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Reversible magnetization of high-T, materials in intermediate fields
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In high-T, superconductors there exists a broad field domain, in which the reversible magneti-
zation M is linear in the logarithm of the applied field H, . The dependence M(lnH, ) is obtained
taking the strong uniaxial anisotropy into account. It is shown, that for an arbitrary orientation
of the single crystal with respect to H, the magnetization vector has a component normal to the
applied field comparable to the usually measured component parallel to H, . A procedure is sug-
gested for extracting the value of the penetration depth from the linear part of M(lnH, ). Being
applied to the data available for Y~BazCu30&, the method yields ktx:(T, —T) ' near T, up to
temperatures (T, —T)/T, -lo '. This puts an upper bound upon the value of the temperature
domain, in which the underlying mean-field theory is valid.

8trF 8 + (81Sn/2trk2)ln(LP/() . (2)

Here 8 is the magnetic induction, pn is the flux quantum,
and p is a constant of the order unity, which depends upon
the flux line lattice structure (and upon a particular cutoff
chosen to evaluate a logarithmically divergent sum over
the reciprocal-lattice space). The average spacing be-
tween flux lines is defined by L po/8. The logarithm in
Eq. (2) can be written as —,

' In(P|H, 2/8) with another
constant pi. Then, the field H is readily found:

H 4trBF/88 8+ (pp/8trk )ln(p2H, 2/8)

with p2 p~/e. The pre-ln factor is of the order H, &, i.e., it
is small as compared to both H and 8. One can, therefore,
replace 8 with H under the ln sign and obtain for the
magnetization M:

—4nM (pn/8trk )ln(H, 2p/H) . (3)

The subscript is omitted in the unknown parameter p; we
consider p in the following as a parameter to be found
from the experimental data.

Equation (3) represents the constitutive relation for a
pinning free isotropic superconductor in the field domain
(1). The actual region of its validity might be more nar-
row. If H') H, ~ is a minimum field, at which effects of
irreversibility can be ignored, the field domain, where Eq.
(3) holds, is given by

H'(H «H, 2. (4)

It is worth noting that in intermediate fields (1) the
demagnetization effects are weak. For an ellipsoidal sam-

The penetration depth X of all known high-T, supercon-
ductors exceeds by a factor of 100 their coherence length
(. There exists in these materials a broad field domain

H, |«H«H, 2,

in which the average intervortex distance L obeys the in-
equality g«L«A, . The free-energy density F in this
domain can be evaluated using the London approach as is
done in Ref. 1:

pie, e.g. , the relation between the applied field H, and the
internal field H reads H„H;+4trN;kMk, where N;k is
the demagnetization tensor. Because M- H, t, the
difference between H, and H is small; therefore, the field
H in Eq. (3) can be considered as the applied field. Thus,
in the domain (1) the reversible magnetization should be
linear in the logarithm of the applied field.

The result (3) for M(H) holds for an isotropic materi-
al, while all known high-T, superconductors are strongly
anisotropic. Although most of them are orthorhombic,
the anisotropy between the c crystal direction (the long
side of the primitive cell) and either a or b (in the Cu-0
plane) is much larger than a relatively small "in-plane"
anisotropy. Even if the in-plane anisotropy is not weak, it
would be masked by the presence of twin domains with in-
terchanging a and b directions. Therefore, to describe
major anisotropy effects, one can consider these materials
as being uniaxial.

The anisotropic generalization of the London equations
can be obtained by replacement of an isotropic mass M
(X tx'M) with a mass tensor M;k. 3 (The notation "M"
for the mass is used only in this paragraph; it should not
be confused with that of the magnetization. ) Following
the formal procedure of Ref. 1 of the isotropic case, one
obtains for the free energy of a lattice of vortices inclined
at an angle 8 with respect to the c axis of the crystal:

«F 8 +(Po/4trk )(mtBg+m38z) ln(H, 2P/8) . (5)
A

The direction Z coincides with the c axis of the single
crystal as is shown in Fig. 1; axis X is chosen as the inter-
section of the Z-B plane with the basal plane normal to Z;
thus, Bz Bcos8 and 8~ Bsin0 with 8 being the angle
between c and B. The "average" penetration depth A, is
defined so that 1L, is proportional to the average mass
M,„(M|M3)'/3, where the "effective masses" Mt and
M3 are the components of M;k along the principal crystal
directions X and Z, respectively. For Y&Ba2Cu307 the
ratio M3/M|, estimated from the ratio of K,2's in two
principal crystal directions, is in the range 25-90.
Hereafter we use dimensionless masses rtt;k -M;k/M, „;we
have then fOr the eigenvalueS: m ~m3 1.

