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Electron localization in a qnasiperiodic array of potential wells

G. %ahlstrom and K. A. Chao
Department ofPhysics and Measurement Technology, Uniuersity ofLinkoping, S-581 83 Linkoping, Sweden

(Received 20 April 1988)

We have solved the Schrodinger equation for a potential consisting of an array of barriers the
widths of which are modulated incommensurately. The Lyapunov exponent as a function of
eigenenergy has been calculated to determine the localization properties of eigenstates in the entire
spectrum. When the strength of the potential modulation is increased, the transition of the eigen-

state from extended to localized character is energy dependent, in contrast to the energy-

independent transition appearing in the Aubry model. In certain limits, our results reduce to those
obtained by other authors using simplified models.

I. INTRODUCTION

About ten years ago Hofstadter' performed a numeri-
cal investigation on Harper's equation and conjectured
the rule of hierarchical band splittings of the energy spec-
trum. Soon after the discovery by Hofstadter, Aubry
proposed an equivalent one-dimensional tight-binding
model Hamiltonian for systems with incommensurate po-
tentials,

H (Q)= g [E(Q, n)a„a„t(a„+,a—„+a„",a„)], (l)

where E(Q, n)= Vcos(Q2srn) and Q is an irrational
number. Andre and Aubry have demonstrated a novel
property of the Aubry Hamiltonian (l) that all eigenfunc-
tions are localized if V g 2t, and all eigenfunctions are ex-
tended if V&2t. In the last ten years the Aubry Hamil-
tonian has been extensively studied by many authors.
Although interesting transport properties of the one-
dimensional Aubry Hamiltonian have been predicted
theoretically, unfortunately, so far there is no experimen-

I

tal confirmation.
The simplest model structure of a realistic system

which may be described by the Aubry Hamiltonian is a
three-dimensional lattice with incommensurate modula-
tion of potential along one crystal axis. ' Recently we
have used such a three-dimensional model to calculate
the optical transmission spectrum of RbzZnBr4 and ob-
tained good agreement with experimental data. The de-
velopment of molecular-beam epitaxy techniques allows
the fabrication of semiconductor superlattice crystals
with layer thickness modulated along one crystal axis.
The effective-mass theory of pure bulk semiconductors
has been applied to the study of plasma excitations in
modulated semiconductor superlattices. ' However, in
the presence of abrupt change of effective mass across
sharp interfaces within a superlattice crystal, the validity
of the conventional effective-mass Harniltonian remains
an open question.

While the tight-binding Hamiltonian (l) has received
much attention, relatively little work was done on the
other limiting case of a modulated one-dimensional array
of potential barriers. The potential shown in Fig. 1 has
the general form

0 for x„,&x &x„&+a„=x„—b„,
V(x)= '

U„&0 for x„&+a„&x &x„&+a„+b„=x„,

with integer n between —~ and ao. One special form of V(x) is a modulated array of delta-function barriers

(2)

V(x) = g U„5(x —x„) . (3)

A further simplification is to assume a constant U for U„, and to modulate the position x„ incommensurately according
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FIG. l. Model potential (a) f'or Eq. (2), and (b) for Eq. (4).
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to A cos(Q2mn). In this case the eigensolutions of the Schrodinger equation were studied, and in contrary to the
characteristic feature of the Aubry model, there is no eigenenergy-independent transition from all extended to all local-
ized eigenfunctions as the strength of modulation is increased. Bellisard et al. have investigated another simplified
case of (3) with lattice positions x„=n but with U„ incommensurately modulated according to A cos(Q2mn ). The re-

sulting eigenvalue problem can be formally mapped into the Aubry Hamiltonian, which will be discussed in details in
the next section.

In this paper we are interested in the eigenproperties of the potential

0 for x„&&x &x„&+a,
V(x)= '

U&0 for x„,+a &x &x„,+a+b+A cos(Q2mn)=x„,

which is shown in Fig. 1. The energy spectrum of (4) was calculated earlier and exhibits a hierarchical band splittings. '

In the next section we will derive the recursion relation for (4) and map it into the recursion relation for the tight-
binding Aubry model. The recursion relation will then be used in the rest of this paper to study the localization proper-
ties of the eigenstates.

