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Scattering properties of solitons in nonlinear disordered chains
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The scattering of a soliton from a disordered one-dimensional atomic lattice with nonlinear
nearest-neighbor interactions of quartic type is studied numerically. The disorder is of the
binary-alloy type with the concentration of the impurity masses m given by p. We numerically

find that for large enough lengths L, the soliton transmission coefficient T decays as 1/JL Th.is

behavior has been obtained also by an analytical study of the transmission of a Gaussian wave

packet in a linear disordered system. For short and intermediate lengths, T decays with a
different power law for different nonlinear potentials. This behavior can be accounted by a simple

independent scattering picture. Finally, the role of the boundary conditions in disordered non-

linear systems is discussed.

I. INTRODUCTION

Wave propagation in nonlinear disordered media has
become an extensively studied subject recently. ' The
combined effects of disorder and nonlinearity introduce
many novel and complex properties in the system under
consideration. Disorder in a linear lattice will generally
lead to localization, a phenomenon first introduced by
Landauer and Helland and by Anderson to describe the
exponential decay of the electronic wave function in a
disordered system. The Anderson localization can be easi-
ly generalized to other waves like phonon, acoustic, and
electromagnetic waves. ' The presence of the nonlineari-
ty, on the other hand, drastically changes the behavior of
the system and causes a lot of difficulties. Many tech-
niques developed for the linear systems cannot be applied
directly to the nonlinear systems because the superposition
principle of waves does not hold in the nonlinear systems.
However, nonlinear systems can have soliton solutions.
Solitons are collective localized excitations and can propa-
gate in pure systems without changing their shape or ve-
locity. The eff'ect of soliton interactions with each other
can only introduce a phase shift.

For a disordered nonlinear system some interesting
questions arise. First, how will the localization behavior
be modified by the nonlinear effects or vice versa how will
the nonlinearity be affected by the presence of disorder?
Second, is it possible to define a transmission coefficient?
What is the energy and length dependence of the
transmission coefficient? These are difficult questions to
answer either analytically or numerically. The analytical
techniques applied to the linear problem seems to fail
completely in the nonlinear one, while many numerical
approaches are unstable. Some answers to these questions
have been already given in Refs. 1 and 2. There the be-
havior of a plane wave is studied when it is transmitted
through a medium satisfying a nonlinear Schrodinger
equation. The main result' is that the transmission
coefficient again tends to zero as the size of the system in-

creases, but it decays not exponentially but with a power
law. Here we take a different approach to study the
effects of the disorder in nonlinear systems. In particular,
we consider the transmission of a soliton in a disordered
nonlinear system. In our approach to a time-dependent
problem, the propagation of the soliton has to be numeri-
cally solved. There are no numerical instabilities in our
approach. By integrating for a long time, we can easily
identify the transmitted and refiected solitons. We view
our method as complementary to that of Refs. I and 2. In
two previous publications, s' we studied the scattering of
lattice solitons by either one or two impurities. The
present paper is the extension of our previous work. s Our
primary interest is the soliton transmission through a
disordered binary lattice with cubic or quartic nearest-
neighbor interactions.

We introduce our formalism in Sec. II, the numerical
results and analysis are presented in Sec. III, and finally
in Sec. IV we give our conclusions.

II. FORMALISM

where y„(t) is the displacement of the nth atom from its
equilibrium position, y„-dy, (t)/dt and m„are, respec-
tively, the velocity and the mass of the nth particle. The
interaction potential V(r„) is the bond strain, where
r„y„—y„—l. We will consider only polynomial poten-
tials of the following form:

2 3 4Gr +Ar +Br
2 3 4

The equation of motion of the nth particle is

m„y'„—V'(y„—y„- t ) + V'(y„+
&

—y„),

(2)

(3)

A nonlinear lattice with nearest-neighbor interactions
can be described by a Hamiltonian

0 g[ 2 m„y„+V(y„—y„—&)],
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where V'(r) dV{r)//dr. For homogeneous systems, Eq.
(3) can be transformed to a generalized Boussinesq equa-
tion in the continuum limit and the kink solution can be
found. Stable narrow nontopological kink solitons can be
also found numerically when the continuum approxirna-
tion breaks down.

