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We discuss Monte Carlo algorithms for fermion lattice systems based on exact updating of the

fermion Green s function. A space and a space-time algorithm are shown to be limiting cases of a
formulation that smoothly interpolates between them. This new formulation can to a large extent

preserve the desirable features of both limits and suppress the undesirable ones.

The study of strongly interacting quantum many-body
systems by numerical techniques is of great current in-
terest. We discuss here fermion lattice systems, and, in

particular, the Hubbard model,

H g ltj (ct~g +H.c.) +Ug If(l ntl ltgnt~,

as a typical example. Here, c;t is a creation operator for a
fermion of spin cr at lattice site i, and n; c;t~;
Simplified models such as (1) and generalizations are
thought to capture the essential physics of various many-
body phenomena in solids, perhaps including high-
temperature superconductivity.

Often, it is the properties of the ground state, or of the
system at very low temperatures, that one is most interest-
ed in. Unfortunately, no Monte Carlo approach to deal
directly with fermion lattice systems such as Eq. (1) at
zero temperature exists (except in one spatial dimension).
Thus, Monte Carlo studies of these models are performed
at finite temperatures using a path-integral formulation,
and it is then desirable to reach as low a temperature as
possible.

In this paper we discuss Monte Carlo approaches based
on exact updating of the fermion Green's function. The
basic approach was introduced by Blankenbecler, Scalapi-
no, and Sugar ' (BSS) and has been used for a variety of
studies of lattice systems ' and magnetic-impurity sys-
tems. However, that approach becomes unstable at low
temperatures. A modified approach was introduced re-
cently by Hirsch and Fye (HF) for magnetic impurity
systems, which was found to be stable at low tempera-
tures. That approach can also be used for lattice systems
(where it remains stable), but is considerably more time
consuming than the BSS approach. Here we discuss an
approach that interpolates between BSS and HF that can
be kept stable at low temperatures and is considerably
more efficient than the HF approach for lattice systems.
Very recent work by White and co-workers discusses
somewhat related ideas in the context of molecular-
dynamics simulations of the Hubbard model.

The partition function for the model Eq. (1) on an N-
site lattice is written as

L L
ttH T II —g~H T II — ktHO 6rH ) (2)

I -1 I 1

BI'(lt) -e ""e ~'"'.

E is the bilinear part of the Hamiltonian:

(Sb)

UK" t"— ——8"lJ lJ p 2 lJ (6a)

and

[VI'(p)l~j -Rais;(l)b;, . (6b)

An equivalent expression to (4) in a space-time formu-
lation is"

Z Tr„detO+ (p)detO (lt ) (7)

with 0 an NL XNL matrix which, written out in the time
direction is given by

0 0

The space-time Green's function is defined as the in-
verse of 0

cr ~0 —
1

with H Ho+Ht. The error in thermodynamic averages
caused by the Trotter approximation in Eq. (2) is of order
hr sW. e take as H~ the interaction part of the Hamil-
tonian, and decouple it by introducing auxiliary Ising vari-
ables 9

exp( hrUn-1n l) —,
' Tr„-+ ~ exp[kg(nl n

1)—

~iU(n, n l
)—/2]

(3)
with cos(hX) exp(AALU/2). The trace over fermion de-
grees of freedom can now be explicitly taken, and one ob-
tains, in a "space formulation" '

Z Tr„detO+ (p)detO (p) (4)

with 0 and N x M matrix:
L

o -1+ II&I'(l ), (Sa)
I-1
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g (I,I) (1+BIBI &"—BIBL Bt+& ) (io)

Green's functions corresponding to two different poten-
tials V and V' are related by the Dyson equation (we

and its equal time components are given by the N x N ma-
trix

omit spin indices for simplicity)

g'-g+ (g —1)(e —1)g'.

from which the ratio of determinants corresponding to two
configurations differing by flipping the spin p;(I) is ob-
tained as

detO (—p;(I)) 1+[I —g"(I,I)l(exp[VI'[p;(I)] —Vs[It;(I)]J —1) .detO p; I

This ratio determines whether the spin flip is accepted in a Monte Carlo process. Thus one needs to know the equal time
Green s function at the space-time point being updated. For a single spin flip, one easily derives from (11) the relation
between the old and new Green's function in terms of the single-site t matrix

g -g +(g —1)t; (l)g,
Vp[ —p, (l) ] —Vpfp, (l) )

t;(I)- )I,I & &i, l ),1+[I —g;;(I,I) l(exp[Vt [—p;(I)] —VP[p;(I)]] —1)

(i3a)

(i3b)

i.e., t; (I) has a single nonvanishing diagonal matrix ele-
ment at site I, time slice I.

In the BSS algorithm, the equal time Green's function
is constructed from Eq. (10) and, after a spin flip, the
equal time components of the Green's function are updat-
ed using Eq. (13). After updating an entire time slice, the
Green's function for the next time slice is obtained from

g (I+ l, l+1) BPg (I,I)(BI') (i4)

This approach takes 0(N ) operations per update,
0(N ) per time slice and 0(N L) for an entire sweep
through the lattice. Equation (14) involves 0(N ) opera-
tions if the matrices B are sparse, as is usually the case,
and so has negligible incidence on the overall computer
time.

In the HF approach proposed for magnetic impurities,
Eqs. (10) and (14) are not used. Instead, the Green's
function at the sites where interactions occur only (impur-
ities) is constructed from the Dyson equation (11),and all
time components of the Green's function elements involv-
ing impurity sites only are updated through Eq. (13).
This approach then takes 0((nL) ) operations per update
and 0((nL) ) operations per sweep, with n the number of
impurities. For the Hubbard model n N, and so this ap-
proach takes 0((NL) ) operations, considerably more
than the BSSalgorithm.

