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Hysteretic phase transition in Y&Ba2Cu307 — superconductors
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We studied ultrasonic-wave velocities, both longitudinal and shear, in YiBa2Cu307-„,between
5 and 295 K, during both cooling and warming. Both waves, especially the longitudinal, show

thermal hysteresis. The results suggest a hysteretic phase change that occurs between 160 and '70

K during cooling and between 170 and 260 K during warming. This phase-change hypothesis ex-
plains anomalies in several physical properties. The phase change agrees with thermodynamic-
instability predictions. We confirmed the hysteresis in Ho-Ba-Cu-O, where it is smaller than in

Y-Ba-Cu-O, and in Eu-Ba-Cu-O, where it is larger. In a companion perovskite, BaTi03, we ob-
served zero hysteresis. At T„91K, sound velocities show no measurable change in either magni-
tude or slope. This continuity disputes the current popular view that, contrary to thermodynam-

ics, elastic stiffness increases upon cooling through T, into the superconducting state. We believe

that stiffening results from the usual thermal effects after a phase transformation from a stiffer

phase.

We need to know a superconductor's elastic constants
(shear modulus, bulk modulus, and so on) because they
relate closely to the Debye temperature, acoustic-phonon
frequencies, and interatomic forces. Furthermore, elastic
constants provide a sensitive probe of phase transitions,
more sensitive than other related physical properties:
thermal expansivity and specific heat. We need to under-
stand a superconductor's phase transitions because its
properties depend strongly on its crystal structure.

Several authors ' reported low-temperature sound ve-

locities or elastic constants of Y~Ba2Cu307 „.(C pv
describes the relationship between sound velocity U, mass
density p, and elastic stiffness C. ) Many of these studies
conclude that elastic stiffness increases upon cooling
though the normal-superconducting transition tempera-
ture T,. That the superconducting state stiffness exceeds
the normal-state stiffness violates usual thermodynamic
requirements for second-order and normal-superconduct-
ing phase transformations. '

Datta and co-workers"' proposed a solution to the
observation-thermodynamics dilemma on elastic stiffening
below T, . These authors suggested that reentrant soften-
ing occurs in the high-temperature phase above T,. This
softening ceases at T, where the usual elastic stiffening
during cooling resumes.

The present ultrasonic-velocity study provides another
solution of the observation-thermodynamics elastic-
stiffening dilemma. During both cooling and warming, we
measured the longitudinal and shear sound-wave veloci-
ties in Y-Ba-Cu-O, Ho-Ba-Cu-O, and Eu-Ba-Cu-O. Re-
sults for all three superconductors show a hysteretic phase
change. For brevity, we describe only the Y-Ba-Cu-0 re-
sults. The Ho superconductor showed a smaller hys-
teresis; the Eu superconductor showed a larger hysteresis.
Other Y-Ba-Cu-0 specimens showed hysteresis, but with
different transformation temperatures and curve shapes.

The studied Y-Ba-Cu-0 material consisted of a 94%
dense sintered pellet produced by usual powder ceramic
methods. The oxygen atmosphere sintering schedule con-
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sisted approximately of 525'C for 7 h, 900'C for 5 h,
1000'C for 3 h, cool to ambient temperature over 15 h.
The specimen showed the following electrical properties:
J, 353 A/cm2, p(T, ) 258 ltQcm, T, 91.2 K, RRR

2.92. The macroscopic mass density is 5.981 g/cm3. By
x-ray diffraction, we found orthorhombic unit-cell dimen-
sions of a 3.8270, b 3.8938, c 11.6668 A, and a
unit-cell volume abc 173.85 A . Using a molecular for-
mula of Y&Ba2Cu307, this gives a theoretical mass density
of 6.363 g/cm', thus, macroscopic mass density 94% of
theoretical. Elsewhere, we report this specimen's elastic
constants.

Using a 3.4-mm-thick, 11.0-mm-diam pellet, we mea-
sured ultrasonic (near 5 MHz) longitudinal and shear
sound-wave velocities using methods described else-
where. ' ' Transducers consisted of 1-cm-diam quartz
disks, x cut and ac cut. From these velocities and mass
density, we calculated elastic constants using standard for-
mulas. ' We neglected to correct for thermal expansion;
from another study, ' we estimate this introduces less
than a 0.2% error in elastic stiffness at 4 K, and that no
significant volume change occurs near T,. From repeated
measurements (removing and replacing transducer), we
found a sound-velocity uncertainty of a few parts in 1000.
Figure 1 shows a pulse-echo pattern.

Figure 2 shows our principal measurement results:
shear modulus, bulk modulus, and Poisson ratio between 4
and 295, for both cooling and heating.

All the elastic constants show hysteresis. Especially,
hysteresis emerges in the dilatation modes, the bulk
modulus being the paradigm. Shear-mode-related elastic
constants such as shear modulus, Young modulus, torsion-
al modulus, and bending modulus show (or would show)
smaller hysteresis. For the bulk modulus, the line dia-
gram in Fig. 2 shows our interpretation of the temperature
behavior. Upon cooling to 160 K, a transition begins
(perhaps in two steps) from A phase to 8 phase. This
transition continues to 70 K, below which we see the nor-
mal temperature dependence of the 8 phase to 5 K.
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FIG. l. Composite oscilloscope display of transverse-wave
pulse-echo pattern at 4 K. Expanded first and second echoes are
shown at bottom. Transit time was measured between the first
minimum in these adjacent echoes. Carrier frequency equals 4
MHz.

