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We discuss the nature of ferromagnetism in uItrathin films of magnetic ions, here regarded as
two-dimensional Heisenberg ferromagnets subject to uniaxial anisotropy with the easy axis normal

to the film. We show that a phase transition to ferromagnetism occurs always for arbitrarily
small anisotropy. Renormalization-group scaling relations for the transition temperature and the

temperature variation of the correlation length are obtained. Implications of these results are dis-

cussed.

Remarkable advances in materials technology now al-
low preparation of ultrathin films (monolayer, bilayer,
etc.) of extraordinary quality, from the magnetic transi-
tion metals Fe, Co, and Ni. These are deposited on
single-crystal substrates, or incorporated within multi-
layer structures.

The nature of the magnetism in such ultrathin films is
of fundamental interest, since it may differ from that real-
ized in bulk single crystals by virtue of their reduced
dimensionality. In the absence of dipolar couplings, and
anisotropies of spin-orbit origin, these materials can be re-
garded as physical realizations of the two-dimensional
Heisenberg ferromagnet. Thus, there can no longer be
range order at any finite temperature in this picture. The
recent Mossbauer study of monolayer Fe films described
by Koon et al. 2 shows that at and considerably below
room temperature, large-amplitude, slow-spin fluctuations
are present. These are evident as broadening of the spec-
tra; in fact, resolvable structure appears only below room
temperature. These results are consistent with the ab-
sence of long-range ferromagnetic order in the spin sys-
tem.

At the same time, various studies, '2 including the
Mossbauer experiment just discussed, established that in
monolayer Fe films, uniaxial anisotropy with the easy axis
normal to the film is present. Theoretical studies of an
isolated Fe monolayer yield spin-orbit-induced anisotro-
pies with magnitudes similar to those observed. A ques-
tion then arises. Is the presence of such anisotropy, possi-
bly very weak compared to the effective exchange energies
in a material such as Fe, able to induce a phase transition
in two dimensions to a ferromagnetic state with true
long-range order? This question was answered in the
affirmative by Khokhlachev, within a mean-field ap-
proach. This issue was also discussed by Pelcovits and
Nelson, within the framework of a renormalization-
group treatment that outlines the nature of the phase
transition, upon assuming that a 6xed point exists. The
present paper explores the renormalization-group anal-
ysis, and then proves that a phase transition of Ising char-
acter does indeed exist. We address the experimental
work discussed above in an explicit manner.

We proceed as follows. If 0 is the Hamiltonian, and
P 1/kaT with ktt Boltzman's constant, and T the tem-

perature, we begin with

PH d x(VS) — ' d xS (x)J
2T" 2Tao "

with J a measure of the strength of the exchange coupling,
K the anisotropy constant, and ap the lattice constant.
(Recall that many years ago, it was argued that this form
applies to long-wavelength spin fluctuations in bot11

itinerant and localized spin systems. ) While our interest
is in the case where the order parameter S has three com-
ponents, we generalize to the case where it has N com-
ponents, with the Hamiltonian still given by Eq. (1).

In a continuum theory such as described by Eq. (1), the
values assumed by J and K depend on the choice of the
underlying microscopic length scale ap. Thus, these two
parameters may be viewed as functions of ap. In the criti-
cal region, a rescaling of ap can lead to unchanged physics
if we modify T/J and K/T appropriately. Following Po-
lyakov, 'o we obtain the renormalization-group equations

J J +N —21 (2a)
T(ap) T(ao) 2tt ap

and

(2b)
K(ap) K(ap) N T(ap) apl+ ln

ap T(ap) ap T(ap) 2tt J ap

From these, we show below that the combinations

J i(N —2)1( )
T(ao) 2&

and

[K(ao)/Jao2] [T(ao)/J] 2iiN

are invariant under changes of ao.
Requiring that the expression for the correlation length

A, (T) also be invariant in form under such rescaling leads
to

1 l p~j](~ 2)T
X(T) ao

~ 21(w —2) .

