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Optical properties of excitons in semi-infinite semiconductors
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We start from a microscopic model, previously developed by the authors, of excitons in semi-
infinite semiconductors. The model allows the determination in closed form of the nonlocal exciton
polarizability from wave functions. This embodies the additional boundary condition and a transi-
tion layer, whose depth is smaller than the exciton radius, where the exciton polarizability varies
from the vacuum to the bulk value. Here we show how to calculate in closed form within the mi-
croscopic model non-normal incidence reflectivity, surface-polariton dispersion, and attenuated to-
tal reflection. The comparison between theory and experiments shows good agreement in several
materials, while some discrepancies are found in InP and GaAs.

I. INTRODUCTION

Although it is now three decades since the fundamen-
tal problem of exciton reflectivity was addressed in the
pioneering work by Pekar,' a generally accepted solution
is not yet available. The situation is complicated by two
different—yet concurrent—effects, i.e., the spatial
dispersion of the exciton polarizability and the surface
potential. The former, arising from the finite value of the
exciton mass M, generates two polariton branches, whose
relative amplitude is determined by the so-called addi-
tional boundary condition (ABC). The Ilatter effect,
which occurs even if M is infinite, arises from the finite
extent of the exciton wave function, that leads to a repul-
sive surface potential and therefore to the dead-layer
effect.> While much work has been done involving mac-
roscopic models of the dead layer and ad hoc assump-
tions of ABC,’ it is now clear that both the dead layer
and the ABC (and their relation) can be derived from the
knowledge of exciton wave functions in the semi-infinite
semiconductor.*> It is the exciton behavior near the sur-
face, i.e., the surface potential, that determines the ABC.

Most of the work on exciton wave functions has been
made assuming the no-escape boundary condition® that
implies the vanishing of the wave function when either
the electron or the hole is at the surface. Such a bound-
ary condition can be derived from general arguments,
and has been shown to hold at least when near-gap sur-
face states are not present,6 as is the case for surfaces not
held in ultrahigh vacuum, where dangling bonds are usu-
ally saturated by air molecules. It also seems reasonable
to neglect the image potential, which repels electrons and
holes from the surface, since this effect has already been
accounted for—yet partially—by the boundary condi-
tion. Within this framework, the present authors have
given a numerical solution of the effective-mass exciton
equation, based on a variational method of fulfilling the
boundary conditions.>” A different approach, based on
the adiabatic separation of the light-mass relative motion
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from the slow center-of-mass motion,®® leads to nearly
identical wave functions, provided that a very accurate
solution of the light-mass problem is carried out.” The
beautiful agreement between these independent ap-
proaches confirms the validity of both.

The numerical wave functions computed in Ref. 7 can
be well reproduced by analytical wave functions involv-
ing a fitting parameter, allowing the analytical calcula-
tion of the nonlocal dielectric susceptibility of the
vacuum-semiconductor system.” A transition layer
(roughly speaking, the dead layer) is present below the
surface, where the exciton contribution to the dielectric
function, starting from zero at the surface, is smaller than
in the bulk. The transition-layer depth depends on the
mass ratio m, /m, and is slightly smaller than the exciton
radius ag. After this layer, the dielectric function is
given [in terms of the bulk dielectric function €,(z —z')]
by

€(z,2')=€,(z —2')+ U€y(z +2’)

as hypothesized in Ref. 3. The weight U of the specularly
reflected term turns out to be dependent on frequency,
dead-layer depth, and on other exciton parameters,>!? in
contrast with simpler expressions resulting from the as-
sumed ABC’s.> This work has pointed out for the first
time the connection between the ABC and the dead layer.

In this paper we address the following question: is the
present model of excitons in semi-infinite semiconductors
(based on the no-escape boundary condition and on the
neglect of the image potential) realistic enough to de-
scribe optical experiments in real semiconductors?
Answering this question will shed some light on the im-
portance of extrinsic dead layers (arising, for instance,
from built-in electric fields), and on the reason why previ-
ous estimates of the dead layer were more than twice
larger than the present result. Furthermore, we would
like to investigate the validity of the three-layer model
(where a homogeneous dead layer is assumed) with
respect to our results.
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In order to answer these questions we use the nonlocal
dielectric susceptibility obtained from our wave functions
to predict the results of a number of experiments: s and p
reflectivities, their phase difference, the relative popula-
tions of lower- and upper-polariton branches, surface po-
lariton dispersion, and attenuated total reflection (ATR).
The results of our calculations are compared with those
based on Pekar’s ABC (which is the most similar to ours)
with or without a homogeneous dead layer, and with ex-
perimental data when available. Our approach in this
work is not to adjust exciton parameters in order to
reproduce closely a single experiment, but rather to use
the same set of parameters, mostly taken from the litera-
ture, to give a reasonable account of many experiments.
We find that our calculations reproduce fairly well exper-
imental data in several cases, showing that extrinsic dead
layers should not be important there. However, in the
case of GaAs and InP some features of the experimental
spectra cannot be reproduced by the present microscopic
model.

In Sec. I A we summarize the equations describing s-
wave reflectivity, already derived elsewhere;’ in Sec. II B
we derive the equations describing p-wave reflectivity. In
Sec. III we treat surface polaritons and ATR. The reader
who is not interested in the mathematical developments
can jump directly to Sec. IV, where the results obtained
for normal- and oblique-incidence reflectivity and ATR
are discussed and compared with experiments. Here we
also discuss the phase difference between s and p
reflectivities and the relative population of upper- and
lower-polariton branches. The conclusions of this work
are summarized in Sec. V.

