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Observable eI'ects of the quantum adiabatic phase for noncyclic evolution
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It is pointed out that, contrary to naive expectation, the gauge structure or Berry connection re-
cently found in slowly varying quantum systems gives rise to observable effects even for noncyclic
evolutions corresponding to open paths in parameter space. We propose to test such effects in

muon spin resonance and in level-crossing resonance in muon-spin-rotation spectroscopy. In our
proposals either the probe or the system itself has a lifetime much shorter than the period of one
adiabatic cycle.

In recent years the adiabatic evolution of a quantum
system has been receiving a great deal of renewed atten-
tion. ' '2 This was initiated by Berry's remarkable
discovery' of a geometrical (or topological) phase named
after him in the adiabatic cyclic evolution of a nondegen-
erate energy eigenstate. It was immediately realized'
that Berry's phase actually implies the appearance of a
gauge structure in the evolution of slowly varying systems,
whether the eigenstate is degenerate or not. This quan-
tum adiabatic phase has shed light on important theoreti-
cal issues such as gauge anomalies, ' Wess-Zumino
terms, ' and fractional statistics. ' Also it has been
verified in several experiments. ' Usually Berry's phase
is thought to make sense only when the adiabatic evolu-
tion is cyclic, i.e., when the Hamiltonian completes a
closed path in parameter space.

However, according to our experience in gauge theories,
nonintegrable phase factors make sense for open paths as
well. Historically Yang' has used the nonintegrable
phase factors for all paths satisfying certain properties as
an alternative definition of gauge fields or connections. In
this Brief Report we address ourselves to the following
problems: Should the Berry connection give rise to ob-
servable effects for noncyclic adiabatic evolutions corre-
sponding to open paths in parameter space? If the answer
is yes, is there a convincing way to test or to verify such
effects?

An objection against any significance of quantum adia-
batic phases for open paths would be that for a given open
path in parameter space, one can always choose the
phases of instantaneous eigenstates on the path such that
the geometrical phase for the evoluting state disappears. '

Yes, indeed this is true, exactly the same as in gauge
theory where one can always choose a gauge such that the
nonintegrable phase along a given open path vanishes.
But the point is that one cannot make nonintegrable
phases for all open paths vanish simultaneously. In the
context of adiabatic evolution, according to Berry's
analysis, ' the nonintegrable phase along an open path

A, (t) in the parameter A, space is given by

Pf
exp[iP„(t)] exp — dt' n, A, (t') n, k(t')

(I)
where

~ n, A, ) is a nondegenerate eigenvector of H(A, ) with
arbitrary phase choice. We note that if one changes

( n, k) ( n, A)' exp[if(X)l [n,k), then

exp[iP„'(t)] ( n, X(t))' exp[if(A, (0))]exp[iP„(t)] ) n, k(t)) .

(2)

Therefore, the total wave function in the adiabatic ap-
proximation

r

~
n, t) -exp —i, dt' e„b,(t')]lit exp[iP„(t)]

~ n, Z(t))
(2')

is independent of the phase arbitrariness of
~ n, k(t')) for

0(t'~ t. This is hardly surprising, since the evoluting
state

~ n, t ) is determined completely by the time-
dependent Schrodinger equation and the initial state up to
the initial phase. In short, adiabatic phases associated
with Berry connection make sense even for noncyclic evo-

lutions; they tell us about how the phases of adiabatically
transported states (apart from the dynamical phases)
evolve in an arbitrary basis.

Do these phases give rise to observable effects? The
latter should be looked for in phenomena that crucially
depend on the evolution phase difference of two adiabati-
cally transported states. The resonance phenomenon be-
longs to such a category. Before discussing noncyclic situ-
ations, let us first describe the general principles' under-
lying the nuclear-magnetic-resonance (NMR) or nu-
clear-quadrupole-resonance (NQR) experiments "'
designed for verifying Berry's phase. Consider a quantum
(e.g., spin) system with a time-independent Hamiltonian
Ho. Let it be subject to a slowly but periodically changing
external field, whose coupling is described by a Hamiltoni-
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an Hi(t) characterized by an angular frequency a) 2'//T
(T being the period). Suppose that Hi cannot be con-
sidered as a small perturbation to 00. When co((mo
(h too being the typical energy scale in Hp), one can apply
the adiabatic approximation. Since Ho+ H i (t) is periodic
in time, there exists' a complete set of the so-called
quasistationary states

~ n, t) each of which return to itself
after the period T with an extra phase factor: ~n, t
+T) -exp( i—a„)

