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We present a simple numerical approach to compute dynamic correlation functions in quantum
many-body systems at zero temperature. The method is based on a projective technique for the
memory-function formalism, and requires as a starting point an independent evaluation of the
ground-state energy and wave function. We illustrate the method with a one-dimensional model of
spinless fermions and calculate the density-density, current-current, and single-particle correlation
functions. The obtained spectral functions show different types of elementary excitations: particle-
hole, soliton-antisoliton, exciton, etc. We compare our results with analytical results, and with
those obtained through different approaches available in the literature.

I. INTRODUCTION

In the last few years many numerical methods have
been developed to study the thermodynamic and
ground-state properties of quantum many-body systems.
However little progress has been made in the develop-
ment of numerical methods to deal with the real-time or
real-frequency dynamics of such systems.”? A first at-
tempt was made by Hirsch and Schrieffer who proposed a
method to compute real-frequency correlation functions
using a Monte Carlo-like algorithm.> They dealt only
with one degree of freedom systems and have given
reasonable results only after an exceedingly large number
of Monte Carlo steps. Alternative methods have been
developed to evaluate real-time correlation functions
directly and to make analytic continuation of the
imaginary-time results for these simple systems.* Consid-
ering the enormous amount of computation time re-
quired, it seems difficult to apply these methods to quan-
tum many-body systems.

Schiitler and Scalapino propose a least-squares fitting
procedure to evaluate real-frequency correlation func-
tions of many-particle systems.> This approach is basi-
cally a procedure to extract real-frequency self-
correlation functions from the corresponding imaginary-
time Green’s functions of many-particle systems that can
be simulated by standard quantum Monte Carlo tech-
niques. The use of this technique to evaluate correlation
functions quantitatively would again imply prohibitive
amounts of computational time.

Recently, we have presented a simple method to com-
pute dynamical correlation functions in quantum many-
body systems at zero temperature.® The approach is
based on a projective technique for the memory-functions
formalism.” We have previously given a brief description
of the method.® Here we present a detailed discussion of
the technique along with results for a variety of different
types of correlation functions.

The organization of the paper is as follows: In Sec. II
we describe some general properties of dynamic correla-
tion functions along with the proposed approach. In Sec.
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III we illustrate the algorithm using as a test a simple
spinless fermion model. We calculate the density-density,
current-current, and single-particle dynamical correlation
functions. Final comments are included in Sec. IV.

II. DYNAMICAL CORRELATION
FUNCTIONS AND METHOD

The linear response A (t) of a many-body system at
zero temperature to an externally applied field (¢') can
be written in terms of the correlation function

Cpt—t")={1o| A)B(t') | ¢y) , (1)

where B(t') is conjugated to €(z'), A4 (t) is the Heisenberg
representation of A4, and | ¢,) is the ground state of the
system. Many experiments, like inelastic neutron scatter-
ing and nuclear magnetic resonance, measure directly the
Fourier transform C  z(w) of C ,5(¢ —t'), the imaginary
part of which is given by

Clip(@)=3 | 4 ¢, | B | ¢)8(0+E;—E,) .

(2)

The summation is taken over all the eigenstates | ¥, )
of the Hamiltonian H with energy E,. E, is the ground-
state energy. A characteristic feature of C!,z(®) is that it
has a peak at a frequency equal to the energy of some ex-
citations of the system. Of particular interest is the case
of self-correlation functions, B= A", for which C I 4 (@)
is a real and positive function. If the operator 4 is also
Hermitian, C!; ,() is an even function. Then, we only
need to calculate, for example, the spectra for positive
frequencies. The real part of C, z(w) can be obtained
from the imaginary part using the Kramers-Kroning re-
lations.

From the computational point of view, the spectral
representation Eq. (2) is not faithful, because it needs a
complete knowledge of the eigenvectors and eigenvalues
of H. Different analytical algorithms have been
developed to deal with the calculation of dynamical
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correlation functions. However they are based on pertur-
bative series or on a chain of coupled equations which are
difficult to solve. Although many approximated schemes
have been proposed, C ,5(w) is frequently calculated with
uncertain approximations. Numerical methods become a
powerful tool for the study of dynamical properties, from
which we can evaluate effective interactions and single-
particle self-energy, and then use these to proceed with
analytic calculation of the properties of the particle-hole
and particle-particle responses.