II. THEORY OF REFLECTIVITY

In this section we give the expressions of s and p
reflectivities, derived from the nonlocal dielectric func-
tion

€(k),z,2")=¢€00(z —z') +(idmaM 0,/ 2#q)
X {explig |z —z'| )+ Uexplig(z +z')]
—2q[expligz — Pz')+expligz’ — Pz)

—exp(—Pz —Pz")]/(g —iP)} (1)

that has been obtained starting from the exciton wave
functions.>” Here M| and M, are the exciton masses in
the directions parallel and perpendicular to the surface,
fiw, is the exciton energy at k=0, P is the inverse
transition-layer depth,

q =[2Ml(ﬁw—hmo+iF)/ﬁ2—kﬁMl/M”] , (2)
U=(q+iP)/(q—iP) and T is the exciton lifetime

broadening. |

3E 2
e X 2 @7
tky—, + [ku €02

E,—iB fomdz’exp(iq |z—2z"|)E,(2')/(2q)—7¥ expligz) — & exp(—Pz)=0 ,
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A. sreflectivity

The s-wave reflectivity has been computed in Ref. 5.
Here we restate the result for the sake of completeness, in
a slightly different form, using the concept of surface im-
pedance.

We consider s light polarized in the y direction, propa-
gating within the xz plane. The electric field inside the
crystal (z >0) is’

2 . 2 2 ik x
é’y(x,z)z 2 Gi elq,‘z+ 2P(P +4q ) e—Pz ek|| .

i=1 (‘Iiz—qz)(P—i‘Ii)
(3)
Let us define the new quantities:
vi=1, 4)
(g3 —q*)P —ig;)(g;—g —7)

72:“%/6‘):‘<q%—q’><P—iq1><q2—q—y> B

with

y=(q +iP){(2P/B)P +ig)[€ylw*/c*)+ P —kf]—1} ,
(6)

B =(w?/c4maM 0,/ . @)

The reflectivity can be obtained, in terms of the s-wave
impedance

Z, = (?y(x,O+ )/H, (x,07%)

2 2P(P*4¢?)
1+
2 P —ig)
=—(w/c) 3 SPHP1a0) (8)
+q
i |9t 5
i§1Y Wt G =g (P —ig))

from the continuity of the electric and magnetic fields at
the surface. Writing the vacuum electric field as

6,(x,z)=[exp(ik,z)+r.exp( —ikzz)]eik"x , 9

with k,=(w/c)cosd?, ¥ being the angle of incidence, we
obtain the reflectivity amplitude as

ro=—(1+ck,Z, /0)/(1—ck,Z, /o) . (10)

B. p reflectivity

We seek solutions of Maxwell’s equations with the elec-
tric field parallel to the plane of incidence (xz). It can be
written in the form

64(x,z)=E (z)explikx) (a=x,y,z) . (11

We take E, and E, different from zero, but E,=0. In-
serting &,(x,z) and the nonlocal dielectric function (1)
into Maxwell’s equations, we obtain

(12a)
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: aEz 2 2 X ’ . '
zk"eoEx+60¥—k”B(c /@ )fo dz'E, (z')explig |z —z'])/(2q)

+iB(c2/w2)% fowdz'Ez(z')exp(iq |z —z"|)/(2q)—mnexpligz) — Oexp( — Pz)=0

(12b)

Here 0, 1, 7, and 6 are the following integrals:
0=B[(c%/0*)/(q —iP)]fowdz’[kuEx(z’)+iPEz(z')][exp(——Pz')—-exp(iqz')] , (13)
n=B{(c*/0?)/[2q(q —iP)]} fowdz'[k"E,,(z’)+qEz(z’)][(q +iP)expligz’')—2q exp(—Pz')] , (14)
7={iB /[2q(q —iP)]} fo“’dz'Ez(z')[(q +iPexpligz')—2q exp(—Pz")] , (15)
8=iBfwdz’Ez(z')[exp(—Pz’)—exp(iqz’)]/(q —iP), (16)

and the quantities ¢ and B are deﬁned in (2) and (7), respectively. If we operate on both equations (12) with the

differential operator (g%+3%/9z%),* we obtain two coupled differential equations:
.| 9 oE, o’ | 8 o’
ik, 3z - +q° % kﬁ—eo? gz-+q2 kﬁ—eo—;{ +B |E,=(P?+¢*)8exp(—Pz) , (17a)
T B— Eo+ |62 eqi—BS |2 2)9 exp( — Pz) (17b)
l I foa +60q x+ 60822 +€0q - 602 3z - +q expl — .
The solution of this system is
E, (2)= 2 6iexplig;z)+ & exp(—Pz) (a=x,z) (18)
i=1
where 6 exp( — Pz) is a particular solution of the nonhomogeneous system, with
6= |P|eg—Bs /(P +q?) _]e 5|/ |ki—prm @ er—B (192)
P= €o—5 2 +q + I=F = 2%+ Pltgq? a
2 B
6x= 85— |k} —eg S +——— |67 ] . (19b)
p k"P =50 .2 Plyq? | P
{
The first term in (18) is the general solution of the homo- 6i=—(ky/q;)67 (i=1,2) (21a)
geneous system, where the wave vectors g; are those of
bulk polaritons, given by the equation for transverse waves, and

