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Invariant-embedding R-matrix scheme for reflection high-energy electron diffraction
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We present a dynamical theory based on the invariant-embedding R-matrix scheme for calculat-
ing reflection high-energy electron-diffraction rocking curves. The method is shown to be accurate
and numerically stable. Using Ag(001) and Pt(111) surfaces as examples, we demonstrate the impor-
tance of reaching proper numerical convergence in the rocking-curve calculations. The effect of
different models for the imaginary potential on rocking curves is presented.

I. INTRODUCTION

In reflection high-energy electron diffraction
(RHEED), electrons are elastically backscattered by a
solid's surface at grazing incidence. RHEED is the
structural probe installed routinely in molecular-beam-
epitaxy (MBE) systems. Because of its forward scattering
geometry, the technique works well for studying surface
structures that are formed during deposition and whose
analysis must be performed in si'tu in the deposition
chamber. Due to the low Debye-%aller factor in
RHEED, it is also the structural technique of choice for
studying high-temperature structures. With the current
strong interest in t'.he synthesis of new materials by epit-
axial molecular growth, there is increasing demand to de-
velop RHEED into a reliable structural probe. In this
paper, we present a new method for calculating RHEED
intensity spectra for rocking-curve analysis.

At energies as high as 10—40 keV, dynamical methods
developed for low-energy electron diffraction (LEED)
(Refs. I —4) are no longer practical. In LEED calcula-
tions, the scattering by a single atom and among different
atoms in a single layer or among different closely spaced
layers are solved using angular momentum basis func-
tions [i.e., partial waves (l, m)]. There have been at-
tempts to divide the layers into chains and treat the
scattering in terms of cylindrical waves. ' But the
partial-wave method is no longer practical at RHEED
energies because the number of basis functions needed in-
creases rapidly as the energy increases (approximately as
E'~z). The method we use is based on expanding the
scattering potential and wave function in the plane-wave
representation. The basis vectors are the two-
dimensional reciprocal-lattice vectors, g, of the surface.

At high energies, electron scattering by an atom is
confined primarily to a narrow cone whose central axis is
the forward (unscattered) direction. Large-angle scatter-
ing outside the cone is small and therefore can be neglect-
ed. However, due to strong multiple scattering within
the cone, kinematical theory cannot be used. For dynam-
ical calculations, two sources of errors could occur in the
plane-wave expansion. First, the number of Fourier
coefficients V (z) of the scattering potential could be
insufficiently included. The second source is insufficient
inclusion of the basis functions, both propagating and

evanescent ones.
Evanescent waves (or closed channels) are created at a

scattering center and their amplitudes decay exponential-
ly in the direction of propagation. At first glance, it is
not obvious why any evanescent wave is needed in a cal-
culation, since such a wave carries flux only a very short
distance from where it is created. The importance of
evanescent waves comes from the fact that there are
many strong small-angle scatterings. Thus, over a short
distance, an electron may scatter into an evanescent wave
and scatter out again into a propagating wave, a number
of times. This is how the effect of evanescent waves could
be felt over a thickness of 10-15 A, even though the
wave itself may have long been attenuated. At an angle
8, the scattering cone is approximately 28, i.e., the
scattering angle of the specular beam (see Fig. I). Since
evanescent waves lie at 0 from the incident direction, a
significant number of these must be included. Only
evanescent beams that are very highly attenuated (i.e.,
large g components) can be neglected. These large g
evanescent beams are so highly damped that their ampli-
tudes have dissipated before any effective scattering can
take place. Thus in an accurate calculation, both propa-
gating and evanescent waves must be sufficiently includ-
ed.