To obtain the dynamical correlation function, we
define

G (Z)=ty| ANZ—H)""4 |9, ; 3)

clearly G 4,(Z) is a matrix element of the resolvent opera-
tor (Z—H)~'. The relation between C , ,(w) and G ,(Z)
is easily obtained as

where 7 is a small positive number. As in the Haydock,
Heine, and Kelly approach to obtain local density of
states in tight-binding models, the resolvent G 4(Z) can
be written as a continued fraction,?

(| 474 | ¥y)
G4(2)= il |b'f° : 5)
Z—ay— ! 3
Z _ b
—a,— Z e

The coefficients a, and b, can be evaluated from the
moments p,={4,| ATH"A | $,).° A recurrence rela-
tion between these moments and the coefficients was used
by the authors of Ref. (10) to study the dynamical proper-
ties of spin — 1 XY and transverse-Ising models at infinite
temperature. For more complicated many-body systems
this approach is not useful numerically, because the mo-
ments increase rapidly with n. Therefore, the recurrence
relation between {a,,b,} and pu, becomes very sensitive
to numerical error, and for large systems high-precision
calculations (33 significant figures) are not enough. We
found it convenient to evaluate the coefficients by a pro-
jective technique for the memory-function formalism.”!!
The advantage of this method is that it avoids the use of
recursion relations. The method can be summarized as
follows: (1) define the state | ¥,) = A4 | ¥,); (2) generate a
set of orthogonal states with the relation

|fn+1>=H1fn>—“n |fn>_b3|fn—l> >
and (3) evaluate the coefficients a,, and b,,:

ay=fu |H|f /{0l fn) s

b3+1=<fn+l |fn+1)/(fn |fn)’ bo=0.

With this procedure we can evaluate a large number of
coefficients {a,,b,} and construct the continued-fraction
expression for G ,(Z). Obviously for implementing the
procedure described above we need as a starting point the
ground-state energy and wave function. Because we are
studying finite-size systems, the resolvent G ,(Z) has a
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discrete spectrum, the main feature of which is that it has
a finite number of poles at some excitation energy of the
system. Note that in the pictures we broaden the § peaks
by the inclusion of a finite 7.

III. ILLUSTRATIVE EXAMPLE

To test the method, we have calculated the density-
density, current-current, and single-particle correlation
function for a one-dimensional model of spinless fer-
mions. The Hamiltonian is given by

S (ol f
H=—13 (¢;C; ,+C/,C)

i=1

N N
+G 3 nin;  +A S (—1)n; (6)
i=1 i=1
where C,»T creates an electron at site i and n; =C,-TCi is the
number operator. We consider a half-filled band and use
different types of boundary conditions. The Hamiltonian
H can be mapped, using the Wigner-Jordan transforma-
tion,'? into an anisotropic spin-1 Heisenberg model with
a staggered magnetic field A. This model was used in
Ref. (13) to describe some properties of one-dimensional
charge transfer compounds and in Ref. 14 to study the
electronic structure of high-7, superconductors. For
A =0, the system shows an instability at G =2¢. If G <2¢
the charge is uniformly distributed in the ring, the system
is conducting, and for N — o, the excitation spectrum is
a gapless continuum. For G > 2t the ground state is a
charge ordered state in which the expectation value of
the charge at two neighboring sites alternates between
1(1+8n) and 1(1—8n). For N— «, the ground state is
doubly degenerate and is separated by a gap from a con-
tinuum.'?

