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Critical exponents of percolating wire networks

1 DECEMBER 1988

James M. Gordon* and Allen M. Goldman
School of Physics and Astronomy, University of Minnesota, I M Church Street S.E.,

Minneapolis, Minnesota 55455

Brian Whitehead
National Nanofabrication Facility, Cornell University, Ithaca, New York 14853

(Received 11 July 1988)

Measurements of electronic and magnetic properties of percolating, aluminum wire networks

are presented and compared with numerical and analytic results. As opposed to vapor-deposited

films, these networks are well suited for comparison to theory of two-dimensional percolation since

they are exact replicas of models used to study percolation. We find that the ratio of the ex-

ponents for the conductivity and the percolation length, t/v 0.98+ 0.03, is consistent with recent

computer studies but not with the Alexander-Orbach conjecture. The critical current exponent,

within error, is given by v v 3 . Finally, the critical field exponent is given by k 1.11+0.04,
consistent with our prediction of k v8-1.15 as well as with numerical studies.

I. INTRODUCTION

Much of the current work on disordered systems uses
percolation as a model for the sample geometry. The
effects of this geometry on both normal and superconduct-
ing behavior are of interest. For example, the percolation
model may help to describe the metal (superconducting)
-insulator transition in certain metal-nonmetal compos-
ites. ' Also of interest are the properties of fractals which
may offer a systematic method for studying disorder.
Percolating networks are expected to reflect an underlying
fractal geometry common to many disordered systems. '3

To date, studies of percolating systems have been dom-
inated by analytic and numerical approaches. Experimen-
tal work has been carried out on thin, single-component
films and alloys, each of which is only an approximate ex-
ample of the regular lattices explored theoretically. Criti-
cal exponents for normal-state properties have been stud-
ied numerically and include t, the conductivity exponent,
v, the correlation length exponent, '

P, the mass exponent,
and f, the elasticity exponent. More recently, analytical
and numerical work has been used to determine critical
exponents for superconducting properties such as k, the
critical field exponents s and v, the critical current ex-
ponent. In addition, measurements have been performed
on thin-film materials such as Al-Ge systems which are
expected to have a percolative geometry. '

There are inconsistencies between theory and the re-
sults of experiments on real, disordered materials. These
include measurements of k, where theory ranges from 0.7
to 1.16 and experiment has found k=0.6, and analytic
determinations of U. For the latter exponent, the only
measurements are those on quasi-two-dimensional Pb-Ge
films where the value of t may be in question. ' Incon-
sistencies may be due to the differences between the un-

derlying models which involve regular lattices in the
theory and random lattices in experiments.

Advances in lithography have allowed us to fabricate
percolating wire networks on a square lattice, precisely

the model upon which calculations are tnade. In this pa-
per, we present measurements of three critical exponents
[t,v (or v) and k] that are relevant to two-dimensional
bond percolation on a square lattice. Because our samples
exactly replicate the models used by numerical and
analytical studies, and are actually very large on the scale
of objects studied numerically, we expect our results to
not be size limited and to accurately reflect theoretical
work. Deviations between critical exponents characteris-
tic of our networks and those of thin films suggest impor-
tant differences in their respective geometries.

II. EXPERIMENTAL DETAILS

Samples were prepared by depositing pure aluminum

films onto oxidized silicon substrates. The films, 50 nm

thick, were evaporated through a lift-off mask written in

two-layer electron-beam resist by a Cambridge model
EBMF-2-150 electron beam microfabricator. These net-
works are identical to those reported upon earlier. They
are formed on an 800x 800 square lattice of wire bonds,

present with probability p. The wire widths were approxi-
mately 0.3 pm and the mesh size was a 1.7 pm.
Normal-state resistances varied from 1 to 100 0 and the

superconducting coherence length in all samples was

g, (0) 0.22 pm.