~ n, t). For the periodic Hamiltonian,
the quasistationary state and quasienergy E„=ha„/T
play similar roles as the stationary state and energy do for
a time-independent Hamiltonian. 20 In particular, any
solution to the time-dependent Schrodinger equation is a
linear combination of the quasistationary states with con-
stant coefficients. In the adiabatic approximation, the
quasistationary states of

Ho+Hi�(t)

are just the adiabati-
cally transported states and the quasienergies are related
to Berry's phases by E„e„—hP„(T)/T. Here e„are the
instantaneous energies of Ho+ H i (t) that we assume to be
constant in time, as in NMR or NQR experiments. Now
let us apply periodic perturbation H2(t) to the system; it
will induce transitions between the quasistationary states.
According to the time-dependent perturbation theory,
when the angular frequency t02 of the probing Hamiltoni-
an Hp(t) is close to the difference of any two quasiener-
gies, resonance phenomena will occur. But the resonance
peak deviates from the value (e —e„)/)~i by an amount

I

—[P (T) —/j, (T)I/T plus possibly Neo (N is some in-
teger which Berry's phases cannot fix on). Alternatively,
we can couple the system with another (probing) quantum
system that may or may not be infiuenced by the previous
slowing varying environment. When there is an energy or
quasienergy level crossing between the two systems, the
transition caused by the interactions between them will be
greatly enhanced. Again the resonance peak is shifted by
an amount which is related to Berry's phases for the in-
volving levels.

The above discussion applies when the detection dura-
tion t is much longer than the period T of one adiabatic
cycle. To exhibit the effects of adiabatic phases for non-
cyclic evolution, one may use a short-lived probe or deal
with a short-lived system, with a lifetime z much shorter
than T. In these situations, the detection duration t is of
the order of z. Then what is under test becomes the adia-
batic phases for short open paths rather than Berry's
phases for cyclic evolution. The latter certainly do not
make sense during the lifetime of the system or the probe
which is, say, one thousand times shorter than the period
T of one adiabatic cycle.

For a resonance-type experiment, if at time t; when the
detection begins the system is in the nth quasistationary
state, the probability for the system to be in the rnth one
at time t;+t is given by first-order perturbation theory as
(for to near resonance)

(3)

with the shift of the resonance peak given as

i(F/h )8„—P +'N „to,

(4)

(m, X(t')
~ h2~n, k(t')) (h2) „exp(iN „tot'),

H2(t') h2exp( —icoqt')+c. c.
(5)

Here we have separated out a harmonic t' dependence in
Eq. (5) so that the remaining matrix element (h2) „ is
constant or slowly varying in time, as quite often the case
is in NMR or NQR experiments; so an integer N „may
appear whose value depends on the phase choice of the
basis, but AE is independent of this choice. [Note that ac-
cording to Eqs. (2) and (2'), the first line of Eq. (3) is in-
dependent of the phase choice for

~ m, 1(,(t')) and
~ n, k(t')).] In some situations, a basis can be chosen such
that P„(t;) P„(T)/T is constant along the adiabatic
path. So the position of the resonance peak is shifted by
the same amount as for the cyclic case; but the peak is
now broadened by an amount = 6/z due to the finiteness
of the detection time or that of the lifetime of the system.
The more interesting cases are when P„(t;) varies along

I

an open adiabatic path; then the position of the resonance
peak will vary depending on the detection time t;. In this
way, one can see more explicitly the t;-dependent effects
due to the adiabatic phases P„(t)=P(t;)t for a small
open path. For level-crossing resonance, one has similar
results.

To propose realistic experiments, let us consider muon-
spin resonance and level-crossing resonance (LSR) tech-
niques in muon-spin-rotation (@SR)spectroscopy. )uSR is
well known and well developed as an important tool in
material research and condensed matter science. For a re-
cent review, see Ref. 21. The use of LSR in tuSR is quite
new. It was first suggested by Abragam in 1984 2 and the
first successful experiments were reported only very re-
cently. It is needless to say that we are going to take
advantage of the short lifetime of muon (z„2.2 )Ms).

(1) Muon spin resonance-In this typ. e of experiment, a
pulsed beam of highly polarized ( ~ 80%) positively
charged muons (u+ from x+ tu++ v„are injected into
nonmagnetic bulk material. They are thermalized and
then stopped in the sample. An external longitudinal
magnetic field Bo along the direction of muon polarization
is applied to the sample. The presence of 80 leads to the
splitting of p-spin states. To generate adiabatic phases for
these states, add to Bo a transverse rotating field B~(t)
with angular frequency c0«1/z„. Then

e~ = T h, y„8, P+ —P- —to(1 —cose),
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where 8 is the magnitude of the total magnetic field
B(t) Bo+B&(t) (8sin8cosrvt, Bsin8sinrvt, Bcos8).
To detect the adiabatic phases one can apply a pulsed rf
field after the arrival of muons. The measurement of the
shift of resonance peak should give us a test of Eq. (6).
This experiment would be similar to the NMR one that
verifies Berry's phase, ' but the system (muon) does not
live long enough to complete one adiabatic cycle. Also, if
B&(t) rotates not with a uniform angular velocity, one can
test whether the shift of resonance peak depends on the
detection time t;.

