Magnetoconductivity near the percolation threshold in granular Sn:Ar mixtures

M. Rohde and H. Micklitz

Institut für Experimentalphysik IV, Ruhr-Universität Bochum, D-4630 Bochum, Federal Republic of Germany

(Received 15 March 1988)

We have measured for the first time to our knowledge the magnetoconductivity $\Delta\sigma$ on the metallic side of the metal-insulator transition in a three-dimensional percolating system as a function of the metal volume fraction v. The magnetoconductivity vanishes at the critical metal volume concentration $v_c = 0.26 \pm 0.01$ according to $-\Delta\sigma \propto (v - v_c)^t$ with a critical exponent t = 1.90 ± 0.15 which is slightly higher than the conductivity exponent. The relative magnetoresistivity scales as $\Delta\rho/\rho \propto (v - v_c)^{0.3}$. This behavior is in contradiction to theory which predicted $\Delta\rho/\rho$ to stay constant in the critical region.

Metal-insulator transitions (MIT) in three-dimensional (3D) percolating systems have been mostly investigated by measurements of the transport properties. It is well established that the behavior of the conductivity σ can be described by a power law $\sigma \propto (v - v_c)^t$, where v is the actual metal volume fraction, v_c is the critical metal volume fraction, v_c is the critical metal volume fraction at which the MIT occurs, and t is the critical exponent of the conductivity. Experimental results gave values for the critical exponent t in the range of t=1.6-1.9 (Ref. 1) in agreement with theoretical predictions.² Recent Hall-effect data show that the Hall constant R_H diverges at the MIT with $R_H \propto (v - v_c)^{-g}$ where g=0.4-0.5.^{3,4} This is in agreement with theoretical models which predicted the critical exponent of the Hall constant to be in the range of g=0.3-1.0.⁵⁻⁷

Whereas the MIT in percolating systems seems to be well described in terms of the two magnetotransport parameters σ and R_H , no data are available on the behavior of the magnetoconductivity $\Delta\sigma(B)$ or the relative magnetoresistivity $\Delta\rho(B)/\rho$ approaching the MIT.

Within this article we want to report the first systematic study of the dependence of magnetoconductivity $\Delta\sigma(B)$ and magnetoresistivity $\Delta\rho(B)/\rho$ on conductor volume fraction in a 3D percolating system, namely the granularmetal-rare-gas mixture Sn:Ar. Our results can be compared with a theory recently developed by Bergman for the case of a random mixture of a good and a bad conductor.⁸

Measurements of the longitudinal voltage U_{xx} as a function of the external magnetic field were performed on films with a thickness of 800-1000 Å. The metal was evaporated out of a resistance heated Ta crucible and condensed simultaneously with the rare gas on a sapphire substrate held at a temperature of $\simeq 5$ K. Au electrodes, as contact areas ($\simeq 800$ Å thickness), were evaporated on the substrate before each measurement at room temperature.³ Cu wires were attached to the Au areas using In as solder. Condensation rates and the thickness of the films were controlled by a quartz-crystal oscillator. Since the Sn:Ar films were unstable against heating above 30 K, all measurements were performed in situ in a temperature range of 4.2-10 K. After preparation of the film the sample holder was brought into a field of a superconducting split-coil magnet ($B \le 5$ T). Since the Sn:Ar films were superconducting $(T_c \simeq 4.5 \text{ K})$ with the exception of the immediate vicinity of the percolation threshold,⁵ the films had to be heated above the transition temperature T_c during the measurement procedure. The longitudinal voltage U_{xx} as a function of the external magnetic field was determined by a dc method. An evaporating mask was used to obtain a certain geometry of the film, i.e., a defined length to width ratio which was about 4:1. This ratio is sufficient to avoid geometrical contributions to the magnetoresistance.⁹ All measurements were made in the low-field regime $(\omega_c \tau \ll 1)$ with a linear behavior of R_H as a function of the magnetic field and a relative change of the longitudinal conductivity $\Delta \sigma(B)/\sigma \le 10^{-2}$ at a field of 3 T.