As we shall show later, the Schrodinger equation for
RHEED takes the form of coupled second-order
differential equations which are functions of z from the
surface. In solving such equations, there are basically
two categories of numerical approaches. The first is
called "solution following:" This consists of starting the

beam

Scattering cone

FIG. 1. Schematic diagram of the scattering angle between
an evanescent beam and the incident beam.
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equation solving at a region where the solution is easily
obtainable. Then one proceeds to follow the solution nu-

merically step by step into the asymptotic region where
the boundary condition is applied. The method actually
solves separately a wave function that propagates to-
wards the surface and another that propagates away from
the surface, at any given z. A prime example of this
scheme is the Sams and Kouri method. While the
method is fast, it is plagued by numerical instabilities
caused by evanescent (i.e., closed) channels. The problem
comes from the fact that the solution is a linear combina-
tion of basis functions. If the basis functions contain
closed channels which grow rapidly, the contributions of
these channels may be orders of magnitude larger than
the weakly growing ones. When this happens, round-off
and truncation errors in the numerical process destroy
the linear independence of the intermediate solutions.
Thus, stabilization procedures must be applied at various
steps to restore the linear independence of the solutions.
However, when a number of closed channels with rela-
tively large exponents are present, as often is the case in
RHEED, the solution-following method may not work
with any amount of stabilization. Or, even when it
works, the stabilization step size becomes so small that
the method is no longer practical. Previous RHEED cal-
culations' ' used the solution-following scheme. Mak-
sym' has recently introduced stabilization procedures
based on the layer-doubling method of LEED. Howev-
er, this procedure is too cumbersome if stabilization has
to be applied in a thickness less than one atomic layer
(i.e., &2 A). Thus, calculations based on the solution-
following scheme are often "beam limited. " As we shall
see in Sec. VI, many results of previous calculations were
nonconvergent.

The method we present here belongs to the invariant-
embedding category and is inherently more stable. The
invariant-embedding method works by solving a quantity
(in our case the ratio of the wave function and its first
derivative, called the R matrix) by a recursion formula.
Let us say that the R matrix for a combined (i —1) slice
has been solved. Then, the R matrix for the combined (i)
slice is obtained by quantities related to the ith slice
alone, together with the previous R-matrix solution of the
combined (i —1 } slice. At each recursion step, the errors
that destroy linear independence of the solutions are not
allowed to propagate. Another important reason for the
stability of the method is that the R matrix is the ratio of
the wave function with its first derivative. Thus, the re-
cursion steps do not explicitly involve wave functions.
The R matrix is orders of magnitude better behaved nu-
merically than the wave functions themselves. ' ' This
allows large steps to be taken (in regions where the poten-
tial is slowly varying} and explains why the method is
computationally efficient. Finally, the R-matrix method
does not decouple the wave function and its first deriva-
tive into an outward and an inward component. This
separation is unnecessary inside the slab.

The invariant-embedding scheme is no longer beam
limited. As we shall show in Sec. VI, our calculations are
carefully tested for numerical convergence in terms of the
number of beams needed. The R-matrix method with

symmetric coupling matrices was introduced in atom-
molecule collision theory. ' ' In RHEED, the coupling
matrices are generally Hermitian. In Sec. II, we shall de-
scribe the scattering potential used in our RHEED
theory. The R-matrix method for RHEED is presented
in Sec. III. The use of symmetry, the inclusion of tem-
perature effects, and inelastic damping are described in
Secs. IV and V, respectively. Convergent rocking-curve
results for Ag(001) and Pt(111) are presented in Sec. VI.
Section VII contains a summary.

In the R-matrix multislice method, the slices are made
parallel to the surface. In a recent calculation by Peng
and Cowley, ' they sliced a slab normal to the surface.
This normal-multislice method has many attractive
features as it allows crystal imperfections parallel to the
surface (i.e., a step) to be incorporated in a natural
manner. The method, however, requires considerable
computation time and, to date, there have been no
rocking-curve calculations made.

II. THE SCATTERING POTENTIAL

where R is a two-dimensional lattice vector. We expand
the potential in Fourier series

V(r) =g Vs(z)e's'~
8

(2)

where p and z are the Cartesian components of r.
Consider a slab of N atomic layers. We select a slab

unit cell which consists of a vertical column of atoms
with thickness equal to that of the slab (see Fig. 2}. The
slab is made up of this column unit ce11 with two-
dimensional translation vectors P. Within this column
unit cell, there are s =1,2, . . . , L atoms. We can now
divide the slab into L planar (Bravais) lattices. Let
Ro=(Rl, R, ) be the coordinate of one of its atoms with
respect to the master origin 0, and RJ be the lattice vec-
tor of the jth atom in the Bravais lattice. The vector RJ
is in the set j P J. Then we have