We consider a disordered segment embedded between
two ordered (homogeneous) seminfinite chains. The im-
purity mass nt ymo is distributed randomly with proba-
bility p in the disordered part. The rest of the masses in
the disordered part are taken to be equal to nip. Gill' dis-
order is of a binary alloy type with two different masses nt
and nto. A kink soliton is incident on the disordered seg-
ment from the left. The incident kink is decomposed into
a reflected and a transmitted part. After passing through
the disordered segment, the transmitted wave packet will
reorganize itself and become one or more solitons, plus
some small amplitude oscillations propagating in the right
side of the ordered segment. In Fig. 1, we show qualita-
tively such a scattering process. Notice that for short
times, the transmitted soHton has not yet adapted to a new
single soliton. Only for longer times and well inside the
homogeneous systems do we have a well-defined transmit-
ted soliton. The reflected waves are decomposed into rip-
ples, except if the reflection is dominant so that the
reflected part can be reorganized to solitons.

We are interested in two quantities: (i) the total energy
transmission coefficient T E,/E;„, which is the total
transmitted energyE„ incl, uding the energy of all the
transmitted solitons plus the radiative part over the soliton
incident energy E;„and (ii) the first soliton transmission
coefficient Ti Ei/E;„, which is the energy of the 6rst
transmitted soliton over the soliton incident energy E;„.
We can de6ne the reflection coefficient in a similar way.
Such quantities can provide us with answers for the role of
the transmission in disordered nonlinear media. It might
also give answers to the practical problems such as the

transfer of information in optical 6bers with possible im-
purities.

III. RESULTS AND DISCUSSION

We integrate the set of Eq. (3) using a fourth-order
Runge-Kutta method. Our simulations begin with one of
the analytical or numerical kink solutions of Eq. (3) as an
initial state in the ordered part. We have chosen also the
time step of the integration small enough as to keep the
total energy error less than 0.01%. We numerically in-
tegrate Eq. (3) for different incident kink solitons and
different disordered segment lengths L.

Then, we calculate the total energy transmission
coefficient T as well as the 6rst soliton transmission
coefficient Ti versus the length L of the disordered seg-
ment. In Fig. 2 we plot the dependence of T and Ti on
the length L of the disordered segment with concentration
p 0.20 of impurity mass m 5nto. The dimensionless
energy of the initial kink soliton is E;„0.66 and the di-
mensionless velocity v 1.072. The potential is quartic.
Notice that Fig. 2 is a log-log plot of T vs L and therefore
the transmission coefficients T and T~ decrease only with
a power law as the length increases. This has to be con-
tracted with the exponential decrease of T with L in a
linear disordered system for a plane-wave initial state.
From Fig. 2 one obtains that T and Ti behave as 1/JL.
In Fig. 3, we plot the dependence of T on the incident soli-
ton energy for a disordered segment of length L 250,
m 5mo, and p 0.20.

To quantitatively understand our results, let us look at
two limiting cases.

(1) independent scattering limit. When the concentra-
tion p of the mass impurities is low, i.e., in the dilute limit,
the average distance between two nearest-neighbor impur-
ities is larger than the soliton size. In this limit, the
scattering of a soliton by many impurities can be approxi-
mately treated independently. In other words, interfer-
ence effects are not important. Therefore, in the dilute
limit we have that T~=+;-it; (E;), where N is the num-
ber of impurities inside the disordered segment L, E; is the
incident wave-packet energy for the ith impurity, and t; is
the first soliton transmission coefficient of the ith impuri-
ty. The first transmitted soliton for the ith impurity is the

-0.4
0,4
0.2
0.0

-0.2

t =50
I

t=200 !

0.2-
cx

QUARTIC y = 5 p = 20%

i total energy
o soliton energy

0.2
o.o

-0.2
04

0 IOO 200 500 400 0

!

t=250 ~

!