R cs:(p —p, )

or equivalently,

G cx: (p —p, )',

(la)

(lb)

III. RESULTS

First we consider a normal state property of the lattice,
its resistance, R 1/G (G is the conductance). The criti-
cal exponent for the resistance of the network is defined by
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where p, is the percolation threshold. We can estimate r

using the "nodes, links, and blobs" picture of percola-
tion. " In this picture, the original lattice with mesh size a
is replaced by a larger lattice with a mesh size equal to the
percolation correlation length, g~

=a (p —p, ) "& a,
where v —', . The resistance of any square lattice scales
with the mesh size and thus

(2)

or, t v.
Based on the assumption of a universal spectral dimen-

sion, d —', , for homogeneous fractals, Alexander and Or-
bach'2 (AO) have conjectured that

t/v (3D/2 —2 —P/2 v)

91/96 0.947. . . , (3)

where v —', and P &'& and D is the Euclidean dimen-

sionality of the system taken to be 2. Computer calcula-
tions have shown that while (3) is close, it is probably not
exact. Numerical results agree to high precision and give
t/v 0.973+ 0.004, in disagreement with the AO conjec-
ture. From measurements on thin Au films, Palevski er
al. '3 found, making the assumption d —d, cLp —p„ that
r 1.25+ 0.05 and t/v 0.94. Here d —d, is the
difference between the nominal thickness and thickness at
the percolation threshold. Octavio, Gutierrez, and
Aponte' determined t for sputtered thin films using the
same assumption and found t/v 0 94+0 05. '.

In Fig. 1 we show the resistance as a function of
(p —p, ) for various values of p. In our samples, the per-
colation parameters p and p, are determined from the
geometrical design and no assumptions regarding their re-
lation to d is needed. The solid line reflects a best fit to the
data yielding t 1.31+ 0.03, which together with v

gives

where I, 1 is the critical current of a single link. It im-

mediately follows that the dependence of I, on Ap is

f ce ( t -d ~ gp v(D I)— (6)

as discussed in Ref. 9. For D 2, this gives v v 1.3, a
result supported by analytic work in Ref. 5.

teresting to note that a single exponent t describes data at
all values of p, not just in the critical region, (p —p, )«1,
a result also found in the work of Refs. 13 and 14.

Next, we discuss the critical current in the supercon-
ducting state as a function of p —p, . In Fig. 2 we show
the temperature dependence of the critical current in two
networks with different values of dp (p —p, ). First, we
notice that, at least for small values of hT T T,—
(T, 1.2485 IO, there is a linear relationship between I,
and hT. Theoretically, we might expect the critical
current to depend upon hT3~2 in the homogeneous case or
hT ~' for inhomogeneous samples. Previous measure-
ments, however, exhibited linear behavior, characteristic
of short, weak links. '5 This is consistent with the idea of
phase slips in the strandlike superconducting links near p, .
I-V curves for our sample are shown in the inset to Fig. 2.
Here, the characteristic length is likely the inelastic
diffusion length which may be several micrometers in
aluminum wires at T„L;»L~,d. Jumps in the voltage
are reminiscent of discrete normal regions forming on the
links. "

Clearly, the critical current is expected to decrease as p
approaches p, . Again, we can use the "nodes, links, and
blobs" model" to estimate the behavior of I, as a function
of hp. We envision a hypercube, one face of which cuts
(L/g~) ' current-carrying channels giving us a critical
current of the form

(5)

t/v 0.98 ~ 0.03 . (4)

This is consistent with both simulations and thin film
work, but, within the calculated error, not with the AO
conjecture (although the margin is quite small). It is in-
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FIG. 1. Log-log plot of resistance vs hp (p —p, ). Squares
are experimental data and the line is a best fit with slope
t 1.31 +' 0.03.

QTc (K)

FIG. 2. Log-log plot of critical current vs LET, (T, —T).
The circles are for a sample with p 0.60 and the squares for
one with p 0.52. The straight lines identify the region linear in

h, T,. The inset shows typical I-V characteristics for p 0.52 at
several temperatures (T 1.244, 1.239, 1.230, 1.220, 1.214,
1.205, and 1.208 K from left to right).