XF ~(4~((N 2)Ti K T
J J (3)

Our method is not powerful enough to yield the form of
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the function F. A critical point will occur at a tempera-
ture at which the correlation length becomes infinite; thus,
at the critical temperature, F has a zero. It follows that
this critical temperature T2 for the two-dimensional sys-
tem obeys the following scaling law:

' 2/(N —2)
T2 4'

J J (N —2)T2
const .

The result in Eq. (4) is obtained as follows: Equation
(2a) may be rearranged to read

1 J
ap —ap T(ap)

J
T(ap)

inap —lnap

Qp Qp

(Sa)
or in the limit ap ap, we have

8 J N —2 8
lnap,

8ap T(ap) 2n 8ap

which can be arranged to read

J 8T N —2
Qp

8ttp 2z

A similar treatment of Eq. (2b) gives

K(ap) N K(ap)
Qp

8&p ap T(ap) 2' ap

which may be combined with Eq (Sc) to give

ap K(ap) 2K(ap) — K(a p) T(ap) .
1

8ap xJ

(Sc)

(7)

The results in Eqs. (Sc) and (7) are identical to the first
and last of Eq. (4) of Pelcovits and Nelson. t')

From Eqs. (Sa) and (7), one may show that the deriva-
tive of the combinations (K/Jap2)(T/J) 2tt~ ' vanishes,
so this quantity is independent of ap. Using the fact that

I

J/T(ap)+(N —2/2z)lnap const, as follows from Eq.
(Sb), we may replace ap by exp[ —2'/(N —2)Tl, and
the result in Eq. (4) then follows. Thus, the correlation
length must obey a relation such as that given in Eq. (3).
We note two limits: the physically interesting case of
N 3,

K T2

J J
4'

exp const,
T2

T n ttp,
(10)

The argument presented above, as many other renor-
malization-group analyses, cannot determine whether
there is a phase transition or not; one can use such an ap-
proach to decide if there is a phase transition, then the
scaling relations obtained must hold. This is the point of
view put forward by Pelcovits and Nelson.

We now establish that there is indeed a phase transi-
tion. Within this limit, we establish that the character of
the phase transition is Ising-like, and in the large-N limit
we obtain an explicit expression for the temperature T2 of
the phase transition.

To see this, we rewrite the partition function corre-
sponding to Eq. (1) as

and the large-N result
r

K 4'—exp const.
NT2

Further on, in the large-N limit, we evaluate the constant
on the right-hand side of Eq. (9).

The renormalization-group calculation presented here
and by Pelcovits and Nelson is a "one-loop" calculation,
and is thus valid for a limited range of parameters; Po-
lyakov' [his Eq. (17)) shows the region of validity is

Z Q [dS(x)da(x) j exp

d'x 1Z Qda(x) exp Fp(T/J) —
2

d xa (x)4
Qp 2Qp

~ (/2J221~22K1(VS) d x —
2

a (x)d x — —
2 a(x)S, (x)d x . (11)2T4 2Qp 4 T Qp

4

The Gaussian integration over a gives back the original Hamiltonian. For a(x) fixed, we may view Eq. (7) as the parti-
tion function of an isotropic Heisenberg spin system in an external-external magnetic field h(x) VTKa(x)s. As, for
any finite T, this system has no critical point, the free energy may be expanded as a power series in the external field

K 'dxdy+— a(x)G(x-y) a(y) + [terms quartic in a(x) ) +
Qp

(12)

Here G(x-y) is the two-point correlation function of the
Heisenberg system.

The form in Eq. (12) may be viewed as a p field theory
for a with the interaction range governed by the correla-
tion length of the Heisenberg system. The system ~ill
thus have a critical point corresponding to Eq. (4), with
Ising model critical exponents

One may also use Eq. (11) as a starting point for a
large-N expansion, where the quadratic term in a is of
higher order in N than the quartic and higher terms. For

Z „+dc(q)exp ——,
' d q a( —q)

x K
, G(q) a(q)

Qp

I

T & T2, we may keep only this term. The large-% correla-
tion function and correlation length are also known.
Thus, the effective theory for the field a(x) (in momen-
tum space) is
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with

and

JG(q) -(q'+rrt ')

2
2 ~ & —4'/NT

Qp
2

(i3a)

(i31 )