V(r) =g P(p —
R&&

—Rj,z —R, )
J

(3)

where P is the ion-core potential for the jth atom. From
Eq. (2),

V (z) =—f V(r)e 's I'd p
1

A
(4)

where A is the normalization area. Substituting (3) into
(4) and changing the variable of integration from p to
p'=p —

R~~
—R, we obtain

V (z)=—f P(p', z —R, )e 'see ~~d p'0 n

where 0= A /N is the two-dimensional unit-cell area and
N is the number of unit cells in A. The potential function
P(r) can be expressed in terms of its Fourier transform

We consider a surface slab made up of atomic layers,
assuming two-dimensional periodicity such that

V(r)= V(r+R)
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Vs(z) = g g a;(s)
nlQ; i i b( s

' 1/2

—b. (s)g —ig R
II

—(z —R ) /4b. (s)
ge ' e $II $2 I

'

~Y//g~
where [a;(s},b;(s},i =1,2, . . . , n] are the Gaussian pa-
rameters for potentials in the sth Bravais lattice. For the
calculation presented in this paper, n =4.

This procedure leaves one the freedom to choose the
unit-cell scattering potential 4}(r) as long as its Fourier
transform can be fitted by a sum of Gaussians [i.e., via
Eq. (8), but not necessarily confined to four Gaussians).
For P(r), we have used Hartree-Fock atomic potentials. '9

We have also used self-consistent band-structure poten-
tials based on the local-density-functional approach. '

Results of these calculations are presented in Sec. IV.

Unit Cell

FIG. 2. Dividing a slab into column unit cells. The origins of
the L Bravais lattices are at the centers of the hatched atoms.

III. THE INVARIANT-EMBEDDING METHOD
FOR RHEKD INTENSITIES

In order to calculate rocking-curve intensities, we need
to find the reAection coeScients at the surface of the slab.
By Bloch's theorem in two dimensions, one can write

f,(q) as
yi, (r)=e Ui, (r)

II II

(12a)

$2
{{}(r)= ff, (q)e'q'd q .

4g m
(6)

$2

4/m 0

Putting Eq. (6) into Eq. (5) and rewriting q=(qi, q~), we

obtain

Ui, (r ) =g {{}s(z)e's'i'. (12b)

Substituting Eqs. (3) and (12) into Schrodinger's equation

where kII is the parallel component of the wave vector of
the incident electron. Ui, (r) is a function having the

II

same periodicity as the potential and hence can be ex-
panded as

Xf d pe fd qe fe(qi ~ qj.

—is RII
2

iq&(z —R )
e qe' ', Iq,

$2 V'+ V(r) g(r)=&/(r)
2m

(13)

We can fit the Fourier transform f,(q) by a sum of
Gaussian functions, using a nonlinear fitting routine. ' '

Thus if we write

we obtain the following second-order coupled diff'erential

equation along the z direction for the Fourier expansion
coefticients:

Pf b 2

f,(q)= g a, e (8) y,"(z)+k',,y,(z)=, y V, , (z)y, (z)~SS ~2 S S (14)

we obtain where

V(z)= e i+a;—gR "
m

S mQ, .
1

'
bi

1/2 —b,.g —(z —R ) /4b, .

(9)
2mE

g2 Ilg
(15)

Since we treat the slab as composed of I. Bravais lattices,
we denote the origin of each lattice as

Equation (14) is equivalent to the Schrodinger equation
and can be written in matrix form as

(10} 4"(z) =LV(z)4(z) (16)

Then for the slab we obtain where
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'i)(is (z)
'

X"(z)= T" 4"(z), (21)

then in this local basis, Eq. (14) has the following form:
4(z) = $s (z) X" (z) =(&")'X"(z) . (22)

and

Ps (z) As (A,") is a constant diagonal matrix within the ith sec-
tor, all the components of X"are decoupled. For a sin-
gle component, we have

W'~(z)=
z Vs s.(z) —kjs5ss .ss g2 s s j.s $$ (18)

By taking the complex conjugate of Eq (2}, it is easy to
show that Vg g. is an Hermitian matrix, and hence 8'
is also Hermitian provided kis is real. For scattering
problems, this is generally not the case because of inelas-
tic damping. However, in Sec. V, we shall show how in-
elastic damping is included in the theory.