!
IOO 200 500 400 500

01-

005-

JN,

k
~Q

k
a

FIG. 1. Scattering process of a soliton in a quartic nonlinear
disordered chain. This disordered segment starts at n 250 and
ends at n 450 with 20% impurities of mass m; 5mo. The in-
cident soliton energy is E; 0.66. R(n) =y(n) —y(n —1) is the
relative displacement at site n.
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FIG. 2. Transmission coef5cient of soliton with incident ener-

gy E; 0.66 as a function of the disordered segment length N; in

a quartic nonlinear lattice.
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portant anymore and therefore the linear approximation
can be used.

(2) Linear wave transmission approximation .In the
limit of L ~, the quartic and cubic terms in Eq. (3) be-
come smaller than the quadratic term. Therefore, we can
totally adopt linear theory. The equation of motion is

given by m„y'„G(y„+i+y„—i
—2y, ) and assuming a

stationary state of the form y„(t) y„e' ' we obtain for
the equation of motion'

N N
y„+i+y„ i+ (m„—&m„)) y, 2 —&m„) y„.

Ei

FIG. 3. Dependence of a transmission coefficient on incident
soliton energy Ef for a disordered quartic nonlinear chain of
length N; 250. The solid line can be fitted as T~E; ' . Our
independent scattering theory predicts T~ E;

incident soliton for the (i+1)th impurity. We can write
that

(9)
This one-dimensional (1D) phonon problem can be easily
mapped to the corresponding 1D electronic problem.
Hence, we identify the energy e„at site n with
(m„—&m„)) (co /G) and the energy E—=2cosk with
[2 —&m„)(ro /G)] where &m„) is the average value of the
masses m„. It is easy to obtain the strength of the disorder

Nw'-&e') —&e &'-(&m') —&m )')

and

E +i E t (E ) (4a) -p(1 —p) (y —1)'c0'/G ',
E +i —E —E (1 —t (E )) . (4b)

Since on the average there are (d,x)p impurities in the in-
terval between x and x+Lkx, from Eq. (4b) a differential
equation can be established:

dE(x) —E(x) [1 —t(E(x))]p, (5)

where t(E(x)) is the kink soliton transmission coefficient
scattered by an impurity with mass m ymo, where y 5
in this numerical simulation study. It has been found in
Ref. 6 both numerically and within the linear theory that
in the weak scattering limit

where ao 0.66, a 2 for quartic potential and ao 8.0,
a 3 for cubic potential. Equation (5) can be easily
solved and the solution is

T(x) E(x)/E;„1/(1+ciix) ' ',
where co paaoE~„ 1 y

—1~ . For length x&&1/co Eq. (7)
leads to

T(x) —=x "E;.'(p1y —11')

Therefore, the independent scattering limit gives for quar-
tic potential T(x) ix: x 'i2 in agreement with our numeri-
cal simulations and for cubic potential T(x) ee x i . We
see that T(x) is implicitly dependent on the type of non-
linearity of the system. This is because within the linear
scattering theory the nonlinearity nevertheless enters the
problem via the shape of the incident soliton.

The independent scattering approximation would not be
a good approximation for very large lengths L, where the
amplitude of the wave packet is small after so many col-
lisions with mass impurities and its size is large compared
to the average impurity distance. In this limit for the
transmitted part of the soliton, the nonlinearity is not im-

where G is the force constant for the harmonic approxi-
mation.

For the electronic problem, in the weak scattering limit,
using second-order perturbation theory, the localization
length 3

A, is given by k 2(4 —E )/w . Correspondingly,
we have the following expression for the phonon localiza-
tion length of frequency r0, and wave number k:

8&m„) 2&m„) —re /G 2(1 —p+yp)2 2 k

(&m„2) —&m„)2)c02/G p(1 —p) (y —1)
(1Oa)

and the transmission amplitude is

1t(k) 1
=-e (lob)

1~(k)1"-"'"dk
4 —oo as L ~, (11)

1~ (k) 1'dk

where A(k) is the Fourier transform of the incident wave

packet. Assuming that the incident wave packet is a
Gaussian, then its Fourier transform A (k) is also a
Gaussian. Using Eqs. (9) and (ll), we obtain in the
L limit for the total transmission coefficient the ex-
pression

l —
S +ra

(y —1)[p(1—p)]'~' jg
(12)

These results are consistent with the results of Rubin and
Ishi' in the limit co 0. The phonon localization length
diverges as k 0.

