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We propose a picture whereby the kinetic glass transition observed in the laboratory is con-
trolled by an underlying phase transition with unusual properties. We assume that the line of
metastable liquid states below the freezing temperature ends in a fixed point, and show that this
picture is in accord with a number of experimental observations, including the vanishing of the
excess configurational entropy of the liquid and the Vogel-Fulcher law. Differences between this
scenario and current theories of systems whose Hamiltonian possesses quenched disorder are dis-

cussed.

The nature of the glass transition is a perennial prob-
lem.! As observed in the laboratory, the crossover from
liquid to glass is always purely kinetic; as temperature is
lowered below the freezing point, response times in the
liquid increase rapidly, eventually surpassing observation-
al times scales. When this happens, large-scale flow pro-
cesses cease and the material appears solid on human time
scales. The liquid has fallen out of (metastable) equilibri-
um; the temperature T, at which the relaxational and ob-
servational time scales cross depends on the observer, and
does not represent any intrinsic temperature scale of the
liquid itself.

Substantial debate has centered on whether an underly-
ing intrinsic temperature does exist. In 1948, Kauzmann?
pointed out that the excess configurational entropy of the
metastable liquid, if extrapolated into the experimentally
inaccessible region, appears to vanish at a finite tempera-
ture Tk, reminiscent of a second-order phase transition.
Moreover, measurements of viscosity n and related relax-
ation times t of large-scale flow processes seem to indi-
cate, in the intermediate viscosity region, a non-Arrhenius
behavior with an essential singularity at a finite tempera-
ture T,

‘r-‘roeA/(T_T") , (1)
with A4 constant or weakly temperature dependent. Equa-
tion (1) is commonly referred to as the Vogel-Fulcher
(VF) law. Of compelling interest is the observation for
many materials that, to within experimental error,
To=Tk.3>~> Since both quantities are obtained via ex-
trapolation, the significance of their possible equality is
unclear, though suggestive of an underlying singularity.

The description given above is considerably over-
simplified and subject to a number of caveats. Among the
most important are the following facts. (1) For some
glass formers Tx = To=0. These include SiO,;, GeO,,
and BeF,, among others. Angell and co-workers™>* refer
to these as the “strong™ liquids, as opposed to the “fra-
gile” liquids (such as o-terphenyl) which obey Eq. (1).
Strong liquids usually form a random covalently bonded
network, while cohesive forces in fragile liquids are less
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directional in nature. (2) There often appears to be a
crossover of 7 to more Arrhenius-like behavior at higher
viscosities (but still for 7> T;;).® A crossover to pure Ar-
rhenius behavior is also common at high temperature. (3)
Diverging relaxation times in many glassy liquids may be
equally well fit by a power-law singularity, or by some
other functional form different from Eq. (1). (See the re-
views>7~? for further discussion of the experimental situ-
ation.)

In spite of the experimental uncertainty and complexity
surrounding many of these issues, Kauzmann’s observa-
tion and the VF law have led some theorists to propose
that a singularity at Tx underlies the rather strange be-
havior of glassy liquids. There are three main theoretical
points of view on the subject. (1) A true phase transition
(usually proposed to be second order) exists at Tk, but
diverging relaxation times prevent one from ever ap-
proaching it in equilibrium."!'°~'> Proponents of this
point of view have various ideas of the nature of the low-
temperature state (7 < Tx) of the true equilibrium glass.
(2) A kinetic transition (t— o as T— T§) exists
without an underlying equilibrium phase transition. !~
However, most of the theories which at first appeared to
have such a transition were later found not to have
one.?%?! (3) Neither an equilibrium nor a kinetic transi-
tion exists. The behavior seen in Eq. (1) might be due
simply to a crossover between two Arrhenius regimes,
with the effective free-energy barrier for rearrangements
at low T larger than that at high 7. No true divergence
would exist at any T>0.

In cases (2) and (3), if one were to follow the liquid en-
tropy curve into the experimentally inaccessible region
T <Tg, it would eventually have to bend over to avoid
crossing the crystal line, preventing the Kauzmann *“para-
dox.” No convincing mechanism for this is known.

The purpose of this note is to propose a possible
scenario wherein the features of the glass transition as de-
scribed here can be understood in terms of the fixed point
structure of the Hamiltonian under appropriate renor-
malization-group transformations. QOur proposals are
speculative but testable. The central conclusion is that the
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Kauzmann temperature corresponds to an underlying
thermodynamic singularity that is the end of a line of
metastable states, without there necessarily being any
low-temperature equilibrium phase (besides the crystal)
below Tk. The vanishing of the entropy and divergence of
7 at Tk are natural consequences of this picture. Nonex-
ponential (in time) relaxation is also implied, but will not
be discussed herein.