%e now describe how the R-matrix solution to the
coupled Eq. (16) may be constructed. We take the ap-
proach of dividing the crystal into thin slices (sectors}
parallel to the surface. Inside each sector we determine a
local R matrix, r, and then a global R matrix is construct-
ed by assembling the local R matrices. We start by divid-
ing the slab into m slices, with the first slice at the bottom
of the slab (see Fig. 3). The coupling matrix W is evalu-
ated at the center of each slice and taken to be a constant
over the entire width of the slice, i.e., if z; is the center of
the ith slice, we have,

W„,(z) = W„.(z,. ) = W„". (19)

for all z within the step. Since W" is Hermitian, there
exists a unitary transformation that diagonalizes the cou-
pling matrix

T(i( Pr(i)T(i( (g(i))2 (20)

where T" is the Hermitian conjugate of the transforma-
tion matrix T"'. If we transform the plane-wave basis
Immi) into a local basis IX) by

X""(z)=(X"')'X"'g' =
g g (23)

which is a simple square-mell problem. Its solution is
given by the following relation (dropping the label g and
sector label i ):

X(z)= A cosh(Az)+8 sinh(Az) (24)

and its first derivative

X'(z) = A A. sinh()(, z)+BR,cosh()(z) . (25)

The choice of hyperbolic sine and cosine is unimportant
and we could have easily chosen sine and cosine for the
square-well problem. The consideration in choosing sinh
and cosh is that A, would be coinplex if inelastic damping
is taken into account.

Let L and U denote the bottom (lower) and top (upper)
of the sector, respectively (see Fig. 3), then using Eqs. (24)
and (25) it is easy to show

XL
XU ——Xr cosh(k. h)+. sinh(k, h) (26)

and its first derivative

XU ——XL A, sinh(Ah )+XL cosh(Ah ), (27)

'X(i) '

—L

X (i)
T4

(i)' '—XL'

X (28)

where XU ——X()'i} and XL ——X(0) and h is the sector
width. Rewriting Eqs. (26) and (27) in matrix form, we
have

i =m+1
I = fA

l = m-1

z=b

@ (i3

~ {(}
CL

where the local R-matrices r are defined as

(r", ) =(r4") =A, 'coth(A, h)5

(r(z') s
——(r3')ss. ——A,s 'csch(A, sh)5~ .

(29)

X(i —1) ~(i —l, i) ~(i)

X&(i —1) ~(i —l, i) ~&(i)
(30)

To ensure the continuity of the total wave function and
its normal derivative, we equate the wave functions and
their derivatives of the ith and (i —1)th slices at the
boundary,

Z= a

FIG. 3. Slicing a surface slab from 0 to A into m slices.

(i —1) (i)where Q' '"=T" "T'" Note that the. transforma-
tion matrix T is unitary and hence the matrix Q is also
unitary. The transformation defined by Eq. (30) takes the
local basis from sector i —1 to sector i (see Fig. 3).

The R-matrix scheme propagates by assembling the lo-
cal R matrix defined in Eq. (29) recursively, beginning at
the bottom of the slab and working towards the crystal-
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vacuum interface. At each step of the recursion, a new
global R matrix is obtained by assembling the new local
R matrices from the old global R matrix. The global R
matrix is defined as that which always relates the wave
functions and derivatives at the outer boundary of the
last sector assembled, so that

eb —R(f)C
b

where

(36a)

resentation to the plane-wave representation, by the
transformation defined in Eq. (21). Thus we obtain

(31)
R (f) y.(m)R (m)

Z
(m) (36b)

We note that in one component case, R" is the inverse of
the logarithmic derivative of X". Therefore we expect
R"' to be a smooth function of z. From Eqs. (29), (30),
and (31), the recursion relation of the global R matrix is
derived,

and 4b is the wave function just below the interface.
Above the interface, the total wave function is the sum

of the incident wave and the reflected wave. The bound-
ary conditions require that the wave function and its first
derivative be continuous, i.e.,

