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The onset of canting for a ferromagnet with one and two antiferromagnetic defect bonds has been
studied analytically. For individual negative defect bonds which are unable to cause canting, there
is a long-range effective dipolar-like interaction which determines whether or not the system will
cant. An effective Hamiltonian is obtained which applies more generally. A canted state at low
temperatures, but a collinear state at somewhat higher temperatures, can be expected on the basis of

this effective Hamiltonian.

In this paper we consider the spin canting (or tipping)
instability in classical two-component (XY) and three-
component (Heisenberg) spin systems on square and sim-
ple cubic lattices when antiferromagnetic bonds J' are
substituted for the host ferromagnetic nearest-neighbor
exchange bonds J. These are the simplest possible fer-
romagnetic systems, and the simplest possible exchange
defects that can be placed in such systems. We em-
phasize the case where individual defect bonds do not
cause canting. Despite the short-range nature of the in-
teractions, the system can become unstable due to
effective long-range dipole-like interactions between spin
distortions centered at the defect bonds and mediated by
the ferromagnetic host. This is relevant to the degrada-
tion of magnetic order when ferromagnetic systems are
subject to the alloying process, such as in amorphous
magnets. The case where individual defects do cause dis-
tortions has been discussed by Villain,! who considered
the “canted local state,” following Nowik and
Rosencwaig. >

Our considerations are analytical, but were stimulated
by numerical simulations,** and we have performed ad-
ditional simulations to verify certain aspects of the
theory. It should be kept in mind that the theory has
been developed for infinite systems, whereas the simula-
tions have been performed for large periodic systems,
which necessitates corrections due to neighboring cells.

For both XY and Heisenberg spin systems, the excess
energy of a system with nearest-neighbor exchange con-
stants J due to tippings of the spins 8S; from the aligned
direction S{” =2 is given by

FHo=1J 3 (8S,—8S;)*, (1
(ij)
where (ij) denotes a sum over all nearest-neighbor pairs
(no double counting). If a bond J' replaces the J bond
connecting site a and site b, then the part of the perturba-
tion quadratic in the spin tippings is given by

8H =1 —J)8S,—8S,)” . )
The sum of (1) and (2) gives a quadratic form whose ei-
genvalues must all be positive if the system is to be stable.

To study this stability, one searches for singularities of
the Green’s function for the operator K, defined by5

38

(i,j)

With G=(0’—K)~!, G°=(0?—K°) "', where K° is ap-
propriate to #,, and 8K =K —K°, we have the familiar
equation

G =G°+G%KG 4)
or
[1-G%K1G =G, . (5

A static instability occurs if, for ©=0, G is singular but
GYis not. In that case

det[1-G%°K]=0. (6)

For the square and simple cubic lattices of side a,, the
. . 0 K . ik-rl.
eigenfunctions of K° are 6*=(i |k)=(1/V'N)e ', and

the eigenvalues in K 395-‘=wi 6 are given by

o} =2J[sin*(k.ay/2)+sin*(k,a,/2)]
for the square lattice and

w} =2J[sin’(k,ay/2)+sin*(k,ay/2)+sin’(k,ay/2)]
for the simple cubic lattice. In both cases,

1 1 ike(r,—r;)
GY. =— —— A 7

(G7);; N Zk‘, oo e (
where the sum ¥, is over the N points in each Brillouin
zone.

For a single defect bond, (6) reduces to a 2 X2 matrix;
for two defect bonds of the same strength connected by a
common site, a 3 X3 matrix; and for two disconnected
defects of the same strength bonds, a 4 X 4 matrix. In the
latter two cases the determinants can be reduced to
2X2’s.

With A=(J'/J —1), the single defect bond problem
leads to the condition A= —d, where d =2,3 for the
square and simple cubic lattices. Thus the critical value
J, for stability with respect to a single negative defect
bond is
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LT =1—d , (8)

so that square lattices become unstable if J'/J < — 1, and
simple cubic lattices go unstable if J'/J < —2.° Calcula-
tions on a 30X 30 (d =2) periodically repeated system
yielded —0.9915 for this ratio, the lack of perfect agree-
ment being due to both convergence and finite-size
effects.