For G=0 and As£0, the Hamiltonian Eq. (6) can be
easily solved in the momentum space using the usual
canonical transformation to new quasiparticle creation
operators for the conduction and valence bands.!® In
terms of the quasiparticle operators the Hamiltonian H
reads

H=3 E, (A} A, —B}B,), E,=(A*+4t%co0s’k)'?,
k

(7

where A4, (B, ) destroy an electron in the valence (con-
duction) band with momentum k=2#//N, [=0,%1,
+2,...,N/4. Clearly, the conduction- and valence-
quasiparticle energies are E; and —E,, respectively. In
the ground state the valence states are filled and the con-
duction states are empty; then, the system is an insulator
with a gap equal to 2(A?+4t%cos*kg)!”2. For N— o,
kp— /2 and the gap is 2A. The value of the gap can be
increased by the Coulomb interaction G. For nonzero G
and A the Hamiltonian H cannot be diagonalized exactly
in the N— o limit. However, different numerical ap-
proaches can be used to obtain information about the
ground-state properties of finite systems. In this work,
we diagonalize rings with different values of N. The ex-
act diagonalization of H is performed by using a recently
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developed modified Lanczos method.!” This procedure
which we will use to generate the ground-state wave func-
tion has been described in detail in Ref. 17.

In what follows we calculate different correlation func-
tion corresponding to Hamiltonian Eq. (6) in order to
show the power and accuracy of the method described in
Sec. II.

A. Density-density correlation function
The density-density correlation function is defined as
C,(k,t)={ng(t)n;) (8)
with

1 — ikl 1
n=—=Ye "(n—-1).
k N 1 2

From the Wigner-Jordan transformation we identify Eq.
(8) as the S,-S, dynamical spin correlation function for
the isomorphic spin problem. This function is directly
related to the inelastic neutron scattering cross section.'®
The Fourier transform of C,(k,t) has an interesting rep-
resentation. For G =0 and A =0, the spectral decomposi-
tion is easily obtained and the imaginary part is given by

c,','(k,w)=% S U=/ B e, i —E,—0),  (9)
P

where /, is the zero temperature Fermi function and
€, = —2t cosp with p=27n /N, n=0,x1,...,N /2. For
small momentum transfer, k << the spectrum is narrow
and its center is approximately at w~2kt. As k in-
creases, more and more lines appear distributed over an
energy range up to the band with 4. The number of
peaks at a given k is determined by the number of
particle-hole excitations, whose momentum differ in k
from the ground-state momentum. The maximum num-
ber of peaks is obtained for k =.

We have evaluated the correlation function C)(k,w)
for different values of G and A=0. We study rings of
different sizes up to N=20. For different sizes we use
periodic or antiperiodic boundary conditions. The nu-
merical errors depend on the value of k£ and on the num-
ber of sites N. However, the largest error is smaller than
2%.

In Fig. 1 we present the results for a system of 16 sites
in the noninteractive limit. The exact result, Eq. (9), is
not included in the figure because in the scale used it
could not be distinguished from the numerical results.
For comparison we also display the Monte Carlo histo-
grams of Ref. 5. The results clearly show the correct be-
havior. For small k, a single peak at low frequency ap-
pears corresponding to an electron-hole excitation across
the “Fermi surface.” As k is increased we found more
structure in the spectra which completes at k =7. The
line at w=0 obtained for k = corresponds to the pro-
motion of a particle from —kj to kp (kp=m/2). Clear-
ly, the Monte Carlo results are qualitatively correct.
However, they cannot reproduce the spectrum when it
has a more fine structure. This is a consequence of the
approximation introduced in the Monte Carlo procedure,
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the least-square fitting of the two lowest moments of the
spectra.

In the strong-coupling regime, the infinite system has a
twofold-degenerate ground state. The two states differ
only in the phase of the charge-density wave (CDW). For
t =0, the Hamiltonian is diagonal in the site representa-
tion. The lowest excited states for A=0 have soliton-
antisoliton pairs. Each pair increases the energy by an
amount equal to G. Therefore, the spectra consist in
peaks at nG with n=0,1,2,... So for t <<G and A=0,
the spectrum consist of bands centered at G,2G,3G, . . ..
A detailed lowest-order calculation of C,(k,w) for t <<G
and A=0 has been carried out in Ref. 19. For N— o,
the density-density correlation function is given by

k=m/8

Cnlk,w)

FIG. 1. Real-frequency-density correlation function of a
noninteracting half-filled 16-site chain. (G=0, A=0, 7=0.17)
with periodic boundary condition. Thin line, Monte Carlo re-
sults; heavy line, present approach.
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8t% sin(k /2) o—G 2
= — — forow <ot <o,
Cllk,w)={G* T(k)/2 T(k)/2 =0 =
(10)