2
2_ 2 ¢
2__ B=—

€olgi —97)+ »? for the longitudinal wave (i=3). The substitution of (18)

inside the original integro-differential system (12) yields

5 two new conditions, which play the role of ABC’s:
X (g7 —q?) |65 —ki—q? |+B|=0, @O , g &
¢ 3 — i =247/B (22a)
with Img; >0. The particular ¢; which makes the first  =! “—q 9
square parentheses vanish, that we call g3, is the wave 3 67 65 w?
vector of the longitudinal polariton, carrying zero mag- ‘gl 4i—q —'p tig =2gq 1:2—’7—4 Y / (kyB) . (22b)
netic field. =

The relation between the x and z field components is
obviously

After a straightforward—but tedious—calculation, we
explicitly find the electric field in the medium:

2P(P*+4?)
E, (z)= ; |lexplig;z)+ exp( —Pz) (23a)
217 PTG g P —ig) T
E,(2)=6% 23‘, 7, |explig;z)+ 2P(P’+q7) exp( —Pz) (23b)
i=1 (¢} —q*)P —ig;)
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yi=—kyvi/q; (i=12), (24a)
V3=q3v3/ky , (24b)
and
71=1, (25a)
X ) ox q,(P —ig;) (g5 —¢°)
Y, =63/67=— . 2 2
q,(P—iq,)g71—q")
B(P +iq1)+2P(P2+q2)(P2—kﬁ+N2)+%(P+iq1)2—p1p4B/p3
X BP , (25b)
B(P +iq2)+2P(P2+q2)(P2——kﬁ+N2)+'R,7(P+iq2)2—p2p4B/p3
v3=63/6T=a,+ayy; , (25¢)

with
N?=¢yw?/c))—B/(P*+4?), (26)

pa=P +igy;+(2P/B)(P*+¢*)(P?—k}+N?)

+P(P +ig;)(P —ik}/q3)/N?, 27

P +iq,»——%(P2+q2)(kﬁ _N?1iPg,)

pi/p3= ] T ,

(i=12), (28)

(P —ig;)(g3—q*) ki p
T (P —ig)g?—q%) 445 P3

a; (i=1,2). (29)
Finally the p-wave impedance becomes
3

Eri?’i

=1

Z,=E,(0")/H,(0")= —(kjc /oe) S—— ,  (30)
> 7
i=1
where
[;=142P(P?+q%)/[(g}—q* NP —ig;)] . (31)

Through Maxwell’s boundary conditions, namely the
continuity of E,, D,, and H,, we find the amplitude of
the reflected wave

rp=[—wZ,(0,k)/c +k;]/[0Z,(0,k|)/c +k,]. (32)

The limit P— o is of particular interest, because in
this case the exciton wave function does not embody the
evanescent wave (1+ A4)exp(—Pz). In this case it is sim-
ple to demonstrate that é“;, vanishes as P— o0, and the
result based on Pekar’s ABC without dead layer is
recovered. It should be emphasized that within our for-
mulation the ABC’s and the dead-layer depth are mutual-
ly dependent, so that only in the case of vanishing dead-
layer Pekar’s ABC’s are recovered.

III. THEORY OF SURFACE POLARITONS
AND ATR SPECTROSCOPY

It is well known that, in the absence of energy dissipa-
tion, Maxwell’s equations admit surface electromagnetic
waves—surface polaritons—with energy between #iw,
and #iw;.!"" The effect of the dead layer and spatial
dispersion on surface polaritons has been investigated by
many authors.*!!~15 In this section we derive the disper-
sion relation and show how to compute ATR spectra,
which are specially suited to detect surface polaritons,
within the framework of the nonlocal dielectric function
(1).

A. Surface polaritons

We assume that surface polaritons travel along the sur-
face parallel to the x axis. The electric field is

Ea(x,z,t)zEa(z)exp(ik“x —iwt) (a=x,z) . (33)

For the vacuum region (z<0) we seek solutions of the
form

E (z)=6%xp(Byz) (34)
with B, real and positive, given by
Bé:kﬁ —w?/c?. (35)

Within the crystal (z> 0) we search for solutions with the
electric field

3
E,(z)= 3 &fexp(—pB;z)+Eqexp(—Pz) . (36)

i=1
The solution of Maxwell’s equations for the surface po-
lariton is the same as for the p wave, provided we replace
g; by iB; (i=1,2,3). We obtain two integro-differential
equations similar to Egs. (12). The B; values are given by

[eo(B?+g*)—B(c? /0]

2
(Bi+4°) |e?7 —kf+B7 | ~B|=0 ()

with Re(B;) > 0.
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A calculation formally similar to that of Sec. IIB
yields the impedance of surface waves:

3 2P(P*+4?)
2Vi|l-—% 3 1
Z kic/ )i=1 (Bi4+q° NP +B;)
= c/€yw .
SW 1€/ ¢€o ﬁ-? ~ 2P(P?44¢%)
= (B?+q*)(P +B;)

(38)

From the boundary conditions their dispersion relation
becomes

B. Attenuated total reflection

The observation of surface polaritons is usually per-
formed by the attenuated total reflection (ATR) method,
involving a transparent prism separated by an air or
dielectric gap from the semiconductor. We adopt the
same formalism as in Ref. 4. The electric field is

é’a(x,z,t)=Ea(z)exp(ik”x —iwt) (a=x,z). (40)

In the prism region (1), for z < —d, we write

E{V(z)=exp(i8,;z)+ R exp(—iy,z) , (41)
EWN(z)=—1(—e " fRe "), 42)
It
where
172
2
2 2
81= é'p“c_z—k"

and ¢, is the dielectric constant of the prism.
In the gap region (2), for —d <z <0, the electric field is