(i) (i) (i) (i) (I)R =14 —1'3 g I'z

where

(32a)
4; (b)++„(b)=Os(b),

4,'(b)+@'„(b)=C)$(b) .
(37)

Z(i) (&(i) +Q(i —l, i) (i —1) (i —l, i) —(—r& (32b)
Thus, from Eqs. (36}and (37}we obtain the reflection ma-
trix

Recursively use of Eqs. (29), (30), (31), and (32) propa-
gates the R matrix to the crystal-vacuum interface where
the boundary condition is applied to obtain the RHEED
intensity.

At the top side of the slab (outside), there are two
waves: the incident wave

R rer
8

2
k~' M+-

gp ~

J.O

=[R' '0'(b) —O(b)] '[I(b) —R' 'I'(b)] .

The RHEED reflectivity for beam g is given by

(38)

(39)

P(r)=QC e "' e
8

and the reflected wave

(33a)

(33b)

where C is a column vector consisting of incident ampli-
tude coefficients for the g beams and M+ is the
reflection matrix defined similarly as in LEED. At
the bottom of the slab, the transmitted wave could be
written in terms of the transmission matrix M++ as

i(,„(i)—A,„(i—1)V'= —gN „, z; —z;
(40a)

The leading error in the numerical process depends on
the derivative of the potential, which is assumed to be
zero over the width of a sector. In order to reduce the er-
ror without sacrificing efficiency, it is necessary to control
the sector width according to the variation of the poten-
tial. ' One measure is to compute the rate of change of
the average of the eigenvalues

g (r)=g e "' e "M++C
SS

The new sector width is given by the following predictor:
(33c)

(40b)

Note that there is no reflection from below (below A, see
Fig. 3). If we recall Eq. (12) and rewrite Eq. (33) in terms
of the expansion coefficients [Eq. (12)],we have

4;(z)=I(z)C,

e„(z)=O(z)M+-C,

4, (z) =I(z)M++ C,
(34)

where I(z) and O(z) are diagonal matrices with e
ik] z

and e ' as the diagonal elements, respectively.
Propagation starts at the bottom of the slab, where the

initial R matrix is obtained by taking the derivative of the
transmitted wave and using the definition of the R matrix

(35)

From the recursion relation of the R matrix [Eq. (32)], we
obtain the R matrix at the inside surface of the slab,
R' '. In order to match the boundary condition at the
surface, we change the basis functions from the local rep-

h;+( ——Ph; . (40c)

Another measure is to examine the Q matrix. For a
truly constant potential, the Q matrix is unity. Therefore
the quantity

Tr(1 —Q )
C=

N(z, —z, ))
(41a)

is a sensitive measure of the potential variation. The new
sector width is given by

h, +) ——y

' 1/2
X —1

2C
(41b)

The actual width is taken to be the minimum of the pred-
ictors discussed above. The final control over the actual

where a is a constant. At the minimum of the average of
the eigenvalues, the above predictor overestimates the
next sector's width. This problem is avoided by limiting
the new sector width relative to the last sector, so that
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sector width used is to require a new sector to fall within
a permissible range of sector width.

IV. SYMMETRY AMONG BEAMS

g'Cm g'Em

gEm V~ + V, &2V

gCm &2V

(44b)

From the foregoing, it is clear that a major determin-
ing factor of the computation time is N, the number of
beams included in the calculation. By use of symmetry,
one can reduce the computation time by reducing the di-
mension of the rnatnces involved. In RHEED, the elec-
tron beam is incident on the surface at a glancing angle.
This means that the only possible symmetry is the mirror
plane symmetry when the incident beam coincides with a
mirror plane.

From the unsymmetrized plane-wave basis t P j, we can
construct a symrnetrized basis' as follows

Xs+ =ass for gGm (g on the mirror plane),
(42a)

—(Ps+/ ) for g&m (g above the mirror plane),*= 1

s 2 s g

where g is the mirror image of g and 7+ with g Em U m

is even and 7 with g Em is odd upon reflection by the
mirror plane. As an example of how the use of symmetry
reduces the computation, let us consider a two-beam case
where the only beams are g and its mirror image g.