Now the total transmission coefficient for linear wave
packet (LWP) is given by

1A(k)1 lt(k)1 dk
TLWP

1A(k)1 dk
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We see that for A(0)e0, we always obtain Tcc 1/vK
Ishii has calculated the thermal conductivity of a disor-
dered harmonic chain and found also that it behaves as
1/JL. Although for a particular frequency exponential
localization does take place, the total transmission
coefficient of a wave packet decays much slower, in fact
with a power law. This is a direct consequence of the
divergence of localization length as nt 0. Physically,
when m 0, the wavelength is so large that the phonon
does not see any inhomogeneity at all. On the other hand,
the high-frequency parts are effectively filtered out com-
pletely since their localization length is relatively small. It
is therefore the superposition of the different localization
lengths that gives the power-law dependence of the
transmission coefficient T of a wave packet traveling
through a linear disordered segment. We therefore see
that it is possible to obtain a much slower decay than ex-
ponential for T in a linear disordered system. It will be
difficult somehow to separate the effects of the nonlineari-

ty from the transmission of a wave packet in a linear
disordered phonon segment.

Our analysis suggests that for short lengths and dilute
systems, the independent scattering picture should give a
good account for the soliton transmission T, which is given
by Eq. (8) and its length decay depends on the type of the
nonlinearity of the system. In particular, T- I/JL for a
quartic potential and T-L i for a cubic potential.
However, for long enough lengths the nonlinear terms in
the equation of motion can be neglected; then the total
transmission must decay as 1/JL, independent of the type
of nonlinearity. This conclusion is weakly supported from
some preliminary numerical results of a cubic potential
which for long L, the transmission coefficient T behaves as
I'LL, while for short length T is closer to a L i depen-
dence. The results shown in Fig. 2 are for a quartic poten-
tial where the short and long length dependence of T is of
the form I/vK

In Fig. 3, the energy dependence of T shows a simple
power-law behavior T(E) tx:E a, where our indepen-
dent scattering theory predicts T(E) ~E ' for both cu-
bic and quartic potentials. This discrepancy might be due
to the large values of y and p used in our numerical simu-
lations. More detailed numerical work is needed to clarify
this statement.

Finally, we would like to comment on the effect of the
boundary conditions on the transmission of waves in a
nonlinear disordered system. Due to the presence of the
nonlinearity, bistability might exist, that is, for a fixed
constant input amplitude, there might be more than one
possible output amplitude. What value from the output
amplitudes the system would take depends on experimen-

tal conditions. The asymptotic behavior of the transmis-
sion coefficient for a fixed input boundary condition is
given by the behavior of the linear disordered system.
This is because as L , the amplitude of the transmit-
ted wave decreases and the nonlinear term approaches
zero, faster than the linear terms. Hence, in the electronic
problem exponential localization will be present in the
fixed input boundary condition. On the other hand, if the
output rather than the input amplitude is fixed, as in the
case of Ref. 1, the role of the nonlinearity of the system
will increase with L. Then, the asymptotic behavior of
such a system would not depend on the disorder at all.
Therefore, the asymptotic behavior of the transmission
coefficient for the second type of boundary conditions is
determined by the ordered nonlinear system. Here again,
a power-law behavior is obtained for the disordered non-
linear Schrodinger equation. '2 Our simulation is a time-
dependent one and is closer to the first type of boundary
condition; however, since we are looking at the transmis-
sion coefficient of a soliton, which is like a wave packet, we
obtain a power law for the length dependence of the
transmission coefficient.

IV. CONCLUSIONS

We have numerically studied the transmission of a soli-
ton through a disordered nonlinear chain. We find that
for intermediate lengths the transmission might be ac-
counted for by a simple independent scattering picture
from which a power-law length dependence results. The
exponent in this power-law decay of the transmission
coefficient seems to depend on the type of the nonlinear
potential. More numerical results are needed to support
this claim. However, when the size of the system is large
enough, linear behavior is recovered. The transmission
coefficient of the soliton decays then as I/JL for all types
of nonlinear potentials. Our numerical simulations agree
with the prediction, which has been obtained also analyti-
cally, assuming an incident wave packet of Gaussian
shape.
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