EQ(2)=Ae P4 4,67, 43)
EZ(Z)(Z)=—-k”(Ale_azz‘—Azeazz)/(ibz) ’ (44)
where
2 172
2 @
6= |kj—€—3

and €, is the dielectric constant of the gap.
In the crystal (3), for z> 0, we write

)=6*§y. o Pi__2P(P’4q%)  _p
e (B+q})(P +B;)

E;'”(Z

(45)

3 -8,z 2P(P*+q?)
EP2)=6XS 7, |e Biz _ q e—Fz
1217 (B} +q*)(P +B;)

(46)

The boundary conditions at the prism-gap interface
z = —d and at the gap-semiconductor interface z=0 yield
the reflectance amplitude in terms of the surface im-

pedance Zgy (k,0):

€,C
Al+4l—(4l—a))E-2Zy
820)
R= , (47)
A4 A2 (42— 427
1 2 1 2 820) Sw
where
A1 =(i8ye,+8,)exp(—id,d —8,d)/(2k)) , (48a)
=(8,—ibs¢,)exp(idid —8,d)/(2k)) , (48b)
A7=(8,—i8,¢,)exp(—i8,d +8,d)/(2k)) , (48¢c)
AT =(8,+ibdy¢,)exp(i8d +8,d)/(2k ) . (48d)

IV. DISCUSSION OF RESULTS

In this section we discuss and compare with experi-
ments the results of calculations of exciton reflectance
and ATR carried out according to the formulas of Secs.
II and III. We want to address some issues: is our
theory, based on the neglect of the image potential and of
extrinsic dead layers, able to account for experiments?
What is the difference between our calculations and those
performed according to Pekar’s ABC (with or without a
homogeneous dead layer), to which our formulation is
mostly similar? What would be the effect of a larger
transition-layer depth, that might arise when the image
potential is taken into account? Is there any experiment
which might give a shortcut determination of such
depth?

A. Normal-incidence reflectivity

In order to answer these questions, we first consider in -
Fig. 1(a) the normal-incidence reflectance of CdS, as mea-
sured in a high-purity sample,'® where extrinsic effects
should be very small. The correct normalization of the
experimental result yields a peak reflectance of 0.51.'°
Our calculation, using a fixed value of the transition-layer
depth, 1/P=18 A, resulting from the computed wave
functions,’ is in very good agreement with experiment, as
already discussed in Ref. 10. The other parameters are
taken from Brillouin scattering!” and thin-film interfer-
ence experiments.'® Also shown in Fig. 1(a) are the re-
sults based on Pekar’s ABC, with vanishing dead layer,
and also our calculation carried out using a larger
transition-layer depth, 1/P=50 A. This value roughly
corresponds to 2ap, a widely used estimate of the dead-
layer depth.®!® The curve based on Pekar’s ABC is also
in very good agreement with experiment, while that cor-
responding to 1/P=50 A has a similar line shape but a
markedly different intensity and energy position. It is
clear from these results that the line shape is poorly sensi-
tive to the transition-layer depth, remaining unchanged
from O up to the largest considered value, S50 A. The
comparison between our calculations and those based on
the homogeneous dead-layer model is shown in Fig. 1(b).
The curves corresponding to small dead layer (d=18 A)
and to the same value of the transition layer (1/P=18 A)
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FIG. 1. Normal-incidence reflectance of the CdS 4, exciton.
(a) Comparison between experiment (long-dashed line, from
Refs. 10 and 16) and theory; theoretical curves are computed us-
ing different values of the transition-layer depth 1/P: 0 (short-
dashed), 18 (solid) and 50 A (dot-dashed line). (b) Comparison
between our calculations [solid and dot-dashed lines, as in (a)]
and those based on a homogeneous dead layer of depth d. Exci-
ton parameters used in the calculations: #Awy=2.5525 eV,
47a=0.013, €,=8.1, M=0.94, and ' =0.1 meV.

are very similar, while the two approaches yield quite
different results for larger depths (d =1/P=50 A).

The normal-incidence experimental spectrum of the C,
exciton in ZnO (Ref. 20) is shown in Fig. 2(a), together
with the spectrum computed from wave functions
(1/P=11.6 A, solid line), that based on Pekar’s ABC
(1/P=0, short-dashed line), and that computed for 1/P
equal to twice the exciton radius, i.e., 35.8 A (dot-dashed
line). The other parameters are taken from Ref. 20.
Pekar’s and our curves are very near each other, and in
quite good agreement with the experimental spectrum.
Both of them, however, present the same discrepancy
with respect to experiment, namely too high reflectivity
values between w, and w;. This shortcoming was over-
come in Ref. 20 by assuming, in addition to the dead lay-
er, a surface-perturbed layer, where exciton parameters
are different from bulk. It is interesting to learn whether
our theory, involving an inhomogeneous transition layer,
may account for the same effect. From inspection of Fig.
2(a) it seems that a larger depth of the transition layer, in-
termediate between 11.6 and 35.8 A, may give a better
agreement with experiment. This is indeed the case, since
the curve computed for 1/P=16.7 A, which is compared

0.8

(a) Zno

R(%)

R(%)