If we rewrite the transformation [Eq. (42a)] in matrix
form,

The Schrodinger equation for the symmetrized basis
functions takes the same form as in Eq. (14), except now
the potential matrix V is substituted by the matrix U. It
is straightforward to show that the new potential matrix
is also Hermitian. Therefore, the new equation can be
solved in the same way as before, except that instead of
solving X coupled equations, we now only need to solve
(N+N )/2 equations. (N is the number of beams on
the mirror plane}. The initial R matrix in symmetrized
basis is

'R "~='k~s'ass (45}

which is the same as Eq. (38). A relation similar to Eq.
(44) exists for the reflection matrix

M'+
gg

' 1/2

yM+;
gg

(47)

which is the same as Eq. (35). The relation between the
reflection and R matrices in the symmetrized basis is

M'+ =[R' '0'(b) —O(b)] '[I(b) —R' 'I'(b)]

'x+ '

g

x (42b) Then the RHEED reflectivity for beam g is

where g ref
k

2

M+
g0 (48a)

1 1
T=

1 —1
(42c)

then the matrix V~. in Schrodinger s equation changes
under the basis transformation [Eq. (42)] into

Vgg+ V

LO

2

R ref 1 g M'+
s J k sa (48b)

and in terms of the symmetrized reflection matrix, it be-
comes

U=T VT
gg gg,

(43) where for g Em, J =2, or else J =1.

We note that the relation V = V exists. Due to the
gg gg

block-diagonal form of Eq. (43), the antisymmetric basis
function is independent of the symmetric basis function
and can be dropped from the calculation, because it can-
not be excited by an incident beam along a mirror plane.
We note that this type of diagonalization is di6'erent from
that discussed in the last section, where the diagonaliza-
tion was done locally for each sector. Here the diagonali-
zation is global to all sectors.

In general, under the transformation of basis defined by
Eq. (42}, the new potential matrix U is given by the fol-
lowing equation

U
gg

1/2 I
V

J
I (44a)

where I and J are the number of beams symmetrically re-
lated to g and g', respectively. Or, more explicitly, we
can write

V. INELASTIC DAMPING
AND TEMPERATURE CORRECTION

There are two factors which afkct RHEED intensities
that we have so far omitted: inelastic electron damping
and temperature correction. In this section, we shall dis-
cuss their theoretical treatment. In LEED, inelastic
damping is treated via the inclusion of a constant
(position-independent) imaginary part in the scattering
potential. The value of the constant imaginary potential
is determined such that the calculated peak width
matches the experimental width in an intensity-voltage
(IV) spectra. In RHEED, inelastic damping may be
treated by assuming a z-dependent imaginary potential,
or a constant damping, or a fun position-dependent irnag-
inary potential.

For example, if we assume a z-dependent imaginary
part, ieV~(z), then the total scattering potential V'(r} is
given by
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V'(r)= V(r}+ieVI(z) (49)

VI(z)= —J V(p, z)d p .
A

(50)

The Fourier expansion coefficients V' (z) are then given

V' (z) =—J [ V (p, z)+i e VI(z)]e ' '~d p

4m= Vs(z)+ie VI(z)5(g}

where V(r) is the real potential given in Eq. (2) and e is a
positive number to be chosen and VI(z) is the two-

dimensional average of V(r),

~ =-,' & (ak ar)'&, . (56)

Here hk is the momentum transfer of the scattering. The
real part of hk is taken, since it is the real part that gives
rise to the wave interference on which the Debye-Wailer
factor is based. The momentum transfer hk is defined as

tic damping in the form given in Eq. (55) by requiring the
eigenvector matrix to be nonsingular, i.e., that its inverse
exists. For a physical problem, this is most likely to be
the case. The consideration for Hermitian or symmetric
coupling matrices is purely computational, since it would
avoid explicit evaluation of inverses.

We include the temperature correction by multiplying
each Fourier coefficient V by a Debye-Wailer factor
D ~ =e where

—M
SS

= V (z)+ieVI(z)5& .