Our starting point requires a modification of the usual
renormalization-group picture of first-order transitions
controlled by a discontinuity fixed point.”> We suggest
that a single discontinuity fixed point on the coexistence
surface is not necessary, and, in at least some cases, is re-
placed by one on each branch of the free-energy surface.
These fixed points lie within the metastable regions of
each phase (i.e., the “cold” and “hot” phases) and each
signifies the end of a line of metastable states in its phase
(see Fig. 1). The first-order transition temperature T
corresponds merely to the crossing of the two free-energy
surfaces, not to a singularity of either phase. Renormal-
ization flows are different in the two phases, as one might
expect in a situation of broken ergodicity. Both fixed
points might lie close to T, but in principle may lie any-
where within the metastable region. In the hot phase, tra-
jectories flow under renormalization-group transforma-
tions to the infinite-temperature (disordered) fixed point,
and in the cold phase to the zero-temperature (ordered)
fixed point. Such behavior has in fact been claimed to
have been seen recently in the ten-state Potts models in
two dimensions. 24 While it is too early to tell whether
the observations of Ref. 23 are correct, the two-lattice
matching method within the Monte Carlo renormalization
group described in that paper does provide a possible
means of testing our picture on simple Hamiltonian mod-
els for dense liquids or glasses.

We shall hereafter assume that this picture describes
the fixed-point structure of the Hamiltonian of a glass-
forming liquid, and that the fixed point corresponding to
the end of the line of metastable liquid states lies at a tem-
perature T, < T, well within the metastable liquid region.
Upon remaining a liquid below the freezing temperature
Ty, the system finds itself in one of a large number of
metastable states.?* Because renormalization trajectories
flow into the liquid phase, the size dependence of the
free-energy barriers vanishes as L — oo, where L is the
size of the system; in other words, barrier heights remain
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FIG. 1. Proposed fixed-point structure of the glass transition.
Only the temperature axis is shown for clarity.
Renormalization-group trajectories flow in different branches of

parameter space corresponding to different branches of the
free-energy surface.
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of order unity. Hence, the thermodynamical and dynami-
cal measurements taken over a sufficiently long time scale
average over many metastable states and are thus history
independent.

As temperature is lowered, the barriers surrounding
some of these states grow, while others may decrease. Be-
cause of the controlling fixed point, the linear size £ of the
average spatial region occupied by a typical metastable
state will grow 2% according to

E~(T—-T.) ™. (6))

We use here the interpretation of & as a persistence
length, rather than a correlation length. 27 The persistance
length & corresponds to the size of domains of overlap with
the different possible liquid phases associated with locally
stable free-energy valleys. Because of the presence of
multiple liquid phases as the fixed point, we must have 28

v=1/d ,

where d is the spatial dimension. This is consistent with
the value of the relevant eigenvalues measured in Ref. 23.
The configurational part of the entropy can be written

Sc~(L/&)%., @3)

where s, is the subextensive configurational entropy of the
confined region of configuration space corresponding to a
particular metastable state. Equation (3) is reminiscent
of the approach taken by Adam and Gibbs'' (AG).
Hence, in the region where the temperature dependence of
& is governed by the critical point (which may extend even
into the region above 7y), the excess configurational en-
tropy (as L — o) vanishes as

AS. =S, ~E 4~ (T—-T)"=T—-T,, @)

which is well-obeyed experimentally and identifies T, as
the Kauzmann temperature Tk.

Equation (4) is consistent with the renormalization to
infinity as T— T.* of some of the free-energy barriers be-
tween metastable states. Like the crystal, the system
upon reaching T, would become trapped, in the thermo-
dynamic limit, in a small region of configuration space.
Note that this is very different from a spinodal point, at
which the barriers would renormalize to zero. It is not en-
tirely clear what happens in principle in the inaccessible
region below T, where the barriers would remain finite;
multiple “ideal-glass” states are conceivable, but so is the
absence of any equilibrium phase (besides the crystal) in
this region. The free-energy surface corresponding to the
liquid phase may simply cease to exist beyond the control-
ling fixed point.

Equation (4) implies that the complexity?® vanishes at
T. as well. Kirkpatrick and Wolynes'* (KW), in their
study of many-field p state Potts glasses with p>4, assert
that the configurational entropy is equal to the complexity
I!

I=—kp 3 P;InP;, )
s

where P; is the Boltzmann weight, or canonical probabili-
ty, of metastable state s. Hence, T, can also be interpret-
ed as the point where the complexity vanishes, or the loga-
rithm of the number of deep metastable states become
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subextensive. '* In general, it can be shown?’ that I < S,.
Hence, the vanishing of the configurational entropy im-
plies the vanishing of the complexity as well.

There are several possible mechanisms by which bar-
riers may renormalize to infinity as the fixed point is ap-
proached from above. All give non-Arrhenius behavior.
The simplest is that proposed by AG.!! Assuming that
the free-energy barrier for cooperative rearrangement of a
subregion scales with its size £%, and that such subsystems
are independent, AG show that the average relaxation
rate 7 ! scales with the configurational entropy as

t '~exp(—=C/TS.), 6)

where C is a constant. We would point out, however, that
a free-energy barrier need not scale with the size of the
subsystem; AG’s arguments are not convincing in this re-
gard.