CRITICAL EXPONENTS OF PERCOLATING WIRE NETWORKS 12021

(r +p&/2 (7)

Equation (6) does not consider phase coherence be-
tween the various links and is, therefore, accurate only in
the inhomogeneous region where hp(&1 and b~&&g„
where (, is the superconducting coherence length on the
network. Entin-Wohlman et al. have considered both the
inhomogeneous and homogeneous limits and in the latter
they find
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Using well-known two-dimensional results t=1.3 and
P=0.14, we expect that v (t+P)/2= 072.

In Fig. 3 we have plotted dI, /dT as a function of Ap.
The derivative is measured in the linear, small hT, regime
of Fig. 2. One can see a change of behavior as one passes
from the, presumably, inhomogeneous region (hp «1) to
the homogeneous region (hp»0). Unfortunately our
networks do not lie close enough to p p„and at
sufficiently dense values of p, to completely enter the inho-
mogeneous regime. However, U is clearly larger at small
Ap than large and is close to v —", (see solid line of Fig.
3). At larger Ap, the exponent decreases and is consistent
with the homogeneous prediction, v 0.72. The crossover
is broad and occurs somewhere in the range 0.02 & Ap
&0.08. Below we shall see that this is similar to the

crossover in the behavior of the critical field H, (2').
Finally, we consider the behavior of H, (qbp). In Ref. 3

we described the method used to make these measure-
ments. There we presented results for 0.04~ hp ~0.10
in which H, 2(T) was always linear in hT (T, —T) and
we defined the critical-field strength as dH, 2/dT. For
values of hp & 0.2, reported here, the temperature depen-
dence of H, 2 is no longer linear (hT ~ H', with
0.85& a &1.0) and we adopt the convention that the
critical-field derivative is represented by dH, i/dT
=0.16/hT(0. 1G). The nature of this sublinear tempera-
ture dependence is unclear.

In Fig. 4, we plot the critical field strength as a function
of Ap for 0.02~hp~0. 5. Again, we might expect a
transition between inhomogeneous (dp«1) and homo-
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FIG. 3. Log-log plot of dl, /dT vs Ap (p —p, ). Squares are

experimental data and the curved line is a guide. The straight
line is a fit to the points with p~0.54 and has a slope of
U 1.33.
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FIG. 4. Log-log of dH, 2/dT~A vs hp (p —p, ). The
straight line is a fit to p ~ 0.54 and has a slope of
k 1.11+0.04. The dashed line is the result of the simulation
of Ref. 7.

geneous (dp»1) regimes. This appears to be the case,
with the power-law behavior, dH, 2/dT~hp, charac-
teristic of the homogeneous regime, saturating as hp ap-
proaches zero. The broad nature of this transition is sug-
gested by Alexander' and is possibly seen in the data of
Ref. 6.

Analysis of our data for hp & 0.04 yields k 1.1
+'0.05. Using our earlier result, k ve, we calculate
k =1.15, where we use the two-dimensional values v

and e (t —P)/v=0. 87. This is in good agreement with
both our data and the simulation of Simonen and Lopes
(the dashed line in Fig. 4). They actually plotted the re-
lated quantity,

A dH, 2/dT((((0)/L) (T,/Hp)l .

The dependence of dH, 2/dT on hp is almost identical in
the simulation of Ref. 7 and our data, each showing a
"saturation" in the limit of small hp. The crossover is
again quite broad and over about the same range as that
in Fig. 3. The measurements of dT(H) were generally
taken in the range 0.05 «H «0.5, or, equivalently, where
the magnetic length has the values 6 pm «LH (pp/H) '

«20 pm. If we assume that g~ =LH at the crossover we
would expect it somewhere in the range 0.03 & hp & 0.08.
Soukoulis et al. have predicted two different definitions
for k, one describing the band-edge states and one
describing the onset of extended states. They find

kbandedsc 0.84 & k 1.15 & kex«„d,d =2.50 and suggest
this as evidence that our measurements lie somewhere in
between, most likely due to the absence of nonlinear terms
in the theory.

In summary, we have fabricated percolating networks
which reproduce theoretical models. The critical ex-
ponents measured for conductivity (t), critical current
(v), and the critical-field exponent (k) all agree with
theoretical values. This suggests that results of measure-
ments on thin films which deviate from theoretical expec-
tations are probably due to deviations from true percolat-
ing geometry.
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