The effective correlation length for the a field then
satisfies

2 ~ 2 —4'/NT (i4)

so we have

4' 1
lun T2~w- N 1n(ir J/K)

(i5)

The presence of uniaxial anisotropy thus always pro-
duces a phase transition to ferromagnetism of Ising char-
acter at finite temperatures, no matter how weak the an-
isotropy (provided, of course, that K &0). Furthermore,
the logarithmic dependence of T2 on K given by Eq. (13)
shows T2 can be quite substantial, even for very weak an-
isotropy. Khokhlachev's mean-field treatment provides an
expression for T2 similar to that in Eq. (15), but with N
replaced by N —2; he con6nes his attention only to the
case N 3. We prefer to extrapolate our large-N expres-
sion down to N 3, viewing this as a procedure more reli-
able than mean-field theory.

We may estimate K for a monolayer as follows, when
the easy axis is normal to the surface. For the monolayer,
assume K is dominated by the spin-orbit-coupling contri-
bution K, , Then for a film of finite thickness, with d lay-
ers, an effective dipolar anisotropy —4irM, develops,
which acts on spins in each layer. Thus, with increasing
film thickness, the film is described by an effective anisot-
ropy constant K,s which decreases, eventually to become
negative at a certain number of layers d, . Indeed, the
data show that for films thicker than four or five layers,
the magnetization is parallel to the surface. ' Thus,
d, =5, and 2K, , =—4aM, d„assuming the spin-orbit con-
tribution to act only in the surfaces and that it has the
same magnitude on each. With 4+M, =2X10 G, we

in agreement with Eq. (9).
In the same limit, Ts 4ttJ/N is the transition tempera-

ture to the ferromagnetic state of the three-dimensional N
component system. Using this result for N 3, we obtain
an estimate for the transition temperature T2 of the two-
dimensional system

3tr T3T2- Ti/In

have K, , ~5x10 G, or in teinperature units, K, , -10
K. Hence, with Ti 10 K, ln(3trTq/4 K) -6, and for the
monolayer we estimate T2-T3/6= —150 K. This is well
below room temperature but substantial, considering the
modest value of K/J. Ordering of the two-dimensional
Heisenberg ferromagnet is "triggered" easily by a weak,
spatially uniform perturbation.

Our estimate of T2 is consistent with the Mossbauer
data of Ref. 2, which show that in monolayer films of Fe
fluctuations in the spin system slow dramatically below
room temperature. Unfortunately, such a localized probe
has difficulty sensing the onset of a true phase transition.

Measurements of the susceptibility of the spin system
would prove of great interest.

As remarked above, when the easy axis is normal to the
surface, the dipolar contribution to the anisotropy con-
stant will cause K,s to decrease with increasing thickness
d and to change sign as d passes d, . Thus, we expect T2 to
decrease initially as the film thickness increases, and when

K,ir becomes negative there will be a crossover to XY be-
havior at low temperatures; long-range order is then ab-
sent at T 0, since the correlation length remains finite
there [Eq. (14), with K & 0).

The above comments on the variation of K,tt with d ap-
ply only to the case where the easy axis is normal to the
surface. An easy axis in the plane will cause K,s to be
roughly proportional to d itself, assuming the spin-orbit
anisotropy to dominate and be the same for each plane of
spins. Then T2 will increase with d. The present theory
does not describe the crossover to three-dimensional be-
havior as d increases. Also, at this time the physical ori-
gin of the in-plane anisotropy is not clear in our view, so it
is difficult to be precise about the dependence of T2 on d
when the magnetization lies in plane in the ordered state.

It would be of great interest to measure K,s as a func-
tion of 61m thickness, along with T2. In principle, K,ff
could be measured by the Brillouin scattering of light
from spin waves, excited at temperatures T«T2. This
technique has been applied to the study of ultrathin 61ms

by Hillebrands and co-workers, who report spectra taken
from 61ms with thicknesses in the few-monolayer range. "

The purpose of this paper has been to outline, on
theoretical grounds, the behavior expected for a very thin
two-dimensional Heisenberg ferromagnet, subject to the
uniaxial anisotropy elucidated in recent experiments. It is
our aim to provide a framework within which subsequent
data may be discussed.
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