0 L n 1 1 a n 2
3410 3420 3430 3440 3450

FIG. 2. Normal-incidence reflectance of the ZnO C, exciton.
(a) Experiment from Ref. 20: long-dashed line; our calculations:
short-dashed line (1/P=0), solid line (1/P=11.6 A), and dot-
dashed line (1/P=35.8 A). (b) Experiment from Ref. 20: long-
dashed line; our calculatlons solid line (1/P=11.6 A) and
short-dashed line (1/P=16.7 A); homogeneous dead-layer mod-
el for d=16.7 A: dot-dashed line. Exciton parameters used in
the calculations: fiwy=3.4198 eV, 4ma=0.043, €,=6.2,
M=0.83, and I'=0.7 meV.

with experiment in Fig. 2(b), is in better agreement with
it. On the other hand, the homogeneous dead-layer ap-
proach, for d=16.7 A, leads to a larger discrepancy with
respect to experiment. We conclude that the inhomo-
geneous transition layer, characteristic of this model, is
an essential ingredient to achieve quantitative agreement
between experiment and theory in ZnO. The larger
depth of such a layer (16.7 A) with respect to that result-
ing from wave functions (11.6 A) may be ascribed to the
image potential, neglected in our model.

The normal-incidence reflectivity of InP, as measured
by Mathieu et al.,?! is shown in Fig. 3(a), together with
theoretical curves corresponding to 1/P=0 (Pekar’s),
83.3 A (computed from wave functions), and 238.1
A (2ag). The other parameters are taken from Refs. 5
and 22, with small changes made to reproduce the mea-
sured position of the dip, but without a least-squares
fitting procedure. The agreement between experiment
and our ab initio (i.e., from wave functions, 1/P=83.3 A)
calculation is reasonably good. Pekar’s curve is worse,
while the assumption of a large transition layer, as deep
as two exciton radii, yields a bad description of experi-
ment. It may be of interest to see if the homogeneous
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dead-layer approach gives better agreement. This can be
seen in Fig. 3(b), where the curve computed for d=238.1
A (homogeneous dead layer) is markedly different from
the corresponding curve 1/P=238.1 A, and more similar
to the experiment. The experiment is reasonably con-
sistent with all considered values of the dead-layer depth,
while it excludes the largest transition layer 1/P=238.1
A. However, the best agreement is with the curve com-
puted for d=238.1 A In partlcular, the steep rise of the
reflectivity above the minimum is well reproduced only
by this curve. We conclude that there is evidence of a
large ( ~2ay) homogeneous dead layer in InP.

In contrast with the materials considered so far, the
reflectivity of GaAs (Ref. 23) is not well reproduced by
the present theory, as already noted in Ref. 5. The
feature which is not reproduced is the })ike, often
present in samples with low-quality surfaces.? The spike
is largely reduced in good-quality samples, and
suppressed if the surface is cleaved in He atmosphere,?*
which is believed to minimize built-in electric fields near
the surface. In this case the spike changes into a steplike
rise of reflectance just above w;, which is by no means
reproduced by our theory, as can be seen in Fig. 4. The

R (%)

04

R(%)

1 1 1 1 1
1417 1418 1419
he {meV)

FIG. 3. Normal-incidence reflectance of the lowest-energy
exciton in InP. (a) Experiment from Ref. 21: long-dashed line;
our calculations: short-dashed line (1/P=0), solid line
(1/P=83.3 A), and dot-dashed line (1/P=238.1 A). (b) Our
calculations: solid and dot-dashed lines as in (a); homogeneous
dead-layer model: dotted line (d=83.3 A) and short-dashed
line (d=238.1 A). Exciton parameters used in the calculations:
fiwy=1.4183 eV, 47ra=0.31X10"2, €=12.1, M=0.25, and
I'=0.02 meV.

theoretical curves are for 1/P=0 (Pekar’s), 65 A (from
wave functions), and 222 A (2ag). On the other hand,
the steplike rise has been well reproduced by the adiabat-
ic two-parameter calculation of Balslev.2#% In this case,
one of the parameters, d, is related to the length of ex-
ponential decay of the potential acting on the exciton
center of mass, while the other one, z;,, moves the posi-
tion of the surface barrier with respect to the surface.
Roughly speaking, d is similar to our P ~!, while z, simu-
lates the effect of a homogeneous dead layer. The large
value of z; (440 A) used in Ref. 25 suggests that a large
homogeneous dead layer can also give a good account of
experiment. We can see from Fig. 3(b) that this conjec-
ture is probably correct, since in the case of InP (largely
similar to GaAs) the curve computed for d=238.1 A
shows the correct steplike rise on the high-energy side.
These findings address the question of the failure of our
microscopic calculations to describe exciton reflectivity
line shapes of the very similar semiconductors InP and
GaAs. In view of such similarity, we believe that the ori-
gin of the failure should be intrinsic. It might be due to
the image potential or to band degeneracy: both of these
aspects have been neglected in our calculation.
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FIG. 4. Normal-incidence reflectance of the lowest-energy
exciton in GaAs. Experiment from Ref. 24: long-dashed line.
Our calculations: short-dashed line (1/P=0), solid line
(1/P=65 A), and dot-dashed line (1/P=222 A). Exciton pa-
rameters used in the calculations: #fw,=1.515 eV,
4ra=0.22X 1072, ¢,=12.6, M=0.298, and I'=0.035 meV.
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Finally we consider in Fig. 5 the normal-incidence
reflectivity of ZnTe, measured by Brodin et al.?¢ on
vapor-grown samples. We also show theoretical curves
for 1/I°’=0 (Pekar’s), 41.6 A (from wave functions), and
120.5 A (2ag). The other parameters are taken from the
literature,?’ =% with some changes meant to reproduce
oblique-incidence reflectance,® as explained later on.
Pekar’s and our ab initio calculation give reasonable
agreement. Much better agreement can be obtained by
changing wy and I'" a little bit with respect to the parame-
ters used for the non-normal incidence case, which can be
understood since the normal- and oblique-incidence spec-
tra have been taken by different groups on different sam-
ples.26’30 However, since the aim of this work is not to
give the best fit of each experiment, but rather a reason-
able description of many experiments using the same set
of parameters, we do not show these spectra.