Differentiating F with respect to B one obtains the field

11 958 1988 The American Physical Society



REVERSIBLE MAGNETIZATION OF HIGH-T, MATERIALS IN. . . 11 959

the domain (1), is the same near H, 2.

In particular, for the field applied along the c axis
(8-0) and perpendicular to it (8 x/2) Eqs. (8) and (7)
yield

—MQ
2 2ln

yodm3 (H 2P)o

32K212
(10)

you'mi
1

(H, 2P42
32m'X'

FIG. 1. A single-crystal grain in the applied field H, &)H, &.

The direction of vortices (B) almost coincides with H, due to
weak demagnetization eH'ects. The a-b plane coincides with
XY. The X axis is the intersection of the a-b crystal plane with
the plane c-B.

H and the magnetization:

Hz —Bz m 3cosO m~ sin8
Mz Mo Mx -Mo

4& Jm(8) dm(8)
(6)

where

Mo
0o Hc2/Jln, m(8) myosin 8+m3cos 8.2 2

32m2g2

(7)

In formulas for the small quantity M, the angle 8 (be-
tween B and c) can be considered as the angle between
the applied field H, and c. Equations (6) and (7) are the
constitutive relations for a uniaxial superconductor in the
thermodynamic equilibrium; as such they cannot be ap-
plied to analyze magnetization curves when the latter are
irreversible.

The component of M parallel to the applied field, M~
(which is measured routinely), is obtained readily from
Eqs. (6) and (7):

M~
d ln(H/Hp)

~ x/2
dm (8) sin8d8

Ao

32K'A, ' "o

0 (12)

Thus, the magnetization of a single crystal in inter-
mediate fields is given by Eqs. (6) and (7) in the crystal
frame for any field direction, or by Eqs. (8) and (9) in the
coordinate system aligned with the applied field for any
crystal orientation. Because of weak demagnetization
eA'ects, the magnetic moment of the crystal is just
p VoM where Vo is the crystal volume. This allows one
to obtain the magnetization of a sample made of randomly
oriented crystalline grains of an average volume Vo by a
simple summation. The orientational distribution of the c
axes (given by the spherical angles 8 and p) with respect
to the polar axis aligned with the applied field is given by
dN(8, &)/N sin8d8dp/2x with N being the number den-
sity of grains and 0& 8& z/2. For each grain the com-
ponent p„, normal to the field, is situated in the plane
(c,H, ); summation over all possible azimuthal orienta-
tions of c's yields zero. Therefore, the magnetization of
the polycrystal, M~, is directed along the applied field:

~ a/2 ~ x/2

M~ N pz(8)sin8d8 Mz(8)sin8d8, (11)

where M~ is given in Eq. (8) and NVo, the volume frac-
tion of superconducting grains, is set equal to unity.

Actual integration in Eq. (11) is complicated by the an-
gular dependence of Mo ~ ln[H, 2(8)P], where the
structural parameter P of the flux line lattice may be an-
gular dependent as well. Fortunately, the slope
dM+d(lnH) can be evaluated readily:

M~ Mz cos8+M~ sin8 Mpv m (8) . (s) where Ho is an arbitrary scaling field, and

It is worth noting that the component M„normal to the
applied field (which has recently been measured ) is not
small compared to Mz..

y'-m3/m ),

f(y) =y+ (y —1) '~ ln[(y —1) ' + yl .
(13)

For the isotropic material y m~ f/2=1 and Eq. (12)
yields the result which could have been obtained directly
from Eq. (3). In the case of interest, y»1, and to lead-
ing order f y+ 0(1/y). The normalization m & m 3

= 1

combined with the definition of y yields m~ =y and
m3 y

~ . Thus, the slope given in Eqs. (12) and (13) is
expressed exclusively in terms of the averaged penetration
depth X, and the anisotropy parameter y.