We would like to point out that the potential (4) is commonly used to investigate the electronic properties of seinicon-
ductor superlattices, provided that the spatial dependence of the effective mass and the correct boundary conditions at
the interface are properly taken into account.

II. TRANSFER MATRIX

We want to solve the one-dimensional Schrodinger equation

—d 1((x)ldx + V(x)p(x)=EQ(x)

with the potential V(x) given by (4). Here we have chosen the width of the potential well a as units of length and
(I/2m )(A'/a ) as units of energy. Since for E & U all states are extended, we will consider the energy region 0&E & U.
The general solution of P(x) can be expressed as

A„exp[iK(x —x„+b„)] +B„exp[ iK(x —x—„+b„)] for x„,&x &x„,+a,
1((x)= '

C„exp[y(x —x„)]+D„exp[—y(x —x„)] for x„,+a =x„b„&x—&x„, (6)

where K=v E, y =&U E, and b„=—b+ A cos(Q2nn). The continuity conditions on p(x) and dg(x)/dx at x =x„
and at x =x„—b„yield the transfer relation

C„

1
cosK+ — ——sinK exp(yb„)

2 K

1
sinK exp(yb„)

2 K Cn —1

D„ 1
COSK—

2 K

1 K+—sinK exp( yb„)—
2 K

K D„
sinK exp( yb„)—r.

The set of coefficients t D„] can be eliminated to derive a recursion relation of the C„s. If we define C „=[exp(ya„)]C„
with

A cos[Qm(2n + 1)]
2 cos(Qm )

then the set of coefficients I C „ I has the recursion relation

1 1cosK+ — ——sinK exp( —2ya„, )+ cosa' ——
2 K y 2 K

i

K
sinK exp(+2ya„2) —1

y n —1

C„

=T(n —1)
f1 —2

There is a similar but much simpler recursion relation for the eigenfunctions of the Aubry Hamiltonian (1). If
„f„a„is the creation operator corresponding to an eigenstate of (1), then it is easy to derive the equation

f.
=T„(n —1)

&n —2n —1

fn [E(Q,n —1) E]/r —1 fn —1—
f 1 0 f„ (10)
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and

A= lim (A/b)
b~0

'M= lim (bU) .
b~o

(12)

Then, V(x) reduces to an array of modulated delta poten-
tials located at regular positions x„=na. The strength of
the delta potential at x„ is modulated according to
%[1+A cos(Q2nn )]. In this case the (1,1) element of
T(n) is simplified to

[To(n)]» ——2 cosa+ Q [I+A cos(Q2mn )] . (13)

Bellisard et al. have studied a similar modulated delta-
potential model with the strength of the delta potential
modulated according to 'icos(Q2mn). They have also
derived the corresponding transfer matrix Ts(n) as (9).
The (1,1) eletnent of Ta(n) is

where E is the eigenenergy. Although our modulated-
potential model is mapped into the Aubry Hamiltonian in
the sense that T(n) and T„(n) are similar, there is an
essential difference between the localization properties of
the eigenstates of the two models. The origin of the
difference can be demonstrated with a limiting case of the
potential V(x) given by (4). Let us define two finite pa-
rameters

( I /2m)(fi/a ) as units of energy, the one-band situation
when A =0 can be achieved if we set the barrier height
U =6 and the barrier width b =1. We would like to em-
phasize that these parameter values are chosen for con-
venience only, without qualitative inhuence on final con-
clusions of the present study.

When the potential barrier is modulated incommensu-
rately, the modulated barrier-width must be positive.
Therefore, the modulation amplitude A has the value be-
tween 0 and b (b = 1). For given values of the modula-
tion amplitude A and the rationally approximated
Q =j/J, the energy spectrum of (5) is obtained numeri-
cally. The spectra are shown in Fig. 2 for weak modula-
tion A =0.3 (upper part) and strong modulation A =0.8
(lower part). In each case, we consider eight values of
Q= j/17, where j =1,2, . . . , 8. The spectra exhibit the
general feature that if we fix the value of A and increase
the value of Q, the total width of the entire spectrum de-
creases if Q is not very large. On the other hand, when
we fix Q and increase A, the total width of the entire
spectrum and each individual gap increase, but the width
of every subband decreases. Consequently, as the modu-
lation amplitude grows the spectrum approaches a
point-spectrum and the corresponding eigenstates be-
comes more localized.