(2) Level cross-ing resonance in muon spin-rotation
The principles of LCR-pSR were described in Refs. 22
and 23. Here a beam of highly polarized muons p+ are
used as a probe to the splitting of spin states of nuclei with
nonvanishing quadrupole moment near which the muons
are stopped.

Again a longitudinal magnetic field Bo and a transverse
rotating field B~(t) with angular frequency co&&1/r„are
applied as before. The adiabatic phases for p-spin states
are generated as given in Eq. (6) as well. To generate adi-
abatic effects for nuclear spin states, we rotate the sample.
In addition to the nuclear Zeeman effect in the applied
field Bo+B&(t), there is an interaction of the nuclear
quadrupole moment with either an intrinsic field gradient
or the local field whose appearance is due to the distortion
of lattice by the presence of muons. To avoid complica-
tions, it is desirable to synchronize the rotation of the gra-
dient axis of the quadrupolar interaction so that the gra-
dient axis remains parallel to the total magnetic field.
Then the nuclear Hamiltonian

2

Hpg 2 cog(I, (t)] —rorvI, (t) 2 ro12 I,(t) — +const
COg

(7)

(with ni~ y~8) has a very simple structure. Depending
on the ratio cojv/co we have to distinguish between two sit-
uations:

(i) co«rv~=rog. In this case, the Hamiltonian (7)
does not have degenerate eigenstates at the O(ro ) order.
Assuming I —,', the adiabatic quantum phases generated
in the nuclear I, (r) eigenstates

~

——', &, ~

—
2 &, ~

—,
'

&, and

~ 2 & are given by

P+ y2 ~ 3'(cos8 —1)/2,

P+ i(2 +' c0(cos8 —1)/2.

(ii) ro=rojv «cog. In this case, the eigenstates of the
Hamiltonian (7) are doubly degenerate at the O(ro ) or-
der; therefore, there are mixing of the states

~

~ —,
'

& and
intertwining of the Zeeman and adiabatic phases at the

O(ro) order. The adiabatic quantum phases are given by

P t- 3/2 ~
2 co(cos8 1 )

P~ - ~ —,
' coj[(cos8+r0~/co)'+4sin'8]'i' —I),

where
~
+) and (

—
& are orthonormal mixing of the I, (t)

eigenstates
~

+ —,
'

&.

A way to test these phases is to exploit the level-
crossing resonance caused by direct dipolar interactions
between muon and nuclear spins

HD —S+D+ —I- —5—D - +I++
where Dkj denotes the coefficient matrix. When the muon
Zeeman splitting is made to match the splitting of any two
nuclear levels by adjusting the magnitude 8 of the applied
field, the effect Ho is much enhanced and gives rise to a
quite big depolarization of muons. Compared to the situa-
tion in which only a longitudinal field 8 is applied on a
nonrotating sample, the shift of the resonance peak will

give us a test of Eqs. (6) and (8).
Here our probe (muon) has a short lifetime and, there-

fore, is detecting adiabatic phases during short noncyclic
evolutions (1 = r =0.001 T when, say, ro = 1 kHz).
Similarly, one may use a pulsed rf field in usual NQR
(Ref.10) or NMR (Ref. 12) experiments that verify
Berry's phase. The more interesting cases are when, e.g. ,
the sample in NQR or the transverse magnetic field in
NMR rotates nonuniformly and the rf pulses are syn-
chronized so that they are applied at a fixed segment of
each adiabatic cycle. The variation of the rotational
effects can then be monitored segment by segment along
the cycle.

To conclude we remark that there are also observable
effects from nonintegrable (path-dependent) adiabatic
phases for finite noncyclic evolutions. An example is the
rotation of the polarization of a linearly polarized light
traveling down a helically wound optical fiber. A discus-
sion using Berry's phase for the cyclic case has been given
in Ref. 8. Using adiabatic phases for open paths one can
discuss the noncyclic situations in which the tangents at
the ends of the fiber are not necessarily parallel to each
other. The results coincide with those obtained by classi-
cal parallel transport arguments. The detai1s will be
presented elsewhere.
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