The behavior of the field-induced change of the conductivity $\Delta\sigma(B=2 \text{ T})$ as a function of the distance from the critical metal volume fraction $v_c = 0.26$ is shown as a double logarithmic plot in Fig. 1. The straight line in Fig. 1 is a result of a least-squares fit to the data with $-\Delta\sigma \propto (v-v_c)^{1.9}$ with an uncertainty in the exponent of ± 0.15 . This value of the critical exponent of $\Delta\sigma(B)$ is slightly higher than that of the conductivity exponent twith $t = 1.6 \pm 0.1$ in Sn:Ar.^{4,10} A more sensitive representation of the experimental data is shown in Fig. 2. The relative magnetoresistivity as a function of the distance from v_c decreases with decreasing metal volume fraction according $\Delta \rho / \rho \propto (v - v_c)^{0.3}$. This experimental results may be compared with a theory recently developed by Bergman⁸ in which scaling arguments are used to predict the behavior of the magnetoconductivity $\Delta\sigma(B)$ and the relative magnetoresistivity $\Delta \rho / \rho$ at the percolation threshold in a random mixture of a good conductor with a conductivity σ_M and a bad-conducting material with a conductivity σ_I . In the region above the threshold $v > v_c$ the effective magnetoconductivity $\Delta \sigma_e$ in such a system is given by the following equation:

$$\Delta \sigma_e = (\Delta \sigma_{M\perp} + \Delta \sigma_{M\parallel}) (v - v_c)^{t} + (\Delta \sigma_{I\perp} + \Delta \sigma_{I\parallel}) (v - v_c)^{-s} + \frac{(\lambda_M - \lambda_I)^2}{\sigma_M}, \qquad (1)$$

where λ_M and λ_I are the Hall conductivities of the two components. The indices \perp and \parallel denote the direction of current flow (transverse \perp and longitudinal \parallel) with respect to the magnetic field. In addition to the conduc10

T = 4 2 K

= 2 T

FIG. 1. Magnetoconductivity $\Delta\sigma$ as a function of the distance from the critical metal volume fraction $v_c = 0.26$ at a magnetic field of 2 T and a temperature of 4.2 K. The solid line is a result of a least-squares fit to the data.

tivity exponent t and the critical exponent s, which is correlated to the correlation length exponent v(3D) = s=0.84,¹¹ a new critical exponent $t_{M\perp}$ is introduced by this theory which describes the critical behavior of the second-order Hall contribution to the low-field magnetoconductivity. The value of $t_{M\perp}$ is predicted to lie in the range of $1.3 \le t_{M\perp} \le 2.0$.

In the case of the metal rare-gas mixture Sn:Ar the second term of Eq. (1) vanishes since condensed Ar is an ideal insulator with $\sigma_I = \Delta \sigma_I = \lambda_I = 0$. The prefactor λ_M^2/σ_M in the third term is of the order of $10^{-3} (\Omega \text{ cm})^{-1}$

FIG. 2. Double-log plot of the relative magnetoresistivity $\Delta\rho/\rho$ as a function of the distance from the MIT at a magnetic field of 2 T and a temperature of 4.2 K. The solid line is a result of a least-squares fit to the data.

whereas the value of the magnetoconductivity of pure Sn is $\Delta \sigma_M \approx 100 \ (\Omega \ {\rm cm})^{-1}$. Therefore, the third term in Eq. (1) is negligible with respect to the first term. Thus, the effective magnetoconductivity $\Delta \sigma_e$ should exhibit the same critical behavior as the normal conductivity σ . The value of the critical exponent $t=1.6\pm0.1$ determined in the conductivity experiment is slightly below that value of $t=1.90\pm0.15$ resulting from the measurement of the magnetoconductivity but it is nevertheless in the range of $1.6 \le t \le 2.0$ as predicted by percolation theory.² Due to the special properties of Sn:Ar, i.e., the very low value of the ratio λ_M^2/σ_M in comparison to $\Delta \sigma_M$, it is not possible to determine the new critical exponent $t_{M\perp}$.

The behavior of the transverse relative magnetoresistivity can be calculated by the following equation:

$$\frac{\Delta \rho_e}{\rho_e} = -\frac{\Delta \sigma_e}{\sigma_e} - \frac{\lambda_e^2}{\sigma_e^2}$$

$$= -\frac{\Delta \sigma_M}{\sigma_M} - \frac{\lambda_M^2}{\sigma_M^2} (v - v_c)^{2t - g}.$$
(2)

Since the value of t is larger than g and λ_M^2/λ_M^2 $\sigma_M^2 \ll \Delta \sigma_M / \sigma_M$ the second term in Eq. (2) is negligible. In this case the relative magnetoresistivity should exhibit a constant behavior since the magnetoconductivity $\Delta \sigma_e$ and the conductivity σ_e tend to zero with the same critical exponent t at the MIT. This prediction of the theory is not in agreement with the experimental $\Delta \rho / \rho$ data in Sn:Ar shown in Fig. 2. The relative magnetoresistivity $\Delta \rho / \rho$ as a function of the distance from the MIT tends to zero according to $\Delta \rho / \rho \propto (v - v_c)^{0.3}$ as a consequence of the critical behavior of the magnetoconductivity $\Delta \sigma$ and the conductivity σ , respectively. This discrepancy between experiment and theory is possibly due to the fact that the theory is made for random composite systems whereas the Sn:Ar mixture has a granular nature in which islands of crystalline Sn are surrounded by an Ar matrix

FIG. 3. Relative magnetoresistivity $\Delta \rho / \rho$ as a function of the external magnetic field at various Sn volume fractions v.

which is crystalline on a local scale but strongly disturbed.^{12,13} This arrangement of the Sn clusters in the insulating matrix shows no self-duality, i.e., metallic and insulating regions can be distinguished by topological reasons in contradiction to the assumption made in theory. This may lead to a reduction of the critical exponent of the conductivity,¹⁴ whereas the critical exponent of the magnetoconductivity seems to be unaffected.