Whether an eigenstate with eigenenergy E is localized
or not can be estimated by its Lyapunov exponent defined
as

SlnK[Ts(n)]„=2cosa+Q cos(Q2mn) .
K

(14)
I (E)= lim —ln[norm[T(N)T(N —1) T(2)T(1)]] .

1

N
By comparing [Ta(n)]&& and [T„(n)]», we see that the
modulated delta-potential model is almost equivalent to
the Aubry model, except that in [Ts(n)]» the amplitude
V(E)=S(sin ~)/a of the single-site energy modulation
becomes dependent on the eigenenergy E =~ . The ratio
V(E)/t is then no longer a constant value throughout the
entire spectrum as for the case of the Aubry model. Con-
sequently, the modulated-potential model does not exhib-
it an eigenenergy-independent transition from all extend-
ed states to all localized states as the strength of modula-
tion increases. This feature will be clearly demonstrated
later in our numerical results.

(15)

l- e ~ ~

A =0.3

Q =j/)7

Oseledec and Avron and Simon have proved that an
eigenstate is exponentially localized if the corresponding
I (E)&0. If I (E)=0, then the eigenstate may be extend-
ed. Based on this criterion Andre and Aubry have

III. ELECTRON LOCALIZATION

We have derived earlier the energy spectrum of the
Schrodinger equation (5) with potential (4). ' It was
shown that at a given stage of hierarchical band splitting,
the characteristic feature of the spectrum is still
preserved by the rational approximation Q =j/J, where j
and J are integers. Let us first demonstrate such charac-
teristic energy spectrum with a numerical calculation. It
was pointed out in the previous section that the interest-
ing region of eigenenergy E lies between 0 and U. Within
this region, there may exist more than one energy band
for a pure periodic potential without incommensurate
modulation ( A =0). For the present study, however, it is
sufficient to have only one band in the energy range
0&E & U when A =0. Since we have chosen the width
of the potential well a as units of length and

5 e ~ ~

~ ~ oe

7 ~ w ~ ~

)=8

A =0.8

Q =I/l7

FIG. 2. Energy spectra for rationally approximated wave
number Q =j/17. Black horizontal segments are subbands.
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FIG. 3. Lyapunov exponent I (E) for Q
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spectra are indicated by S.
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FIG. 4.G. 4. Lyapunov exponent I (E) for Q= —„(6.3/2n) with

modulation amplitude (a) A =0.3, (b) A =0.5, and (d) A =0.8.
ane s (a) and (b) have same horizontal energy scale. Corre-

sponding spectra are indicated by S.

shown the metal-insulator transition in the Aubry model.
We have calculated the Lyapunov exponents for vari-

ous modulations, and found convergent results when
N ~ 5000. Figure 3 shows the value of I (E) f
Q= —„./2') with A =0.3 [panel (a)] and A =0.8

ue o or

[panel (b)]. The corresponding spectrum of eacheac case is

p o ted at the bottom of the same panel d
'

k de an is mar ed as
ot panel (a) and panel (b) have same vertical scale

which is labeled at the left side of panel (b). When
A =0.3, we seen in panel (a) that I (E) is finite onl if E
lies in energy gaps and so is not an eigenenergy. There-
fore in the ce case of weak modulation all eigenstates are
extended.

As the modulation amplitude increases, one expects lo-
calized states emerging first at the lower end of the ener-

gy spectrum. It is indeed so as demonstr t d b 1 ib
of Fi

7

o ig. 3 for 3 =0.8. For all states in the lo b-e owest su-
an, ) as large finite values. The behavior of I'(E)

in the region marked by the arrow is illustrated in panel
(c) with an expanded energy scale.

The calculated I (E) for Q= —,', (6.3/2n) is shown in

Fig. 4 with A =0.3 [panel (a)], A =0.5 [panel (b)], and
A =0.8 [panel (d)]. In each case the corresponding ener-

gy spectrum is also plotted and marked as S. For weak
modulation A =0.3

'
n = . , again all eigenstates are extended.