The coupling matrix becomes

(51)
Eked

——(g —g'),

hk~=kjg+kjg,
(57)

2m
Wss

——Wss +i e Vr(z)5«f2
(52)

where W is the old coupling matrix given by Eq. (18}.We
note that the new coupling matrix is no longer Hermi-
tian, since complex elements appear on the diagonal.
However, because the complex part is independent of g,
we can separate it from the old coupling matrix to
preserve its Hermitian property. In fact, if T diagonal-
izes the old coupling matrix 8',

T WT=k (53)

it will also diagonalize the new coupling matrix W', since
within each slice VI is a constant

T W'T=X +ie
2

VII=(k') (54)

V'(r }=(1+ie}V(r) (55)

where e is a positive number (usually taken as 0.1). Then
the coupling matrix is complex symmetric. The matrix
that diagonalizes the coupling matrix is orthogonal, hav-

ing the property that T '= T. It is clear that an orthog-
onal transformation of the basis will dec ouple the
Schrodinger equation (14). Therefore we need only to re-

place T by T in the foregoing R-matrix formulation.
Rocking curves using the different forms of inelastic
damping are presented in the next section.

For crystals with general symmetry, we can use inelas-.

Therefore, unitary transformation exists for the matrix of
the form given by Eq. (52). We note that a constant
damping is just a special case of e Vz(z) = VI.

If a crystal has a twofold rotation axis normal to the
surface, then the Fourier expansion coefficients of the po-
tential V are real. This is because a twofold rotation
axis implies that V = V . Remembering that the
Fourier expansion of the form given by Eq. (2) has the
general property V ——V, we obtain V' = V .

Under the above condition, the total scattering poten-
tial may be chosen as

where kjs is given by Eq. (15}.
Equation (57} shows an ambiguity: for an event that

scatters an electron from g into I', there are two scatter-
ing paths associated with it, a small-angle path and a
large-angle path. As mentioned in the Introduction, the
amplitude for a large-angle scattering for a RHEED elec-
tron is extremely small. Thus, in the temperature correc-
tion, we only take the minus sign in Eq. (57}. Anisotropy
in the vibrational displacement amplitude of the surface
atoms, i.e., the amplitudes perpendicular and parallel to
the surface may be different, is included by expressing

M=-,'[[«~, ['((~ „r}&, +[~k, ['( ~(r, ')&,]. (58)

The temperature-dependent coupling matrix 8'. is
given by the following expression:

2m
W«. —,D«. V, , —k„5„,. (59)

Insertion of this quantity in the appropriate equations
yields temperature-corrected RHEED intensities.

VI. ROCKING CURVES FOR Ag(001)
AND Pt(111)SURFACES

Rocking curves calculated by the R-matrix method for
Ag(001) at E =20000 eV are shown in Figs. 4—8 for the
(00), (01), (02), (10), and (11)beams, respectively. The in-
cident electron is along the [110]azimuth. All interlayer
spacings are set to the bulk value. The two-dimensional
beam set used to obtain numerical convergence is shown
in Fig. 9. The total number of beams used, adding to-
gether the solid and open circles, is 61. With mirror sym-
metry, the matrices are reduced to 36X36 square ma-
trices according to equations given in Sec. IV. The Ag
scattering potential is taken from the tabulation of Doyle
and Turner. ' ' The coefficients which control the thick-
ness of each slice are given by a=@=0.05, P=5. This
results in 60 to 80 slices per atomic layer. The choice of
P limits that no new step size is to be more than or less
than 5 times the previous step size. Numerical conver-
gence is obtained at approximately seven atomic layers.
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FIG. 4. The (00) beam rocking curve for Ag(001). Conver-
gent result is represented by the solid curve, which uses the 61
beams indicated in Fig. 9. Dashed curve uses the 12 beams indi-
cated in Fig. 9. The two curves are normalized in total area, re-
sulting in the dashed curve X 3.0.