The behavior of the relative magnetoresistivity $\Delta \rho / \rho$ as a function of the magnetic field for various Sn concentrations is shown in Fig. 3. Up to a magnetic field of 1 T the magnetoresistivity is proportional to B^2 which is the typical low-field behavior in metals.¹⁵ At fields larger than 1 T there is a crossover to a linear slope $\Delta \rho / \rho$ as a function of *B*. This behavior cannot be explained in terms of a low-field ($\omega_c \tau \ll 1$) to high-field ($\omega_c \tau \gg 1$) crossover which is observed in pure metals¹⁶ due to the influence of closed orbits¹⁷ since the low-field condition is always

- ¹For a review in experimental work on percolation, see Percolation, Structure, and Processes, edited by G. Deutscher, R. Zallen, and J. Adler, Annals of the Israel Physical Society, Vol. 5 (Israel Institute of Technology, Jerusalem, 1983).
- ²V. K. S. Shante and S. Kirkpatrick, Adv. Phys. **20**, 325 (1971); S. Kirkpatrick, Rev. Mod. Phys. **45**, 574 (1973); S. Kirkpatrick, in *Ill Condensed Matter*, Proceedings of the Les Houches Summer School, Vol. 31, edited by R. Balian, R. Maynard, and G. Thoulouse (North-Holland, Amsterdam, 1978), p. 320; D. Stauffer, Phys. Rep. **54**, 1 (1978).
- ³U. Dai, A. Palevski, and G. Deutscher, Phys. Rev. B 36, 790 (1987).
- ⁴M. Rohde and H. Micklitz, Phys. Rev. B 36, 7289 (1987).
- ⁵D. J. Bergman, Y. Kantor, D. Stroud, and I. Webman, Phys. Rev. Lett. **50**, 1512 (1983).
- ⁶J. Straley, J. Phys. C **13**, L773 (1980).
- ⁷A. S. Skal and B. I. Shklowskii, Fiz. Tehk. Poluprovodn. 8,

fulfilled in Sn:Ar.

In conclusion we have shown that the relative magnetoresistivity $\Delta\rho/\rho$ scales with $\Delta\rho/\rho \propto (v-v_c)^{0.3}$ at the percolation threshold in Sn:Ar in contradiction to theory⁸ which predicted a constant behavior of $\Delta\rho/\rho$. Consequently the critical exponent of the magnetoconductivity $\Delta\sigma$ is slightly higher than the conductivity exponent. This discrepancy between theory and experiment may be caused by the granular nature of Sn:Ar, i.e., the lack of self-duality. Therefore, more experimental work is needed, especially for systems where the third term in Eq. (1), containing the new exponent $t_{M\perp}$, is not negligible. This may be the case in mixtures of semiconducting materials with insulators.

This work was supported by the Deutsche Forschungsgemeinschaft.

1586 (1974) [Sov. Phys. Semicond. 8, 1029 (1975)].

- ⁸D. J. Bergman, Philos. Mag. B 56, 983 (1987).
- ⁹H. J. Lippmann and F. Kuhrt, Z. Naturforsch. 13a, 474 (1958).
- ¹⁰R. Ludwig, F. S. Razavi, and H. Micklitz, Solid State Commun. **39**, 363 (1981).
- ¹¹J. Straley, Phys. Rev. B 15, 5733 (1977).
- ¹²W. Rühl, Z. Phys. **128**, 121 (1954); W. Buckel, *ibid.* **138**, 136 (1954).
- ¹³H. Löhneysen (private communication).
- ¹⁴G. Deutscher, M. Rappaport, and Z. Ovadyahu, Solid State Commun. 28, 593 (1978).
- ¹⁵J. P. Jan, in Solid State Physics, edited by F. Seitz and O. Turnbull (Academic, New York, 1957), Vol. 5, p. 1.
- ¹⁶B. Lüthi, Helv. Phys. Acta 29, 217 (1956).
- ¹⁷D. Stroud and F. P. Pan, Phys. Rev. B **20**, 455 (1979).