0 otherwise ,

where I'(k)= | 8¢ cos2k | and o™ =G+TI'(k)/2. In Fig. 2
we plot the obtained results for G =6t on a half-filled 16-
site chain with periodic boundary conditions. All the
structure shown in this figure corresponds to a single
soliton-antisoliton pair. For comparison we also display
in the figure the Monte Carlo results.’ It should be noted
that the Monte Carlo simulations give good qualitative
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FIG. 2. Real-frequency-density correlation function of a
strongly interacting half-filled sixteen-site chain; G =6¢, A=0,
7n=0.1¢, with periodic boundary conditions. Thin line, Monte
Carlo results; heavy line, present approach.

results in the strong coupling regime. As is shown in Fig.
2, for a given k, we obtain a band centered at G with a
width approximately of I'(k). For k =, we also found a
peak at =0 since the operator n;, with kK =m connects
the two degenerate ground states. All these results are in
qualitative agreement with strong-coupling calculation.
In addition, we expect to see similar absorption peaks
around ©~2G,3G,... but their intensities are very
small. To show the power of the algorithm used here we
plot in Fig. 3, the real-frequency density correlation func-
tion in a large w scale. A second band centered around
0 ~2G shows up very clearly corresponding to excita-
tions with two soliton-antisoliton pairs. The intensity of
this second band is two orders of magnitude smaller than
the first one, therefore a simulation using Monte Carlo
techniques requires high statistics and in consequence
enormous amounts of computational time. In Figs. 4 and
5, we display our calculations, on a half-filled ring of 16
and 20 sites using periodic and antiperiodic boundary
conditions, respectively. Also we show the strong-
coupling result Eq. (10). As we can see from Fig. 4, the
strong-coupling result qualitatively describes the spectra;
however, for ks, small peaks appear out of the strong
coupling band. Therefore, the lowest-order strong-
coupling result is, at best, qualitatively correct. For a
quantitative description, the interband mixing would
have to be taken into account. In Fig. 5, we plot the den-
sity correlation function for k =7 and G =4t, 6t, and 8t.
It can be noticed that the strong-coupling predictions
represent qualitatively well the numerical exact result.
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FIG. 3. Real-frequency-density correlation function of a

strongly interacting half-filled 16-site chain with periodic
boundary condition; G =6¢, A=0, p=0.1¢.
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Another interesting question about the density correla-
tion function follows: Which are its features when we re-
move one fermion from the CDW ground state of the
half-filled system?. The new system has a soliton-
antisoliton pair in its ground state, therefore the excita-
tion spectrum differs significantly from the half-filled
case. Due the inelastic scattering from a single soliton as
well as the scattering from the soliton pair, the real-
frequency density function has more structure at low fre-
quencies than in the half-filled case.?’’ In Fig. 6 we show
the results for G=6¢ on a 16-site ring with 7 fermions
and periodic boundary conditions. It indeed differs dras-
tically from the half-filled case. We also show the Monte
Carlo results which again describe qualitatively the
overall feature of the spectrum.
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FIG. 4. Comparison of the real-frequency-density correlation
function obtained with the present approach and a strong cou-
pling calculation. Half-filled 16-site ring with periodic bound-
ary condition; G =12¢, A=0, n=0.1t.
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FIG. 5. Real-frequency-density correlation function at k=
for different values of G. Half-filled 20-site ring with antiperiod-
ic boundary condition; A=0, n=0.1z.
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FIG. 6. Cl(k,w) for a strongly coupled less-than-half-filled
system; G =6¢, A=0, and 7=0.1¢. Thin line, Monte Carlo re-
sults; heavy line, present approach.