Including the case of ZnSe, already treated in Ref. 5,
we may say that our theory gives a good description of
normal-incidence reflectance in several semiconductors.
Pekar’s ABC also gives a reasonable description in the
same cases, while there is no evidence of large (~2ap)
transition layers. A large homogeneous dead layer seems
to be involved in the case of GaAs and InP.

B. Oblique-incidence reflectivity

Let us first consider the p-wave reflectance of CdS, as
measured by Broser et al.’! on a good-quality sample,
i.e., selected not to show spikes at ;. The agreement be-
tween our theory (1/P=18 A) and experiment is very
good (see Fig. 6), as was already noticed in Ref. 10. No
ad hoc ¢hange of parameters has been introduced with
respect to normal-incidence reflectivity, except increasing
fiwg by 1 meV, which takes into account possible different
absolute calibrations of the frequency scale in the two-
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FIG. 5. Normal-incidence reflectance of the lowest-energy
exciton in ZnTe. Experiment from Ref. 26: long-dashed line.
Our calculations: short-dashed line (1/P=0), solid line
(1/P=41.6 A), and dot-dashed line (1/P=120.5 A). Exciton
parameters used in the calculations: #w,=2.3808 eV,
4ma=0.0045, €,=8.7, M=0.38, and ' =0.08 meV.
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experiments, carried out by two different groups. The
curves computed for Pekar’s case and for 1/P=50 A are
also shown in Fig. 6. Pekar’s theory seems to work better
at large angles. The effect of the transition layer appears
to be more important at [Fig. 6(c)] and above [Fig. 6(d)]
the Brewster angle. It is interesting to notice that just at
the Brewster angle a homogeneous dead layer has no
effect on p-wave reflectance. We may conclude that this
measurement makes the difference between our theory,
working well at all angles, and that of Pekar. Broser
et al. have also shown the reflectance of a lower-quality
sample, with well-pronounced spikes at several incidence
angles. Of course these spectra are not in agreement with
ours, not only for the presence of the spikes, but also for
weaker exciton reflectance as a general trend. The same
trend and spikes are observed in other p-reflectance mea-
surements by Stdssel and Wagner.>? The arguments dis-
cussed above lead to the conclusion that the sample used
in this case is of low quality, i.e., it has an extrinsic dead
layer.

The only measurement of s-wave reflectance in CdS of
which we know, is that carried out by Stossel and

R (%)
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FIG. 6. p-wave reflectance of the 4, exciton in CdS at vari-
ous angles of incidence: 11° (a), 48° (b), 71° (c), and 78° (d). Ex-
periment from Ref. 31 (sample B-109): long-dashed lines. Our
calculations: short-dashed lines (1/P=0), solid lines (1/P=18
A), and dot-dashed lines (1/P=50 A). Exciton parameters as
in Fig. 1, except that fiwy=2.5525 eV.
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Wagner on the same sample mentioned above.’’ The
agreement with theory (see Fig. 7) is worse than that of
Fig. 6. As a general trend, the experimental structures
are weaker than theoretical ones, computed for small
transition layers. The large transition-layer curve is in
better agreement with experiment than the other ones.
In view of the discussion above, we ascribe this feature to
the presence of a large extrinsic dead layer at the surface.

The measurements of s- and p-wave reflectance of
ZnTe, carried out by Pevtsov and Sel’kin’ at 45° and 82°,
are compared with theory in Fig. 8. Theoretical curves
are computed for l/Po——-O (Pekar’s), 41.7 A (from wave
functions), and 120.5 A (2ayz). The exciton parameters,
quoted in the figure caption, are taken from the litera-
ture,?’ ~3 with some changes necessary to give a reason-
able description of non-normal incidence experiments.
The agreement with theory is only qualitative. The gen-
eral trend of weaker experimental than computed struc-
tures points toward a bad-quality sample as the reason of
the discrepancy. However, it must also be taken into ac-
count that we have not performed a least-squares fitting
procedure in order to determine the exciton parameters,
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FIG. 7. s-wave reflectance of the 4, exciton in CdS at vari-
ous angles of incidence ¢. Drawing of curves and exciton pa-
rameters as in Fig. 6. Different values of the exciton mass in the
direction parallel (M =2.4) and perpendicular (M, =0.94) to
the surface have been used in the calculations. Experiment
from Ref. 32.
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FIG. 8. s- and p-wave reflectance of the lowest-energy exci-
ton in ZnTe, for two angles, of incidence: ¢=45" and 82°. Ex-
periment from Ref. 30: long-dashed lines. Our calculations:
short-dashed lines (1/P=0), solid lines (1/P=41.6 A), and
dot-dashed lines (1/P=120.5 A). Exciton parameters as in Fig.
5.

which is especially relevant in view of the spread of the
values quoted in the literature.26—3°

C. Phase of the reflected light

Recently Gotthard®® has suggested measuring the
reflectance of circularly polarized light in order to detect
the phase difference of the reflected p and s waves. Such
a difference has been shown to be quite sensitive to the
ABC. Here we want to investigate whether the phase
difference is a good check also of the transition-layer
depth. We have computed the phase difference from Egs.
(10) and (32), and compared the result with experiment
when available.