The magnetization of a polycrystalline sample of
La [ 85Bao ~5Cu04 measured by Finnemore and co-
workers' is plotted in Fig. 2 as a function of H on a semi-

m3 —m~M„M~ cos8 —Mz sin8 Mo sin8cos8 (9)
dm(8)

(the directions n, Y, and B form a right-handed triad).
The component M„vanishes when the field is directed
along one of the principal crystal directions 8 0 or n/2.
However, the ratio M„/M~ (ms —m ~ )sin8cos8/m (8)
reaches its maximum of Qm3/m~(m3 m~)/2m3 at an-
angle 8 such that tan 8~ m3/m~. For Y~Ba2Cu307 the
ratio M„/M~ may be as large as 2.4-4.7 (depending on
the value of m3/m~) at an angle 8~=79'-84'. It is in-
teresting to note that the ratio M„/Mz, evaluated here in
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FIG. 3. The slopes dM/d(lnH) vs reduced temperature for
three high-T, compounds near their T, 's, extracted from the
linear domains in M vs lnH data. For YBa2Cu307 the data
point closest to T, belongs to (T, —T)/T, =10
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FIG. 2. The magnetization of a polycrysta1 LaSrCuO vs H.
The factor 0.162 is to transform actual data (in milliemu) into
the magnetization in gauss for the sample used. The inset sho~s
the average penetration depth k(T), extracted from the M(H)
as is described in the text.

log scale for a few values of temperature T in the field in-
terval from 1 to 10 kG. One clearly sees the anticipated
linear dependence of M(lnH). By evaluating the slope
dM/d(lnH) from the graph one can estimate the average
penetration depth X with the help of Eqs. (12) and (13),
provided the mass ratio y is known. Taking y 6 from
the H, 2 data obtained on a single-crystal La~ 9Bap iCu04
in Ref. 11,one calculates A, shown in the inset of Fig. 2. '

Note that the T dependence of X obtained this way is
qualitatively correct. The values of A, , however, may con-
tain a factor (of the order unity) because the actual an-
isotropy parameter in the sample might have been
different from that of Ref. 11. The estimate of X is given
just to demonstrate the method. Also, one should keep in
mind that the T-independent anisotropy has been implied
in the A, estimate.

Having found the average X one can evaluate the
penetration depth for any particular experimental situa-
tion. For example, the depth of a weak-field penetration
(Meissner effect) into a slab with the c axis parallel to the
slab plane depends on the field orientation. If H, llc, the
actual penetration depth is )I, ;„=pm~A, =y '~ k. For
H, J c (and parallel to the slab surface), the effective

depth is Xm„=jm3) = y
/ k. If the field (still parallel to

the slab plane) is inclined with respect to c, its parallel
and perpendicular components (with respect to c) decay
independently with k;„and X,„,respectively.

As has already been pointed out, the reversibility of
M(H, T) is the necessary condition for the above theoreti-
cal arguments based on the free energy (5). It is certainly
the case in the domain T T„where critical currents are

small. In Fig. 3 we show the slopes dM/d(lnH) extracted
from the linear parts of M(lnH) data foi
Lal.s5Srp. ]5Cu04, YBa2CuiO7, and GdBa2Cu307 at tem-
peratures close to their T, 's. Because dM/d(lnH) cL A,

the Ginzburg-Landau theory yields dM/d(lnH)
~ (1 —T/T, ), the dependence clearly seen in Fig. 3.

It is worth noting that the model presented in this paper
is based upon the mean-field theory. As such, it should
break down in a narrow temperature domain TG & T
& T, near T„where the mean-field theory is no longer

valid. Theoretical estimates of the Ginzburg parameter
G (T, —TG)/T, for YBa2Cui07 vary from 10 ' (Ref.
13),via 10 (Ref. 14) and 10 3 (Ref. 15) to 10 5 (Ref.
16). The last data point for YBa2Cu307 at Fig. 3, which
still lies on the "mean-field straight line" belongs to
T 92 K, thus placing an upper limit upon the parameter
G: (92.1 —92)/92. 1 =10

Two other possibilities are worth mentioning. If in the
magnetization data taken on a single crystal the linear
part of M(lnH) is well pronounced, one can, with the help
of Eqs. (10), extract the anisotropy ratio mi/m~ by
measuring the slopes dM/d(lnH) for two principal field
orientations (8 0 and n/2, at a fixed T) and by taking
their ratio.

By extrapolation of the linear parts of M(lnH) to
M 0 one can estimate H, 2/3, the quantity proportional to
H, 2. However inaccurate such an estimate might be, it
may provide an alternative to the direct determination of
H, 2 at low T s. Besides the difficulties associated with
very large fields needed to reach H, 2, the direct measure-
ment of the diamagnetic part of M (which 0 as
H H, 2) might be complicated by other contributions to
M unrelated to superconductivity.

The authors are indebted to D. K. Finnemore, J. R.
Clem, and D. C. Johnston for many useful discussions,
and to W. C. Lee for providing one of the La-based sam-
ples. This work was supported by the Office of Basic En-
ergy Sciences of the U.S. Department of Energy and, in
part, by the Electric Power Research Institute.
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