B. Single-particle correlation function

The single-particle correlation function is defined as
. t
G;(=—ie){{C;(1),C}) , (11)

where C]-T create an electron at site j and ©O(¢) is the
Heaviside function. The imaginary part of the Fourier
transform of G;(¢) is related with the spectra measured in
x-ray photoemission spectroscopy (XPS) and bremsstrah-
lung isochromat spectroscopy (BIS) experiments.?! For
G =0, the imaginary part of G;(¢) can be easily obtained
as

Dj(w)=—L1mG,(w)
o

_1 _vA
_N%[ 1—( I)Ek S(w+E,)
A
1+ (—1V2 [8(w—E) | ; (12)
Ek

clearly the spectral function D;(w) has a gap of order 24,
separating the conduction and valence band. From Egq.
(12) we see that the odd sites have more weight in the
valence band than do the even sites. For A=0 and G0,
G > 2t, the spectral function D;(w) is qualitatively similar
to the A-£0,G =0 case; however the origin of the gap is
very different. From D;(@) we can calculate the energy
gap. Clearly a finite-size system always has a gap, its
determination is very useful in studying the gap at
N — = or in finding other excitations. This point is the
subject of the following section.

In Fig. 7, we show results for G =0,A=t/4 in a half-
filled 12-site chain with antiperiodic boundary conditions.
The gap obtained from D;(w) coincides within five
significant figures with the exact one, 2(A2+4 cos’ky)!?,
kp=5m/12. This result was used as a test of our pro-
gram. In Fig. 8, we show the results obtained for a half-
filled 16-site chain with antiperiodic boundary condition.
D;(w) has a rich structure and shows a gap. The peaks

T T T 1 T T T T T T T
D(w)x-lt— A=0.25
N
02 -
o1 | i
Eg
0 1 1 1 1 l l_L 1 L 1
-6 -4 -2 0 2 4 6
w/t

FIG. 7. Spectral function D, (w) at even site j for a half-filled
chain of 12 sites with antiperiodic boundary conditions. G =0,
A=1/4t,7=0.1t.
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FIG. 8. Spectral function D,(w) at even site for a ring of 16
sites for different values of A; G =t, n=0.1t.

correspond to electron or hole excitations with frequency
equal to E4(N/2)—E, (N /2+1), where Ey(N /2) is the
ground-state energy of the system with N/2 particles and
the E, (N /2t1) are the energies of the states when the
system has N/2*1 particles. For A=0, a broad gap is
found for G > 2¢. This result is in agreement with the ex-
act solution of the model. For A0, the structural gap
2A is increased by the Coulomb interaction G as is shown
in Fig. 8. Summarizing, a careful calculation of D;(®) al-
low us to obtain the gap for a given parameter set.

C. Current-current correlation function
We define the current-current correlation function as
H)=(J()J(0)) , (13)
where

J(0)=—i S (C/c, ., —C],.C) (14)
1
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and J(t) is the current operator in the Heisenberg repre-
sentation. This function allows us to obtain information
about the excitation spectrum of the system with a fixed
number of particles. The lowest-lying optical excitation
is a charge transfer of an electron from an even site to a
neighboring site. For ¢t =0, the excitation energy is
(2A+G). In the same limit, the particle-hole gap,

Ey(N/24+1)+Ey(N/2—1)-2E4(N/2)=E,

is 2A42G. Therefore, the energy of the charge-transfer
excitation is lower than the particle-hole gap by an
amount equal to G. This charge-transfer excitation cor-
responds to a tightly bound particle-hole pair or Frenkel
exciton. Because this pair is an excitation of the half-
filled system, the only way to see it is by the measure of
the absorption spectrum which is the most powerful
method of obtaining information about the charge-

3 T T T T T T T T T
24 fa)
L A=025 |
1.8 -
1.2 + .
06 Eq ]
0 1 1 L 1 1 1
5 1 T T T T 1 T T T
B (b)
“r £=050 ]
3 F i
2 + i
— L
£ 1 F e
2 )\
: 1 . 1 1 1
— T T T T T T T
13 i )
Lk A=075 |
3 F .
2 + i
"r Eg ]
0 1 L 1
T T T T T T T T T
61 (d) ]
= A=100 4
L L ]
3 i
2+ i
1 - Eg .
0 C 1 1 A 1 J ]
0 2 4 6 8 10
w/t

FIG. 9. Real-frequency current-current correlation function
for different values of A; N=16, G=t, and n=0. 1.
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FIG. 10. Extrapolated exciton binding energy as a function
of A/t for G=t. We also include the strong and weak coupling
limits, Egs. (15) and (16).

