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Magnetization-vector (M) measurements were made on a thin disk of impure Nb rotated rela-
tive to a fixed field H at 4.2 K. For all H, M is found to be separable into a nonrotating diamag-
netic component M& plus a penetrating-flux component M~ that turns rigidly with the sample for
small rotation angles. For H below H, l on a hysteresis loop, M~ diminishes in size but continues
to rotate rigidly up to 360'. For H between H, l and H, 2, M~ rotates up to and then remains at
some critical angle, indicating a constant frictional torque between M~ and the sample, which
presumably arises from vortex-flux jumps between pinning centers. Moreover, Md closely equals
—H/4zt for H above as well as below H, ~.

A recent modification of a vibrating-sample magnetom-
eter has enabled us to measure simultaneously the magne-
tization components parallel and perpendicular to a fixed
magnetic field H in the plane of a sample disk rotated
about the axis of vibration. Initially, we have used such
magnetization-vector (M) measurements to study rota-
tional magnetic processes in various spin glasses. '2 In the
case of Au-Fe, it was learned that the anisotropy field Hst
produced by field-cooling turns rigidly with the sample
but only up to some critical angle, thus revealing a con-
stant frictional torque between H» and the sample. 2

These results alerted us to the exciting possibility of ap-
plying the same method to study analogous rotational pro-
cesses in superconductors, especially those in which the
magnetic flux pinning by impurities and other imperfec-
tions is strong enough to produce observable effects. An
accurate knowledge of such processes is strategically im-
portant for critical-current improvements in the various
new classes of high-T, superconducting oxides. However,
for our initial magnetization-vector measurerpents on a
superconductor, we chose to investigate a much simpler
material, namely elemental niobium —albeit ~ith a high
chemical impurity concentration —and the results of this
investigation are reported in this paper.

In a previous rotational magnetic study of type-II su-
perconductors (V and a V-Ti alloy) by Boyer and co-
workers, a sample disk was rotated inside two coils
mounted orthogonally and the changes of magnetic Aux
parallel and perpendicular to a fixed field in the disk plane
~ere integrated with respect to some reference state.
Though operationally less direct, these experiments are

quite analogous to our magnetization-vector measure-
ments performed with a vibrating-sample magnetometer.
As we will discuss, many of the results of these earlier ex-
periments are basically similar to ours. However, unlike
the previous work, our data analysis contains an essential
revealing feature, a decomposition of the measured M into
two physically different components, which should greatly
facilitate theoretical interpretations of the magnetic prop-
erties of type-II superconductors.

The Nb sample of our study was a thin disk (5-mm
diam, 0.25-mm thick) spark-cut from an ingot produced
by arc-melting 60-mesh powder of 99.8% nominal purity.
Its magnetization measured after zero-field cooling to 4.2
K is shown in Fig. I as a function of increasing and then
decreasing field. The two M-vs-H curves, representing re-
spectively the initial magnetization curve (MC) and the
upper branch of a hysteresis loop (HL), coincide at nearly
zero M in the normal state above H, 2= 6.6 kOe. The ini-
tial linear part of MC has a slope of essentially —I/4zt,
corresponding to perfect Meissner-effect shielding; the
departure from linearity starts at H, &=0.8 kOe. The
high H, 2/H, t ratio (-8.2), the low zero-8 critical tem-
perature (T, = 7.4 K), and the very low resistivity ratio
[p(300 K)/p(4. 2 K) =4.5] all testify to the high impurity
content of our Nb sample material.

The closed-circle points in Fig. 1 represent the starting
conditions of the rotational experiments to be discussed
here in detail —namely, for 0 0.7 and 1.0 kOe on the
HL and for H 1.3 kOe on both the HL and MC, all at
4.2 K. In each experiment, the sample ~as rotated quasi-
statically about its disk axis from 8=0 to 360 and back
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FIG. 1. Magnetization of Nb sample zero-field cooled to 4.2
K as function of increasing field (along magnetization curve
MC) and then of decreasing field (along hysteresis loop HL).
Closed circles represent starting conditions for rotational experi-
ments described in text and later figures. Open diamonds show
deduced values of Mq compared to dashed line of slope —

& z.
(Inset: vector diagram showing separation of measured M into
Md and M«, for sample-rotation angle 8, as described in text. )

to 8 0' relative to the fixed H, and the components of M
parallel and perpendicular to H in the disk plane were
measured at each rotational step. For small 8 (typically
below 10'), the measured M at angle &j«relative to H was
assumed to consist of a nonrotating diamagnetic com-
ponent Md and a penetrating-flux component M~ that
turns rigidly with the sample. Thus, with reference to Fig.
1 (inset), the angle 8~ between M~ and H was taken to
equal initially the sample rotation angle 8. Our second
and last assumption was that the Md determined at small
8 stays constant in magnitude during all subsequent
changes of 8, thus allowing us to determine the evolution
in the magnitude and direction of M~.

