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One-dimensional inhomogeneous Ising model with periodic boundary conditions
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In this paper, we focus on the essential difference between the inhomogeneous one-dimensional

Ising model with open and periodic boundary conditions. We show that, although the profile equa-
tion in the periodic case becomes highly nonlocal, due to a topological collective mode, there exists
a local free-energy functional in an extended space and one can solve the inhomogeneous problem
exactly.

I. INTRODUCTION

Since the inhomogeneous one-dimensional (1D) Ising
model was first solved' ten years ago by the inverse
method (i.e., expressing the external field as a functional
of the magnetization), there have been several similar ap-
proaches to the problem. But all of the solvable cases
are with an open boundary. Although, due to the short-
range interactions, boundary conditions do not affect the
thermodynamics, there is still a qualitative difference be-
tween the open and the periodic systems. For the latter,
the profile equation becomes nonlocal, which precludes a
simple solution even in the inverse approach. However,
we will see that such a solution does exist on the expand-
ed space of spins together with a collective mode, and we
will examine the nature of the mode.

II. THE RECURSIVE EQUATION
FOR THE SINGLE-SITE FUNCTIONS

The one-dimensional inhomogeneous Ising model with
external field u„chemical potential p, and coupling —J
is determined by the partition function (we set P—= 1 lkT
to unity)

N

W„(cr„)e(cr„,o„+&), '

Io„I x =1

where h„=is—u„, W„(o„)=exp(h„o „), e (cr„,cry )

=exp(Jcr„err ), and oz+& =cr&—
To extend the previous technique' in a natural way, we

define

:-„„(o,cr')= W„(o) g e(cr, o„",)W „e(cr„"+„cr')W„(o').
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On combining the two, we have

:-„+,„+,(cr, cr')

W„+)(cr )

From this definition, we immediately get the following re-
cursion relations:

Eq. (3), we obtain recursion relations for the single-site
functions, but these are not all independent. We know
there can be only three independent equations, since their
traces are equivalent. The three independent equations
can be obtained by letting o'=cr, multiplying by cr and
summing over cr,

m„+,—— g oe( r, rc')mc„( r', ccr")W„(o") 'e '(o",o ),
o, a', 0"

m„~ —— g o e '(cr, o')m„(cr', o")W„(o') 'e (cr",o ),
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)(o,cr')

W„, ,(o')

(3)

then letting o'= —cr, multiplying by o. and summing
over o,

gm„+, (o, —o)W, +,( —o)

:-„„(cr",o'")
e ' o,o" ' „eo'",o'

II ~ II W„o.")
I

Now if we define a new function m„(o,o'):—:-„„(o,o.'):-, then the magnetization is clearly given
by m„=g +crm„(o, o)W„(o) '. By setting x'=x in

= g m„(o ",—cr")W„( cr")—
If we define s =sinh(2J), c =cosh(2J), V„=W ( —1),

a =cm„—sm +&, and b =cm —sm &, after eliminat-
ing m ( —1, 1) and m (1,—1), we obtain the basic recur-
sion relation for V,
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2a, +, V, +,+b„+,(1+V, +, ) 2b„V„+a„(1+V„)

V —1

(4)

But any site can be reached by jumps bx)2, and so we
conclude that for any x,

ac ah.=E
am. ac

III. SOLUTION OF THE NONLINEAR
DIFFERENCE EQUATION

Equation (4) is much easier to solve than its appear-
ance suggests. We first note the following identity:

2aV+b(1+ V ) 2bV+a(1+ V ) „q 2

V —1 V —1

Hence, defining

q„=[2b„V„+a„(1+V„)](V„—1)

(4) can be written as q„+& —q„=a,+, b„+,.—Because
b„+,—a„=m„+&—m„, the general solution to (4) takes
on the form

for suitable index-independent K, a differential relation
that C has to satisfy. Furthermore, since (8) implies that
the second term on the right in (7) is symmetric, so must
be the first term:

c)h„c}h
c)my c c)m

for any x and y. We conclude that indeed there exists a
free energy F on the combined [ m, C ] space such that

c)F(m, C)
c)m„

F(m, C) is only unique up to a function of C; we can
make it unique by introducing w (C) such that

a +(a —m +C)'r

b„+(b„—m„+C)'— (6)

2 2 2 2 2 2
q„+& —a„+,+m„+, ——q„—a„+m„=C(m),

where C is a symmetric, and hence almost certainly non-
local function of all of the m, 's which cannot be deter-
mined from the difference equation because of the period-
icity.

From the definitions of q and V, we conclude that the
"profile equation" for our system can be written as

Hence defining

F(m, C) =F(m, C)—co (C),
we see that

h X F(m, C),
m„

0= F(m, C),a-
=ac

F(m, C(m) }—co{C(m) }=F (m) . (10)

(12)

(13)

IV. THE NATURE
OF THE COLLECTIVE VARIABLE

There remains the problem of determining the precise
form of the global, nonlocal, collective variable C. For
this let us recall that if 0= —ln" is the grand potential,
then m„= —c)Q/c)h„. It follows that c)m„/Bh
=c}m„/c}h„aswell as Bh„/c}m =c}h /c)m„ the "integra-
bility conditions. " These guarantee the existence of an
Q(h) and F (m), where h„=c)F /c)m„. Since the equa-
tion of state (6) would be local if we could extend the
space to also include C, we examine the derivative

ah. ah. ah„

am~ am~ c aC am~

If
~

x —y ~
& 1, the first term on the right is absent, so

that

ac
am

ah. ac
ac am,

ah,
ac

The signs in front of the square roots are determined by
h„~+~ as m ~+1. The foregoing also points to the
fact that the nonlocal profile (6) becomes local if the mag-
netization at any site is fixed, e.g., if

~
h,

~

= 00, so that

~
m&

~

=1, then b& ——(b f —m
&
+C)' or a&

——(a& —m
&

+C)'r tells us that C =1, and the model reduces to the
usual open boundary case. Equation (6) will also become
local if the external field at any site is fixed.

and F(m, C(m))=F (m).