transfer excitations. This spectrum cannot be calculated
directly and easily by quantum Monte Carlo techniques.
The method presented in this paper allow us to obtain
directly the Fourier transform of J(#), J(®). In Figure 9
we plot the imaginary part of J(w) for different values of
A obtained for a half-filled 16-site chain with antiperiodic
boundary conditions. The spectral function J(w) has a
pole when w is the energy of the exciton E,. It also has
poles corresponding to other excited states with energies
higher than the electron-hole excitation. From Fig. 9 we
find that E is lower than the electron-hole gap, E, as ob-
tained from Fig. 8. The binding energy of the exciton is
E,=E,—E,. For A>>t the binding energy is approxi-
mately given by'?

Ez~4G |p—1| -G, (15)

where p equals the number of holes in the even sites.”
This limit corresponds to the case where the electron-
hole pair is almost completely localized in two sites of the
chain. Therefore, the exciton has a small radio. For
A <<t and G < 2t, the binding energy is'®

Eg~4GX |A| +2G |p—1|)/p?t?, (16)

where p=1+G /tw. In this limit the exciton radius is
much larger than the lattice parameter.

In Fig. 10, we plot the binding energy E as a function
of A for G=t. We also display the extended and local-
ized limits. The dots in the figure were obtained using
finite size scaling techniques for the sequence
N=6,8,10,12,14,16 in half-filled systems using periodic
(antiperiodic) boundary condition for N/2 odd (even).
Using a least-squares fitting procedure, Ez~ A +B/N
+C/N?, we obtain the binding energy Ej for the
N — o limit. Clearly the numerical results are a smooth
interpolation between the weak and the strong coupling
regime.

IV. CONCLUSION

In this paper we have analyzed different dynamical
correlation functions using a Lanczos-like algorithm.
The only requirement for its implementation is an accu-
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rate calculation of the ground-state energy and wave
function. To test and illustrate the method, we have ap-
plied it to a simple one-dimensional model of spinless fer-
mions.

We have calculated the density-density, current-
current and single-particle dynamical correlation func-
tions. The obtained spectral functions show different
types of elementary excitations— particle-hole, solitonic,
and excitonic—and allow us to gain information about
some static properties such as the energy gap and the
binding energy of the exciton. The results show that the
method has enough accuracy as to apply finite size scal-
ing to calculate static properties.

We believe that we have demonstrated the utility of the
presented approach in numerical calculations at zero
temperature. It will be a challenging problem to extend
the algorithm to nonzero temperature.

Directly carrying over our techniques to nonzero tem-
perature appears to be quite costly in terms of computer
time. The algorithm is appropriated for the study of the
dynamics of spin systems and fermions in a lattice. With
our computing facilities, (a VAX 11/780), the dynamical
properties of spin-1 Heisenberg systems with N <24 and
of the extended Hubbard model with N <12 can be eval-
uated in moderate computing time. For large systems,
larger and faster computing facilities would be required.
However, a pruning of the Hilbert space can be used as
an approximate approach for large systems. This ap-
proximation provides accurate results only at low fre-
quencies.
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We find qualitative agreement with Monte Carlo simu-
lations for the density-density correlation function only
when the spectrum does not present a complicated struc-
ture, i.e., in the strong coupling limit. However, the
method presented here provides a way to obtain better
numerical results using much less computing time. For
example, all the results presented in Figs. 1 and 2 are ob-
tained after ~5 of CPU time. Most of this computer
time is used to construct the ground state (which also
contains valuable information not discussed here), only a
little fraction is used to calculate a set of coefficients
{a,,b,}. Typically 25 coefficients are enough to get ac-
curate spectral functions.

We also have studied the current-current and the
single-particle dynamical correlation functions. As we
show in Sec. III, from this function we can calculate stat-
ic properties of the systems. As an illustrative example
we evaluate the binding energy of the exciton and show
that the obtained results are a smooth interpolation be-
tween the weak and strong coupling limits.

We conclude that the technique presented here supple-
mented with the modified Lanczos algorithm for generat-
ing the ground state is an efficient way to study the prop-
erties of many-body systems at zero temperature.
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