Our results for Mz and 8& at H 0.7 kOe (HL), as de-
duced under the foregoing assumptions (with Md—57.7 emu/cm ), are shown plotted versus 8 in Fig. 2
(closed symbols). We see that M~ decreases steadily as 8
is raised to about 180' and then remains small (with
minor undulations) for the rest of the rotational cycle,
while 8~ follows the variation of 8 fairly closely over the
entire cycle. Thus, despite its reduced size, M~ continues
to rotate rigidly with the sample, which is consistent with
the rigid rotation of a constant magnetization component
observed previously for 0&0,&

on a hysteresis loop.
(For H (H, ~ on the initial magnetization curve, we find
that M~ is zero, as expected, with Md the same as above. )

%'hen 0 exceeds H, ~, it is found that M~ no longer ro-
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tates rigidly with the sample up to 360'. Instead, at a
lower 8 (which decreases rapidly from 360' with increas-
ing H), 8~ suddenly begins to decrease, reaching small
values as 8 approaches 360', and then becomes negative
as 8 is lowered to O'. This peculiar behavior is
exemplified by our results for H 1.0 kOe (HL), where
Md+ —83.4 emu/cm, and M~ and 8~ are plotted versus
8 in Fig. 2 (open symbols). The variations of M~ are simi-
lar to those for H 0.7 kOe ( but with more exaggerated
undulations), whereas 8~ reaches only —110' (at
8= 180') before it starts to descend rapidly and eventu-
ally become negative.

This peculiar behavior of the HL state proves to be
transitional in that at higher H (but below H, 2) the varia-
tions of M~ and 8~ with 8 settle into a relatively simple
hysteretic pattern. As typified by our results for H =1.3
kOe (HL) displayed in Fig. 3 (closed symbols), M~ des-
cends with increasing 8 until it reaches and then stays at a
fairly constant value for all subsequent changes of 0.
Meanwhile, 0& rises to a plateau value where it remains
up to 8 360' and then decreases to a negative plateau
value of the same magnitude as 8 is lowered to O'. Thus,
for both directions of rotation, M~ turns with the sample
but only up to some critical angle (8&,) relative to H,
demonstrating that the torque exerted on M~ by H is bal-
anced macroscopically by a constant frictional torque be-
tween M~ and the sample. Since 0~, =50, 0=1.3 kOe,
and the plateau value of M~ is -59 emu/cm, the size of
this frictional torque, HM~sin8~, = 5.9 && 10 erg/crn per
radian of rotation. Microscopically, this quantity may be
regarded as the average energy loss associated with the
unpinning and repinning of the penetrating flux (consist-
ing of vortices) as it progresses past the imperfections in

-90—
FIG. 2. M~ and 8~ vs increasing and then decreasing 8 for a

Nb sample at 4.2 K and 8 0.7 and 1.0 kOe starting on hys-
teresis loop HL. Dashed line for 8~ 8 represents rigid rotation
of Mp.
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the rotating sample while maintaining a constant mean
orientation relative to H. Since this energy loss is a mea-
sure of the maximum pinning forces, it determines the
upper limit of the electric current that can be carried
without dissipation.

For comparison, we performed the rotational experi-
ment for H 1.3 kOe on the MC as well as on the HL, as
indicated earlier. In both cases, the value deduced for Mq
was —99.9 emu/cm . Our results for M~ and 8~ vs 8 in
the MC case are also displayed in Fig. 3 (open symbols)
and, aside from M~ starting from below rather than above
its plateau value, the variations of M~ and 8~ are essen-

0
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FIG. 3. M~ and 8~ vs increasing and then decreasing 8 for Nb
sample at 4.2 K and 8 1.3 kOe starting on hysteresis loop HL
and on magnetization curve MC. Dashed line for 8~ 8 repre-
sents rigid rotation of M~.

tially identical to those in the HL case. Thus, as was ob-
served previously, the two cases result in the same
steady-state behavior after repeated sample rotation. The
close similarity of the two cases is found to continue at
higher H, but with a rising plateau value of M~ and a de-
creasing H~„such that the frictional torque grows steadily
as H increases towards H, z.

Another striking feature of our results concerns My, the
diamagnetic component of the magnetization, whose
values for the cases discussed are plotted versus H in Fig.
1. In each case, the deduced Mq value lies very close to a
line (shown dashed) of slope —I/4tr, corresponding to
perfect Meissner-effect shielding. It is particularly
noteworthy that this situation obtains even for H much
larger than H, i. To our knowledge, this rather remark-
able basic property, which is inaccessible by conventional
(nonrotational) magnetic measurements, has not been an-
ticipated theoretically.

Except for the frictional torque, which could have been
determined alternatively by direct magnetic-torque mea-
surements, s all our findings reported here derive uniquely
from the capability of magnetization-vector measure-
ments. However, the advantage of this technique that we
have exploited (but was previously neglected ) depends
crucially on the separating out of the initial rigid rotation
of M~, which is experimentally difficult if the rotations
with the sample are rigid only for very small angles. For-
tunately, in our demonstration study of impure Nb, the
fiux-pinning forces were strong enough to allow unambi-
guous separations of M~ from the nonrotating Mg. In
general, for superconducting materials of sufficient imper-
fection, the magnetization-vector technique holds consid-
erable promise for future magnetic characterizations.
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Magnetic torque measurements on the high-T, superconductor,
LaI 85Sro I5Cu04, have been performed by C. Giovannella, G.
Collin, and I. A. Campbell [J.Phys. (Paris) 4$, 1835 (1987)l,
who report "rigid" and "viscous" rotations of the penetrating
flux. The "viscous" rotations consist of nearly instantaneous
changes (which we have been calling "frictional" ) followed by
slower relaxation eff'ects (which we have observed to be small
and have thus ignored in our initial study).


