contrast, requires at least one dis-
tinct SCF calculation for each transition.

As a check on the GSUO results for the NaC1:Cu+
transitions, we used the one-point approximation scheme
of Ref. 26 to determine the energy of the 3de ~4s transi-
tion. We refer the reader to Ref. 26 for full details con-
cerning this method. In the one-point approximation,
the transition energy is
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and p; is the appropriate orbital density. H [N*] is

the conventional LSD Harniltonian corresponding to the
excited configuration [see Eq. (6)], whereas H is a
composite of H" [N*] and H [N) (see Ref. 26). The
orbitals g for both the excited and ground configurations
used in evaluating these expressions come from a single
SCF calculation, based on a composite energy functional
consisting of equal parts, E, [N'] and E,[N]. We have
omitted the spin indices in these equations to avoid un-
necessary notation. Since we are considering the spin-
preserving transition 3d& ~4st, all the spin-dependent
quantities above are assumed to carry the 1 index.

Using the single-point integral approximation, we cal-
culate a value of 4.10 eV for the 3des —+4s transition ener-

gy. This compares well with the GSUO result of 4.77 eV
shown in Table I, and demonstrates the reliability of the
GSUO approximation for NaCl:Cu+. The agreement
seen here is representative of the close correspondence
between the GSUO results of Ref. 12 and those obtained
using the integral scheme of Ref. 26 for transitions in
first-row atoms. Both methods discussed here assume
spin-preserving transitions, g, t~Pb&, so that the calcu-
lated transition energies correspond to the average of the
singlet and triplet transitions. The experimental values in
Table I are the singlet-transition energies. If the free-ion
singlet-triplet splitting (0.44 eV) is taken as an estimate of
the analogous splitting in the impurity crystal, the experi-
mental value corresponding to the spin-preserving transi-
tion would be about 4.14 eV, which is intriguingly close
to the integral-approximation result. Further analysis of
this point would be desirable.

Throughout this work we have distinguished between
the local orbitals (LO's), used to generate the SIC poten-
tials V ' [Eq. (7)], and the canonical orbitals, which we
obtain from the SCF equations [Eq. (10)] and are directly
associated with the eigenvalues. In the formal derivation
of the SIC-LSD SCF equations, the LO's (and using
them, the canonical orbitals) are precisely defined
through the SCF equations and a set of auxiliary condi-
tions, the localization equations (LE's) [Eq. (8)]. Formal-
ly, the LE's ensure that E, ' is extremized by the (ex-
act) LO's. The LE's are, however, very difficult to satisfy
exactly for low-symmetry systems such as point defects;
treating the LE's requires an additional loop in the SCF
process, requiring the generation of SIC potentials for
generally complicated LO's, which in multiatorn systems
have very small but nonzero components on many ion
sites. In practice, the LE's may not be necessary in many
cases to determine LO's appropriate for use in calcula-
tions. While the exact LO's guarantee a lower Efsrc-Lsv

the improvement over approximate LO's may be quite
small. In atomic calculations, the SIC-LSD orbital ener-
gies obtained while rigorously satisfying the LE's are only
slightly lower than those obtained in calculations neglect-
ing these equations. For atomic lithium, for example,
neglecting the LE's results in 1s and 2s orbital energies
of —2.478 and —0. 196 a.u. , while the corresponding re-
sults obtained by satisfying the LE's are —2.479 and—0.200 a.u. Furthermore, the canonical orbitals arising
from these two calculations for Li are virtually identical,
giving a further evidence that the LE's may be reasonably

neglected in this case. For multiatom systems, Erwin and
Lin, ' in their calculations of pure alkaline halide band
structures, use various approximations to the VB Wan-
nier functions, the exact LO's for those systems. They
found that the SIC-LSD band gap was largely insensitive
to the approximate LO's used. In our SIC-LSD calcula-
tion for NaC1:Cu, we tested the 3de ~4s transition en-

ergy against the form of the Cu+ 3d LO's used. Treating
the Cu+ 3d eigenfunctions, which have definite multi-
center character (evidenced by the electron-population
results), as the LO's yields the transition energy reported
in Table I, 4.77 eV. When the single-center free-ion Cu+
3d orbitals are used for the LO's instead, the calculated
transition energy is 4.68 eV, indicating that the precise
form of the approximate LO's is not critical in the
NaC1:Cu+ calculation.