We now turn to the case where J' <Obut J' /J >1—d,
so that individual defect bonds do not cause the system to
be unstable to canting. For the case of two negative de-
fect bonds J' the instability condition is that
2

a =A%J?, 9)

1 —_
td

with the effective interactions I =J (2G5 — G2 —G2.) for
the connected bonds (a,b), (b,c), and
I=J(G%+G2,—G2 —GJ,) for the disconnected bonds
(a,b),(c,d). (These are equivalent when d=b, since then
G, =G% =GY and G2, =G2,, due to the translational
and fourfold rotational invariances of the unperturbed
state.) Thus the critical value J; for stability with respect
to two negative defect bonds is

S

d='yw |1
Explicitly, for d =2 and connected defect bonds:
=1—(1/7) for opposite bonds (i.e., both along X or

both along §), and I =(2/m)— 1 for adjacent bonds (i.e.,
one along X and one along §). Thus

J/T=1— (10)

JC’/le—%:O.57O8 (opposite bonds) , (1)

J./J=—(m—1)"1=0.4669 (adjacent bonds) . (12)

Calculations on a 30X 30 periodically repeated system
yielded —0.5683 and —0.4623 for these ratios. Thus, for
d =2, defect pair induced canting will occur only for
—1<J'/J < —0.4669, where the upper limit holds only
for adjacent bonds.

For d =2 and disconnected negative defect bonds
(separated by R), when the bond directions b—a and
d—c are collinear (as in the case of opposite bonds), we
employ

! 1 sin’1k aycosk-R N
xx = A1 . ] ) (1
N % sin’1k, a,+sin’lk a,

and when b—a and d —c are perpendicular (as in the case
of adjacent bonds), we employ

1 singk, agysink,aycosk-R
Ly=~ 2] 2 (14)
N %7 sin*lk.aq+sin’lk a,
Asymptotically,
I, cos28, as R/ay— o , (15)
x 27(R /ay)? 0
1 .
I — ——————sin26, as R/ay,— « , (16)
7 22(R Jay °
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where R=(R cos6,R sin0), so that these look like two-
dimensional dipole interactions. Indeed, they can be
combined in the form

1

m(ﬁrﬁz-ZﬁrRﬁz'R) ,
0

I——
as R /ag—o . (17)
To treat the case d =3, for opposite and adjacent

bonds one may employ the tables of Maradudin et al.’
for the Green’s function of a simple cubic lattice, which

yields |I,,, | =0.2470 and |I,y | =0.2716. Then (10)
gives
J./J =—0.7232 (opposite) , (18)
J./J =—0.6531 (adjacent) . (19)

Thus, for d =3, defect-pair-induced canting will occur
for —2<J'/J < —0.6531, where the upper limit holds
only for adjacent bonds.
For more distant spins, the d =3 analog of (17) is given
by
1 A . A A
I—— m(ﬂruz— 3p,-Rpy-R)

as R /ay— o . (20)

Consider now the situation if the spins cant; in this
case, one must determine the new, noncollinear, ground
state. For a weakly unstable system, the spins will tip (or
cant) by only a small amount before quartic terms in the
transverse spin components stabilize the system. (The
largest contribution will come from the vicinity of the
spin defects, where the spins tend to counter align.) This
can be modeled with an effective energy given by*>

E=1la(M} +M3)+1b(M} +M5)+cM ‘M, ,
1)

where [c/a | =|AI/(1+A/d)| in order to ensure that
(21) go unstable for M ,M,, 0 when (9) is satisfied. In
(21), M, and M,, are induced source strengths, limited
by the nonlinear term in b (which is very nearly propor-
tional to —J').°> The asymptotic part of the spin distor-
tion S (r) produced by the source M,, is proportional to
M, (g, 1) /re

When canting occurs, the entire spin system is involved
in dipole distortions centered about two bonds. The
effective interaction between dipoles centered at the de-
fect bonds is long ranged, despite the fact that the true in-
teraction (between all spins, not just those associated with
the defect bonds) is short ranged. Note that the spin
“gauge” is decoupled from the spatial coordinates. In
particular, the dipolar interactions of (17) and (20) [which
enter c of (21)] involve vectors in real space, whereas the
vectors M ,M,, of (21) are in spin space. Thus (21) is a
specific realization of a system that is isotropic in spin
space, with an interaction exchange constant ¢ which has
a dipolar form (in real space).