KW (Ref. 14) use a plausible Cahn-Hilliard-type argu-
ment*° to find the rate of transitions above their Tx. The
essential point is that transitions are entropy-driven; since
the energy of any two states is roughly the same, nu-
cleation of a new state occurs because there are many
different states to escape to. Hence, the volume free ener-
gy of a nucleation seed of radius R is given by Fpux
~ —TS:R?% while the surface free energy is Fsurface
~0oR%™1 where o is the effective surface tension between
liquid states corresponding to different valleys. This is the
simplest assumption for Fsyface, but in fact d—1 is prob-
ably a lower bound for the exponent. This then leads' to
a rate of transitions proportional to expla?/(TS,)? 1.
More sophisticated arguments will change the power to
which the exponent is raised, but the essential physics
remains intact; the free-energy barriers governing transi-
tions diverge as the excess configuration entropy van-
ishes. !

Within our picture, the KW argument makes sense as
long as R* <¢&, where R* is the critical nucleation size.
When R* grows larger than &, it is reasonable to assume
that the dynamics is governed instead by the motion of
domain boundaries. Here the barriers are roughly propor-
tional to the surface area of the domains, or éd’, where
d >d;=d—1, since the domain boundary may be frac-
tal. For simplicity, we take d; =d — 1. This then implies a
crossover in the dynamical behavior at the temperature
where R* ~¢. Using the KW approach, one expects
logr-cd/ (T—TC)"‘ above the crossover temperature,
and logr~&97Y/T~1/(T—T.)@~/4 below this temper-
ature; the crossover is from a stronger divergence of the
relaxation time at higher temperatures to a weaker diver-
gence nearer the glass transition. This may be enough to
explain the observed crossover towards Arrhenius behav-
ior close to T.

In addition, one can qualitatively relate the surface-
tension term to the “strength” or “fragility” of a given
liquid.? If the molecular bonding in a liquid is highly
directional or otherwise constrained, as in the strong
liquids, it seems reasonable to expect that many bonds
along a domain boundary will be strained or unsatisfied,
leading to large values of o in general. In the fragile
liquids, where bonding is less directional, adjustment of
bonds along a domain boundary should be easier, leading
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to lower values of 0. Resulting plots of z vs T are in quali-
tative accord with experiment, where the amount of cur-
vature in an Arrhenius plot can be approximately
parametrized'> by a single number D: logr~DTo/
(T—Ty). Strong liquids have larger values of D than fra-
gile liquids, and, hence, less curvature in a plot of logz vs
T,/T.

While the precise algebraic form of the relaxation time
as a function of temperature differs in these several ap-
proaches, they all have a pole in logz at 7,. All are in
reasonable agreement with experimental results, from
which it is difficult to tell the precise form beyond the pro-
nounced curvature on an Arrhenius plot. The tendency
towards a weaker divergence near to T, may also be un-
derstood in terms of a crossover.

We also need to consider the rate of nucleation to the
crystal state; this rate is energy driven rather than entropy
driven. For a discussion of experimental results on this
phenomenon, see Ref. 32. In general we should expect the
surface tension between a metastable liquid phase and the
crystal phase to be considerably larger than that between
metastable liquid phases, by the same reasoning as that
used for strong liquids. Therefore, the crystal nucleation
time 7crysial Should be much longer than other relaxation
times, as observed. Nevertheless, there is no clear mecha-
nism to make 7crystal diverge at T, and it is possible that it
does not. In this case, 7 will eventually exceed 7cystal and
the system will crystallize before coming to equilibrium,
though probably not on human time scales. Note, howev-
er, that this mechanism is not an essential part of our
scenario, and in particular is not needed to avoid the
Kuazmann paradox.

The picture described here differs in an important
respect from that of both the Potts glass and recent scal-
ing theories of spin glasses, >*34 both of which begin with a
Hamiltonian containing quenched disorder. It has long
been recognized that spin glasses differ from glasses in
that the latter have no such disorder in their Hamiltonian,
but there has been considerable uncertainty as to the
significance of this fact.>> However, according to the
current picture of short-range spin glasses, the statics and
dynamics of the low-temperature phase is controlled by a
disordered zero-temperature fixed point.3*3¢ We see no
need for such a zero-temperature fixed point controlling a
low temperature, “ideal glass” phase; in our picture, the
line of metastable states simply ends at a (probably first-
order) fixed point at some finite temperatures below 7.
Renormalized flows are always into the high-temperature
phase; the fixed point can never be reached in equilibrium.
Because of the rapid divergence of relaxation times [Eq.
(1)1, the system will always fall out of equilibrium above
the fixed point; its presence is only felt at higher tempera-
tures. The significance of the Kauzmann temperature is
not that of a second-order transition from liquid to crystal,;
the system merely gets trapped in some small region of
phase space.
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