IV. CONCLUSIONS

In this work we have described the application of the
SIC-LSD theory to the NaCl:Cu+ impurity system. In
contrast to earlier local-density calculations for impurity
systems, no empirical exchange parameter is used in the
present calculation. We obtain results for the fundamen-
tal Cu 3d~4s transitions in good agreement with ex-
periment. For the 3d ~4p transitions, our calculated en-

ergies are about 1 eV higher than the experimental
values. This discrepancy may be partly due to the uncer-
tainty in extracting the experimental value of the 3d ~4p
transition energy from the observed broad absorption
peak. The embedded-cluster approach used in this calcu-
lation explicitly includes host-crystal states out to the
seventh-near-neighbor shell around the impurity site,
providing a clear picture of the impurity states in
NaC1:Cu+. We find well-localized impurity states corre-
sponding to the free-ion Cu+ 3d states, and less localized
Cu+ 4s and 4p states. The 4p states, in particular, extend
well beyond the first-near-neighbor Cl shell, making
their description by simple impurity-ligand models of the
impurity crystal impractical. The character of the vari-
ous impurity states is used to explain the observed in-
crease in the 3d~4s, and the decrease in the 3d~4p,
NaC1:Cu+ transition energies compared with the analo-
gous free-ion transitions.

The success of SIC-LSD in predicting the broad
features of the impurity absorption spectrum demonstrat-
ed in this work suggests investigating refinements to the
theory which would permit a detailed look at the fine-
structure features of the spectrum. Multiplet splittings
and spin-orbit effects have been included in other calcula-
tions' * for NaC1:Cu+, giving rise to a useful under-
standing of the transition and emission processes involv-
ing the low-lying excited states. To be generally useful in
analyzing impurity spectra, however, quantitative accura-
cy, of the sort provided by SIC-LSD for the broad spec-
tral features, is required. By obtaining SIC-LSD transi-
tion energies through an integral over a fractional occu-
pation parameter, spin-polarized calculations may be
performed, making possible the calculation of singlet-
triplet splittings of the excited states. The multiplet
structure would then provide a starting point for investi-
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gating spin-orbit effects. We are developing such an ap-

proach for application to NaC1:Cu+-type systems.
It remains a challenge to use SIC-LSD to determine

the relaxation of the host-crystal lattice around the im-
purity site. Previous calculations' ' have given
conflicting results regarding the Cu-Cl spacing in
NaCl:Cu+; physical arguments suggest dc„c~ should be
nearly equal to the Na-Cl spacing in NaC1, but cannot be
used to obtain a precise value. Because the calculated
electronic structure may vary significantly with dc„c~, it
is important to determine the equilibrium spacing in or-
der to fully assess the success of SIC-LSD in predicting
the impurity transition energies.

Another interesting problem is the electronic structure
of KC1:Cu+. This system has a qualitatively different ab-
sorption spectrum than either LiC1:Cu+ or
NaC1:Cu+. ' ' ' It is likely that the different appear-
ance of the KC1:Cu+ spectrum is due to the off-center po-
sition of Cu+ relative to a K+ site in the KC1 lattice;
the defect ion sits squarely on a cation site in the other
two systems. ' ' It would be interesting to determine the
properties of KC1:Cu+, both for an on-site placement of
the impurity ion and for the off-center placement. The
properties of the centrosymmetric system would be in-

teresting for comparison with the corresponding proper-
ties of LiC1:Cu+ and NaC1:Cu+. In particular, it would
be interesting to determine the bonding character of the
Cu+ 3d states, which, as discussed in Sec. IVD, is ex-
pected to differ from that found in other systems. The
calculated properties of the off-center system, on the oth-
er hand, would be interesting for comparison with experi-
ment.

Finally, the application of the SIC-LSD techniques to

other impurity systems, for example, Ag+ impurities, is
yet another direction for future work. While the free-ion
electronic structures of Cu+ and Ag+ are very similar,
the absorption spectra observed for the Ag+ impurities
are more complicated' than the corresponding Cu+ im-
purity spectra, comprising more bands. The host-defect
bonding in the Ag+ systems occurs between the Ag+ 4d
and the ligand valence orbitals, and is more pronounced
than the Cu+ 3d bonding in the Cu+ systems, because of
the greater extent of the 4d orbitals. It would be interest-
ing to use the SIC-LSD theory to calculate the electronic
structure of the Ag+ impurities to explain the absorption
spectra differences. Preliminary results for the
LiC1:Ag+ system suggest that the complex appearance of
the LiCl:Ag+ spectrum is due in part to the large mixing
of the Ag+ 4d and Cl 3p orbitals in the impurity eigen-
states. As a result of this mixing, several of the impurity
states in the VB region have significant admixtures of
Ag+ 4d orbitals, making transitions from each of these
states to the Ag+ 5s state possible. Further work on this
calculation is currently in progress.
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