First we consider in Fig. 9 the phase difference mea-
sured by Pevtsov and Sel’kin on ZnTe,° using the same
sample of Fig. 8. Theoretical curves have been computed
using the same parameters and P values as in Fig. 8. We
see that the difference between our (1/P=41.7 A) and
Pekar’s calculations is quite small, while the large
transition-layer (1/P=120.5 A) curve is markedly
different. Experimental data are quite well described by
the latter. This cannot be taken, however, as definite evi-
dence of the presence of a large intrinsic transition layer,
because the normal-incidence reflectance computed using
a large transition layer is not in agreement with experi-
ment (see Fig. 5). }

The phase difference of reflected p and s waves has
been measured also in CdS by Pevtsov et al.* at an angle
of incidence of 8°. In the geometry considered by Pevtsov
et al. the electric field of the s wave is parallel to the ¢
axis, so that it does not excite the A exciton, which is
only allowed for polarization perpendicular to the ¢
axis.’32 As a consequence, the phase of the reflected s
wave is constant, as far as the background dielectric con-
stant €, does not vary. The frequency dependence of the
measured phase difference actually follows the phase of
the p reflected wave. This has been computed using the
same values of parameters as in Figs. 1, 6, and 7. The re-
sults, plotted in Fig. 10, are in reasonable agreement with
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FIG. 9. Phase difference of reflected p and s waves near the
lowest-energy exciton in ZnTe, for two angles of incidence:

#=45° and 82°. Drawing of curves and exciton parameters as in
Fig. 8. Experiment from Ref. 30.

experiment. Again our curve and Pekar’s curve are very
similar.

The phase difference has also been computed for the
case of InP, in order to check if the effect of the transi-
tion layer is larger in the case of weakly bound large-
radius excitons, as those of InP. The results are plotted
in Fig. 11. Actually the large transition-layer (2ap) curve
has a peculiar feature, namely the sharp peak on the
high-frequency side.
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FIG. 10. Phase difference of reflected p and s waves near the
A, exciton in CdS, for an angle of incidence of 8°. Experiment
from Ref. 34: long-dashed line. Our calculations: curves and
exciton parameters as in Figs. 6 and 7.
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FIG. 11. Phase difference of reflected p and s waves near the
lowest-energy exciton in InP. The curves have been computed
using 1/P=0 (dashed), 83.3 (solid), and 238.1 A (dot-dashed
line) and the same exciton parameters as in Fig. 3.

D. Attenuated total reflection and surface polaritons

The ability to give a good description of ATR spectra
is a crucial test of any theory of exciton polaritons. For
instance, the ATR spectrum of the C, exciton in ZnO is
not well described for any choice of the parameter U,
defined in Ref. 3, which is related to the ABC.> Here we
do not attempt to discuss this case, since the solution of
Maxwell’s equations reported in Sec. III—because of the
assumed isotropy in the plane of incidence—cannot be
applied to the anisotropic experimental geometry.3%3¢
We discuss, however, the case of the cubic semiconductor
ZnSe, whose ATR spectra have been measured by
Tokura et al.”

The fair agreement between our calculations and ex-
periment at various angles of incidence has already been
noticed in Ref. 10. Here we discuss the sensitivity of cal-
culated spectra to the ABC and to the transition-layer
depth. The experimental and computed ATR spectra
corresponding to 1/P=0 (Pekar’s), 24.4 A (from wave
functions), and 80 A (2ay) are shown in Fig. 12, for an
angle of incidence of 68.5°. The experimental minimum
is reasonably well described by our and Pekar’s theories,
while the large transition-layer curve leads to a weaker
structure. Similar results are obtained for the other an-
gles of incidence shown in Fig. 4 of Ref. 10. The positive
experimental peak on the high-frequency side is so far
unexplained.”” It might be related to the splitting be-
tween heavy and light excitons that occurs in cubic crys-
tals.

E. Polariton population

Recently some experiments®® have detected in CuCl
optical transitions, in the presence of an exciting laser
beam, from the upper- and lower-polariton branches to
the exciton molecule. The measured intensity ratio can
be related to the different populations of the two
branches, mainly determined by the ABC. These experi-
ments could be, therefore, a powerful test of the ABC.
Since in our theory the transition-layer depth and ABC
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FIG. 12. ATR in ZnSe at an incidence angle of 68.5°. Experi-
ment from Ref. 37: long-dashed line. Our calculations: short-
dashed line (1/P=0), solid line (1/P=24.4 A), and dot-dashed
line (1/P=80 A). Exciton parameters used in the calculation:
fiw,=2.802 eV, 4ma=0.88 X 1072, ,=8.1, M=0.6, and '=0.4
meV. Prism gnd gap parameters: €,=2.634; €, =1.769; gap
depth is 1000 A.

are related, they can also check the value of P. The first
interpretation of the experiment®® was against all postu-
lated ABC’s. A later reconsideration® of the experimen-
tal (slab) geometry pointed out, however, that the
different escape probabilities from the back surface of the
two polariton branches should be taken into account. In
our formulation, this implies that one should compute
polariton populations in a finite slab, which is beyond the
purpose of this work. Therefore we will not attempt to
compare our results with experiment. We want, howev-
er, to investigate how sensitive the population ratio is to
the value of P. This is done looking at Figs. 13 and 14,
where the ratio of polariton populations, induced by light
normally incident on semi-infinite CuCl and InP samples,
respectively, is plotted. (The population of a branch is
taken proportional to its group velocity times the square