Warming follows the 8 phase to 170 K, where a transition
begins (again, perhaps in two steps) to A phase, which
reaches completion at 260 K. (Note that other Y-Ba-
Cu-0 specimens showed different transition tempera-
tures. )

At the superconducting-transition temperature, 91 K,
none of the elastic constants change measurably. This
agrees with the high-precision ultrasonic velocity mea-
surements by Laegreid, Fossheim, Vassenden, and
Bough, ' who found a hv/v decrease of only 5 parts in
10 during cooling through T,.

These new measurements show that the increased elas-
tic stiffness below T, does not result from condensation
into the superconducting phase. It results from the usual
temperature dependence of the elastic stiffness after
transformation from the higher-temperature phase. For
the bulk modulus, during cooling, this transformation in-
volves an elastic softening.

Comparisons with other physical-property measure-
ments are difficult because usually authors fail to report
whether they measured during warming or cooling. Lae-
greid, Fossheim, Sandvold, and Julsrud ' measured
specific heat during warming and found anomalies near 90
and near 220 K; they interpreted the latter as arising from
oxygen-atom ordering. Figure 2 shows that the 8 phase-
to-A phase transition centers near 215 K. Thus, it may
correspond to the Laegreid et al. specific-heat anomaly.
In studying the Raman spectrum of Y-Ba-Cu-O, Zhang
et al. found a peak that appeared below 240 K. Kurtz
et al. 2' measured the decay of this peak with increasing
temperature in GdBa2Cu307 —„andconcluded that it cor-
responds to a "broad diffuse phase transition. " For
Y2Bao SCu307 —„,Jackson et al. found thermal-hystere-
tic behavior in reflected microwave power; the cooling
transition centered near 150 K and the warming transition
near 235 K; the authors attributed the hysteresis to
"another transformation. " Our results correlate with
those of Bhargava, Herko, and Osborne. These authors
found T, enhancement caused by temperature cycling
below 239 K. %'arming above 239 K destroyed the
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enhancement. Tentatively, the authors interpreted their
results as "a phase transition with a two-dimensional to
one-dimensional structural change or ordering. " Inter-
preted against Fig. 2, their results suggest that the 8
phase (perhaps properly conditioned) possesses a higher
T, than the A phase.

Thermodynamic arguments also support the idea of a

FIG. 2. For Y~ Ba2Cu30q -„,temperature variation of
G shear modulus, 8 bulk modulus, and v=Poisson ratio.
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low-temperature phase transformation. Invoking the
Nernst principle, Khachaturyan and Morris predicted a
low-temperature instability of the Pmmm crystal struc-
ture. They present two possibilities: orthorhombic
(07 —„)to a mixture of orthorhombic (07) and tetragonal
(06); and orthorhombic (07 „)to orthorhombic (or-
dered) and orthorhombic (disordered). A phase transfor-
mation finds some support in the monocrystal x-ray-
diffraction studies by Zhu, Zabel, and Salamon, who
found two orthorhombic phases with different lattice pa-
rameters, especially the a axis. (But, a similar powder-
diffraction study by Horn et al. showed only one phase
and no thermal hysteresis. )

The cause of the hysteresis remains unclear. Usually,
hysteresis arises from two sources: a nonchemical free en-

ergy from the elastic strain or the interface; or a barrier to
nucleation of a new phase. Also unclear is why the phase
transition occurs over such a wide temperature range.
This temperature range resembles the sluggish phase tran-
sitions that occur in ferroelectrics, which the Y-Ba-Cu-0
superconductors resemble in many ways. 2' Even though
large sound-velocity changes occur, the transition may be
subtle and not reflected in some physical properties. For
example, the well-known 110-K cubic-tetragonal phase
transition in SrTi03 involves only a two-degree rotation of
the oxygen octahedron. This transition produces a large
sound-velocity change but no change in dielectric con-
stant.

Ultrasonic-velocity measurements by Almond, Lamb-
son, Saunders, and Hong fail to show the closed hysteresis

loops shown in Fig. 1. These authors refer to "hysteresis
characteristic . . . in crystalline ceramics" and to

"internal pressures . . . during structural phase transi-
tions. " To explore this possibility, we measured the 5-295
K sound velocities of a similar material: BaTi03, within
measurement uncertainty (1 part in 1000), we failed to
observe hysteresis, despite the three low-temperature
phase transitions that occur in BaTi03.

In summary, our sound-velocity measurements show
thermal hysteresis suggesting a phase transition in R-Ba-
Cu-0 superconductors. For Y-Ba-Cu-O, the transition
centers near 115 K during cooling and near 215 K during
warming. (Between the two phases, this suggests an equi-
librium temperature near 165 K.) This phase transition
should affect both physical and electronic properties.

Note added. Since completing this study, we discovered
two related studies. First, Ewert et a/. measured low-
temperature longitudinal and transverse sound velocities
in Y-Ba-Cu-0. They found hysteresis, which they attrib-
uted to coarse granularity, an interpretation different
from ours. Second, Kurtz et al. gave strong arguments
for a ferroelectric state.

The authors thank D. W. Capone (Argonne National
Laboratory) for the Y-Ba-Cu-0 specimen, C. E. Violet
(Lawrence Livermore Laboratory) for the Ho-Ba-Cu-0
specimen, and A. Hermann (University of Arkansas) for
the Eu-Ba-Cu-0 specimen. M. W. Austin helped with
sound-velocity measurements.
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