When A increases to 00.5, localized states begin to appear

of A to 0.8, ei enstate
at the lower part of the spectrum. With f hi urt er increase
o to 0.8, eigenstates at the higher part of the spectrum

l
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FIG. 5. Effective amplitude 6(F.) f
Q, =( / 7(6.3/&~);0. 3), (b) (Q A )=(—'(6.3/2~) 0.8),

e or (a)

and (c) (& A) =={»(6.3/2m'):0. 3). Corresponding spectra are
indicated by S.
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are also localized, leaving a small region at the middle of
the spectrum for extended eigenstates. From our numeri-
cal results we have also detected regular fine structure of
I (E) when E lies in the localized region. In panel (c) we
plot with expanded horizontal scale the part of the I (E)
curve marked by the arrow in panel (b). This plot in
panel (c) clearly indicates that the I (E) for localized
states in subbands varies linearly with the eigenenergy E.
The significance of such linear behavior needs further in-
vestigation.

IV. AUBRY MODEL AS A LIMITING CASK

We have emphasized the similarity between the recur-
sion relation (9) for the present model and the recursion
relation (10) for the Aubry model. Now we would like to
show that (10) is a limiting case of (9) when both A and Q
are small.

The [T(n)]» element of (9) contains exponential func-
tions of cosine functions. Such exponential functions can
be expanded as, for example,

T

exp
Ay cos[Qm(2n +1)] =Io Ay +2+ 1 Ay cos[mQn(2n +1)],

cos(Qm ) cos(Qn.), cos(Q~)
(16)

where I (x} is the modified Bessel function. If both A

and Q are small, the argument of the modified Bessel
function is small and so the series expansion of (16) con-
verges rapidly. If A and Q are sufficiently small, we can
neglect all terms in (16) for which m &1. Then the
modulation term in [T(n)]» is simply a cosine function

I, cos[Qm(2n+1)] .Ay
cos 1t

[T(n)]» —bo+b, cos[Qm(n —1)], (17)

where 60 is a function of energy, and

This is just the case of the Aubry model.
Under the approximation of keeping only the I&(x)

term in the series, [T(n)]» can be readily expressed as

6=2I,
cos(Qn. )

e ~ cosK+ — ——sinK2 b 1 Y K

2 K

2

+e r cosa —— ——sina.g b 1

2 K

' 1/2
1—2 cosK+
2 K

K 1
sinK cosK — ——sina cos( Q2m )

2 K
(18}

To check the validity of the approximation (17), we can
use the condition derived by Andre and Aubry that if
5 & 2 (or b & 2) the corresponding eigenstate is localized
(or extended). We have calculated b for various values of
A and Q. Figure 5 shows b, as a function of E
for (Q; A)=(,2, (6.3/2m );0.3) by panel (a), (Q; A)
=(—27(6. 3/2m);0. 8) by panel (b), and (Q; A )=( —,', (6.3/
2m );0.3) by panel (c). In each case the corresponding en-
ergy spectrum is plotted along 5=2 and is marked with
S. When both A and Q are small, in panel (a) we see that
6 & 2 for the entire spectrum and so all states are extend-
ed, in agreement with the exact result in panel (a) in Fig.
3. When A (or Q) increases, the value of 5 in panel (b)
[or panel (c)] of Fig. 5 becomes greater than 2 in regions
of both lower and higher energy. Then, localized states
appear near both edges of each spectrum, in contradic-
tion to the exact results given by panel (b) of Fig. 3 and
panel (a) of Fig. 4.

rately. When the modulation amplitude A and/or the
modulation wave number Q increase from zero, localized
states first appear in the lower part of the spectrum, and
then in the upper part of the spectrum. The transition
from extended states to localized states is then energy
dependent, different from the characteristic behavior of
the Aubry model.

It is well known that the existence of superperiodicities
in systems with incommensurate potentials makes the
calculation of electrical conductivity a nontrivial prob-
lem. A study of the transport properties will certainly
provide better understanding of the present model.
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