Cu CI
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FIG. 13. Relative population of the lower-polariton branch
to the upper-polariton branch calculated for CuCl, for 1/P=0
(dashed line), 5 A (solid line), and 13.5 A (dot-dashed line). Ex-
citon parameters used in the calculation: #w,=3.2022 eV,
4ma=0.02, €,=5.6, M=2.3, and ' =0.01 meV.
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FIG. 14. Relative population of the lower-polariton branch
to the upper-polariton branch, calculated for InP, using 1/P=0
(dashed line), 83.3 A (solid line), and 238.1 A (dot-dashed line).
Exciton parameters as in Fig. 3.

of its polarization, as in Ref. 38.) The most interesting
feature is that the population is indeed sensitive to the P
value. On the contrary, in the case of a homogeneous
dead layer, it does not depend on its depth, but only on
the ABC. The possibility of experimental detection of
the transition-layer effect is, however, limited to large
depths, of the order of 2ay.

V. CONCLUSION

In this section we try to summarize the results of this
work, that is, to answer the questions addressed in the In-
troduction.

Our microscopic theory gives, basically without adjust-
able parameters, a fairly good account of many experi-
ments carried out on good-quality samples of most ma-
terials, namely CdS, ZnO, ZnSe, and ZnTe. It does not
succeed in describing the normal-incidence reflectance
line shape of excitons in GaAs and partially in InP, and
the oblique-incidence reflectance amplitude in ZnTe.

We believe that the ZnTe failure is due to the presence
of deep extrinsic dead layers in the sample on which the
measurements have been carried out. The good agree-
ment found for the normal-incidence reflectivity and the
type of discrepancies between theory and experiment
found in oblique-incidence reflectivity, carried out on a
different sample, suggest that the discrepancies should be
ascribed to the low quality of this sample.

The case of GaAs is more difficult to explain on this
ground, since the measurement?* was carried out on a
sample cleaved in helium atmosphere to avoid surface
electric fields. The discrepancy between experiment and
theory might be due to a failure of the latter to take into
account the image potential as well as band degeneracy,
which occurs in cubic crystals. A good description of the
experiment is instead given by a fairly large (2az) homo-
geneous dead layer. The similarity of exciton parameters
between GaAs and InP,’ and the very fact that the
reflectivity of the latter shows a similar—yet smaller—
discrepancy with respect to theory, points to an intrinsic
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origin? of the homogeneous dead layers in both crystals.

The differences between our calculations, where the
transition-layer depth is computed from wave functions,
and those based on Pekar’s ABC (without dead layer) are
surprisingly small, in view of the fact that the parameter
U in (1), i.e., the weight of the specularly reflected term,
is quite different in the two cases,'” for instance when
ATR is considered. However, the detailed comparison
between theory and experiment can sometimes make a
choice between them: for instance, our calculations well
describe CdS p-wave reflectance at all angles of incidence,
while Pekar’s do not.

In general, the computed curves are weakly sensitive to
the values of the transition-layer depth. Clearcut
differences are present only between small depths (<ap)
and large depths (~2ap). Large transition layers were
indeed always excluded by the experiment, except for the
s-p phase difference in ZnTe. In the case of ZnO (see Fig.
2) a detailed comparison between theory and experiment
determines the transition-layer depth with great accura-
cy: this happens because theory gives a very good
description of this experiment. The value of 1/P found in
this way is a little bit larger than the computed one: this
can be explained as an effect of the image potential,
which has been neglected in the calculation. The case of
ZnO points out the importance of the specific effects of
the inhomogeneous transition layer, which were previ-
ously described by means of an additional surface layer,
where excitons have different properties than in bulk.?

The differences between reflectivity curves computed
according to the present formulation, i.e., involving a
transition layer of depth 1/P, and those computed for the
case of a homogeneous dead layer of the same depth
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d =1/P, are small for small values of d, i.e., d <ag. For
large d, i.e., for d ~2ay, larger differences are present. In
the case of large radius excitons, e.g., in InP and GaAs,
the large transition-layer curves are qualitatively different
from small transition-layer curves, while the homogene-
ous dead-layer model for d =2ap yields results which are
qualitatively similar to that corresponding to d=0 [see
Fig. 3(b)], and in good agreement with experiment. Only
for d > 2ap an extra feature, the spike, appears in the line
shape. We summarize this situation saying that experi-
ments are weakly sensitive to the dead-layer depth. This
is the reason, together with the inaccurate determination
of the absolute reflectivity in the case of CdS,!° for the
large estimates of d resulting from curve fitting, even in
the case of good-quality samples®2%3#0 of materials for
which the small-transition-layer calculations presented
here give a good description of experiments. In the case
of InP and GaAs a large dead layer is absolutely needed
in order to reproduce some features of experimental spec-
tra.

We want finally to point out the ability of the present
approach to derive—basically without approximations
—analytical formulas relevant for a number of experi-
mental arrangements, from the exact (numerical) wave
functions of a microscopic model.” All approximations
are embodied in the model, while the calculation is car-
ried out basically without introducing further approxima-
tions. Such ability, together with the good agreement
found in several cases between theory and experiment,
strongly encourages its extension to embodying the as-
pects which have been neglected so far, for instance the
image potential and band degeneracy, and to other
geometries, for instance to the case of a slab.*!
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