Unfortunately, the BSS algorithm is found to become
unstable at low temperatures, typically P—4 for the Ham-
iltonian Eq. (1) with t 1. This first shows up in the need

I

to either correct or recompute the Green's function from
scratch after a few updatings, and soon thereafter in the
impossibility of even computing g (I,I) from Eq. (10) by
standard Gaussian elimination. In contrast, one can easily
obtain g (I,I) from Eq. (9) even at low temperatures. '

The different behavior is related to the different eigenval-
ue structure of the matrices 0 and 0 . The spatial ma-
trix 0 develops exponentially large eigenvalues as P in-
creases; since it also has 0(1) eigenvalues it becomes
highly singular at low temperatures. In contrast, the ratio
of largest to smallest eigenvalue of 0 grows only algebra-
ically (in fact, linearly) with L. Thus, inversion 0
through Gaussian elimination is stable at low tempera-
tures.

In the HF algorithm it is found that the updating step,
Eq. (13), does not lead to instabilities at low tempera-
tures. ' Since in the BSS algorithm the same updating is
used, it is not there where errors first are introduced but in
the process of going to the next time slice through Eq.
(14). These errors are rapidly amplified by subsequent
updating and use of Eq. (14) at low temperatures. In the
HF algorithm, Eq. (14) is not used at the expense of up-
dating the entire space-time Green's function instead of
just the equal time one.

An approach intermediate between the impurity and
lattice algorithms can be constructed as follows. We col-
lapse Lo time slices of the matrix Eq. (8) into a new ma-
trix with p L/Lo time slices (we omit spin indices for
simplicity)

OL, ,(1)-
—BL,BL,—)

. 8]
&L,+]

~pL0' ' ' ~(p —i)L0+r

(is)

~(p —1)L0
' ~(p —2)L +]

where OLo(1) is an Np&&Np matrix, and its largest eigenvalue is of order e with e a typical single-particle energy and
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FIG. l. Spin-spin correlation functions for the —,
' -filled Hubbard model on a 4&4 lattice. U 4, d, i 0.167 () and 0.133 (x).

Note that correlations reach their low-temperature limit only around P-10.

Pp Lphd. The inverse of OL, , contains a subset of the full Green's function Eq. (9):

OL, '(i) -g,,(i)-
g(i, 1)

g(Lp+1, 1)

g [(p —1)Lp+ I, 1]

g(i, Lp+1) g[i, (p —i)I,p+1]

g[(p 1)Lp+ 1,(p 1)Lp+ 1]

gL0(ii+1,12+1) BI,gL, (l(,12)Bl2
' . (17)

For an entire sweep, the above procedure is repeated
Lp L/p times. Because Eq. (17) is used Lp rather than
L times, it does not lead to instabilities if Lp is small
enough. The computer time scales as N p Lp, or
equivalently N L /L$. For p 1 this reduces to the BSS
algorithm. As the temperature is lowered, Lp is kept fixed
at the maximum value that gives a stable algorithm
(which corresponds to Pp 3 ol' 4) and p is increased.
Thus, asymptotically the computer time scales qualitative-
ly similar to the HF algorithm but with a reduction of a
factor Lo, for typical applications Lo can be —15-30. Be-
cause we always have some of the time components of the
Green's function the procedure to calculate imaginary
time-dependent quantities and zero-frequency susceptibil-
ities is simpler than in the BSScase and is also stable.

We have implemented this algorithm for the two-
dimensional Hubbard model and it performs as expected.
As an example, Fig. 1 shows spin-spin correlation func-
tions versus temperature for a 4x4 lattice down to P 12.

Similarly, we define OL,,(l) and gL, (l), 1 ~ 1 ~ Lp. OL,,(l)
is given by the form Eq. (15) with all indices of the B ma-
trices increased by 1—1, and gL,,(1) has the form Eq. (16)
with all time indices shifted by 1—l.

We start by constructing Op, (1) and gL, (1) by standard
matrix inversion in O[(Np) ] operations. We then per-
form Monte Carlo updatings at all sites in the p times
slices 1, Lp+ I, . . . , (p —1)Lp+ 1, and after each accepted
move we update the Green's function Eq. (16) in (Np)
operations through Eq. (13). This updating takes also
O[(Np) ] operations for all sites in the p time slices.
Next, we need the Green's function gL, ,(2) to update time
slices 2, Lp+2, . . . , (p —1)Lp+2. The elements of gL,,(2)
are obtained through the relations

At the lowest temperatures, p 3 was used. The comput-
er time used to obtain the data in Fig. 1, with 2200 Monte
Carlo sweeps, was 78 min. The lowest temp rature point
took 22 min. Applications of this approach to a variety of
questions in Hubbard and other two-dimensional models
are under way. The algorithm remains stable down to ar-
bitrarily low temperatures. Lattice sizes of 8XS and P
values of 20 can be studied with reasonable amounts of
supercomputer time (several hours on a Cray X-MP
supercomputer).

Finally, we comment on the comparison between this
approach and other Monte Carlo approaches to Hub-
bard-like models based on equations of motion
methods. ' ' In a hybrid Monte Carlo approach "one
proposes a global move of all variables, and the computer
time for determining the acceptance scales only as N 3, as
a single determinant is needed. However, for the
molecular-dynamics equations one needs the values of g
for all time slices; if an approximate g is used, the accep-
tance will decrease as N and L increase. It appears to us
that asymptotic scaling of the computer time as (NL) is
inescapable for Hubbard-like models at low temperatures;
therefore, it is the prefactor that will determine which of
the different algorithms is most efficient. One advantage
of our approach is that we can deal with Ising rather than
Gaussian auxiliary fields, which have been shown to lead
to significantly shorter autocorrelation times in the simu-
lations. '
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