V. THE RELATION BETWEEN C AND Q

To further explore the relation of C to more familiar
thermodynamic quantities, one may guess first, on physi-
cal grounds, that C should only relate to the two extreme
states (i.e. [cr+ o„=l, Vxj or jcr

~

cr„=—1, Vx],
since C rejects the cyclic symmetry of the periodic lat-
tice, which has nothing to do with the inhomogeneity,
and this is exactly characteristic of the extreme states.
This means C ought to be a function of the two probabili-
ties P(o+) and P(o ). On the other hand, we know
from the limiting behavior, C~ 1 when

~
h„~ ~ Dc, that

C must take the form 1+4(P ( cr + ),P(o ) ). Further
more, the function 4 can only depend on the product of
the two probabilities, because 4 has to be invariant under
the change o.+~o. and go to zero symmetrically with
respect to either state [in particular, to the lowest order,
@ccP(o+)P(o )~0, when ~ h,

~

~m& for any x]. This
suggests that C is a function of the grand partition func-
tion == [P (cr + )P ( cr )]', and therefore of the grand
potential Q. In the appendix, we give a theorem which
proves the assertion by showing the proportionality of
the two partial derivatives aQ/am and aC/am (with
an index-independent coefficient), hence the functional re-
lation between 0 and C. Once this relation is recognized,
the explicit form can be obtained exactly by studying the
homogeneous model itself.



38 ONE-DIMENSIONAL INHOMOGENEOUS ISING MODEL WITH. . . 11 739

)(,
& 2 ——e coshh+(e sinh h +e )'~

From the definitions of q and a, we have

(14)

—4J
C=q +m —a =m 1+

sinh h
(15)

so that

(g)g2) (
2J e 2J)N-

C=1—4 =1—4
() N+gN)2 2

(16)

F(m, C)= pm„ f dk, h„(k,m, c)
0

For the homogeneous Ising model, where h„=h, Vx,
the eigenvalues of the transfer matrix are

Therefore, 4= —4(1—e ) P(o+)P(o'). From (16),
we can see explicitly how C is related to the grand parti-
tion function =. It is equal to unity when the field at any
site goes to infinity in magnitude or when the tempera-
ture goes to infinity, or when X~ 00. It is always no less
than one for ferromagnetic Ising coupling (i.e., J & 0), but
it is less or greater than 1 for antiferromagnetic coupling
(i.e., J &0) according to whether the size of the lattice, N,
is even or odd.

Furthermore, the 0-C relation allows us to determine
the function w(C) in (10) and consequently F of (11) by
studying the homogeneous case. To do this, we choose a
linear path in m space: m„=A,m as A. goes from 0 to 1,
and integrate (9),

=gmh + g ln
&c

(17)

In particular, for the homogeneous system, where
a =e m, C=m (1+e /sinh h),

m —a (C+a —m )' +a

m„&C +b„m„b—„(C+—b„—m„)'~ (m„—a„)(m„b„)—
m„&C +a„—m„+a„(C+a2—m„)'~2 (m„+a„)(m„+b„)

I

tems, as well as to dynamics. We intend to report on
these issues in the near future.

F(m, C) =Nmh + ln ——ln tanhJ
&C I-&C

2 1+MC

On the other hand, since for the homogeneous system

F (m)=Nmh +Q=Nmh + —,'ln(1 —C)+const,

we conclude that

w(C)=F(m, C)—F (m)

(18)

(19)
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APPENDIX
= ——,'[(I+&C )ln(1+~C )

+(1—&C )ln(1 —~C )+&C ln tanhJ],

(20)

which combines with F(m, C) to yield the free energy F
in the expanded space.

VI. CONCLUSION

The one-dimensional periodically bounded Ising lattice
is certainly one of the simplest systems to exhibit a non-
trivial collective mode. A question which has received no
satisfactory general answer is how an eScient equilibrium
description such as the free-energy density functional in-
corporates such a mode into what would otherwise be a
local structure. We have found that, at least in this spe-
cial case, the simplest resolution of the question lies in ex-
panding configuration space to include mode amplitude
together with local coordinates. The corresponding
"internal" Helmholtz free energy F which can be chosen
as numerically equal to the true free energy F, serves as
generating function for the local chemical potential
which is conjugate to the local spin density, and specifies
the amplitude of the collective mode by the condition
that its conjugate vanishes. It is not hard to see how this
conceptual structure may extend to more complex sys-

therefore,

BQ Bhy

am, ~ ' am„

ah, ac
~ ac a„

Bh„=pm
Bh Bh„

' ac ac

aC ah
nC+ +m—

1

K
ang+—m~ Bm

aC
Bm

where use has been made of (8) which is valid under the
condition of the theorem. For the inhomogeneous 10 Is-
ing model, n =2, as may be seen from (6).

Theorem If h.„=OF (m)/Bm„=BF(m, C)/Bm„~ c,
and C is a homogeneous function of m for fixed h, then C
is a function of Q.

Proof. Supposing C is a homogeneous function of de-
gree n for fixed h, then

g m +nC h„=0;a 8
Bm
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