For the above problems, the energy scale near the
threshold for canting is much lower than that for the or-
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dering of the ferromagnetic background. Thus, when
thermal effects are included, and one starts at very high
temperatures, the ferromagnetic order will set in first.
Only at a much lower temperature will there be an onset
of spin canting, due to the interaction effects discussed
above.® Thus, at elevated temperatures the system might
appear to be a perfectly ordinary ferromagnet, with no
hint of the more complex behavior to occur at much
lower temperatures. Most likely, for a system containing
a finite concentration of defects, the thermodynamic sig-
nature will be proportional to the defect concentration.
We make no predictions as to the nature of this thermo-
dynamic signature.

In the noncollinear phase there should be a collective
mode of spin oscillation similar to the longitudinal mode
of spin glasses;® however, this mode should not be tun-
able with an applied field, and thus will be difficult to ob-
serve by electron spin resonance. A macroscopic theory
for this mode, in the presence of weak anisotropy, has al-
ready been developed. !°

The generalization of (21) to a system with many iden-
tical, well-separated interacting defects is

E=73 (1aM}+1bM})+1 3 ¢;M;'M; , (22)
i (i, j)

where c;; is proportional to (17) or (20), as is appropriate,
and the sum runs only over the defect sites. This neglects
fluctuation energies associated with the ferromagnetic
host, in favor of the exchange energies directly or in-
directly due to the defect bonds (which cause a moment
M,, at site 1, mediated by the ferromagnetic host, to in-
teract with a moment M |, at site 2). With more than two
negative defect bonds present, it becomes possible for the
system to go unstable with negative defect bonds that are
more positive than given by the constraints following
Egs. (12) and (19), due to the collective interactions thai
can occur. Hence, a higher density of less negative defect

bonds can cause canting to occur.
These results are clearly relevant to the problem of
magnetic doping, which may introduce antiferromagnetic
bonds. Perhaps of even more interest, they are relevant
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to the problem of magnetic order in magnetic alloys,
where the nonferromagnetic dopant has a significant con-
centration. Moreover, the possibility of a canted state
then leads to the case where the antiferromagnetic bonds
have an even more extreme effect, and the system shows
“reentrant” spin-glass behavior at low temperatures, or
perhaps spin-glass behavior with no ferromagnetic-like
regime at all. 31112

In closing, we note that the above considerations may
have relevance to systems where J' is mediated by mobile
impurities (electrons or holes). If the J’ due to an indi-
vidual impurity is insufficient to cause canting, one has
the possibility of the impurities hopping about and, when
they are close enough, for the effective interaction I [cf.
(9)] to be strong enough to induce canting. This would
lead to a dynamical magnetic structure. The case where
J' alone can induce canting is perhaps relevant to the
high-temperature superconductors, > where hopping may
induce a dynamical J', to which the spin system must
constantly adjust. In that case, the ratio of the rate of
hopping to the rate of spin adjustment becomes a param-
eter that determines the physics of the problem: if the ra-
tio is small, then the entities that hop are subject to
effective interactions due to the adjustments of the spin
system; if the ratio is large, the spin system is subject to
rapid fluctuations in the exchange Hamiltonian, which
could lead, among other things, to additional line
broadening—or perhaps motional narrowing—in vari-
ous types of spectra.

Note added in proof. After submitting our paper we re-
ceived a preprint by J. Vannimenus, F. D. M. Haldane,
C. Jayaprakash, and S. Kirkpatrick, Ground State Mor-
phology of Random Frustrated XY Systems, also dealing
with the onset of canting due to defect.
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