The optical potential is taken to be Vz(r}=0.1 Va (r },i.e.,
the factor e=0. 1 in Eq. (55}. In LEED, where muffin-tin

potentials are used, the energy difference between the
vacuum level and the potential of the Aat regions outside
the muf6n-tin spheres is called the inner potential Vo.
Note that Vo is not the average potential inside a solid
used in kinematical Bragg scattering analysis. At LEED
energies, i.e., 50-400 eV, the value of Vo varies between 7
and 14 eV. The major portion of this value comes from
the exchange-correlation interaction (i.e., the real part of
the electron self-energy} between the incident electron
and the conduction electrons inside a solid. The real

part of the self-energy should decrease as the incident
electron energy increases. The value of Vo in RHEED is

adjusted to optimize the comparison between calculated

FIG. 6. Same as in Fig. 4, except for the (02) beam. The
dashed curve X7.8.

rocking curves with experiment, in much the same way as
in LEED. In general, we expect the value of Vo to be
smaller in RHEED than in LEED. For rocking curves of
Ag(001} using a superposition of Hartree-Fock atomic
potentials, we used Vo ——0 eV. Due to forward scattering
and the small Debye-Wailer factor, no temperature
correction is included. In the figures, the solid curves
represent convergent calculations, where the intensities
would not change if more beams are added. As men-
tioned before, 61 beams symmetrized to 36 nonequivalent
beams are used. The dashed curves are for calculations
using the 12 beams indicated by open circles in Fig. 9.
The same 12 beams were used in earlier publications. ' '"
It is clear that the 12-beam results are not convergent, as
they show large differences in both peak intensity and po-
sition. Because the 12-beam calculated intensities are
generally weaker, we have normalized the areas below the
two curves in each figure. This allows the peaks in the
12-beam calculations to be clearly seen in the plots. The
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dashed curve )& 1.6.
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each beam, the upper panel uses a constant inelastic damping
and the lower panel uses Vl(r)=0. 1V&(r). The (00) and (01)
beams are shown.
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normalization factor for each beam is given in the figure
caption.

The rocking curve for Pt(111} at E =19000 eV is
shown in Fig. 10 for the (00) beam. The incident azimu-
thal direction is along [2 1 1]+32 mrad. A slab of seven
atomic layers is used. The surface interlayer spacing is
contracted by 0.07 A, while all deeper spacings are left at
the bulk value. A self-consistent band-structure
augmented-plane-wave (APW) Pt potential is used. The
inner potential is Vo ——0 eV and the imaginary potential is
Vz(r)=0. I V„(r). The factors that control step size are
set at a=y=0. 05 and P=5. Again, no temperature
correction is included. The solid curve is for the conver-
gent calculation, using the 45 beams shown as open and
solid circles in Fig. 11. The dashed curve is for including
propagating and evanescent beams up to the zeroth Laue
zone only (i.e., the 30 beams represented by open circles
in Fig. 11). The results in Fig. 10 show the importance of
including evanescent beams beyond the zeroth Laue zone
for Pt(111). Otherwise, rather large errors in peak posi-
tion and intensity would occur.

Since the optical potential VI(r) =0. 1 V„(r) is an
empirical model, we tested the dependence of rocking
curves on its choice. In Figs. 12 and 13 we show rocking
curves for Ag(001} with two choices of inelastic damping:
VI ——3 eV and VI(r)=0. 1Vz(r). The calculations use 61
beams, so they are convergent. Other conditions are the
same as those used in Figs. 4-8. We note that there are
essentially no shifts in the peak positions. As expected,
there are some difFerences in the absolute peak intensities.
The largest difference occurs near the threshold angles
[e.g., at 8=2' for the (01) beam]. Half a degree or more
above threshold, the two rocking curves are very similar.
In Fig. 14, rocking curves for Pt(111) are shown, again
for Vi ——3 eV and VI(r)=0. 1V„(r). For these calcula-
tions all interlayer spacings are set at the bulk value and
45 beams are used. Other conditions are the same as
those in Fig. 10, except that the incident azimuthal direc-
tion is along [21 1]. Again, the rocking curves are very
similar, especially the peak positions. From these analy-
ses, we conclude that the imaginary part of the optical
potential should be chosen with care, however, the details
of the spatial variation in VI(r) should not be critical to
the main features of RHEED rocking curves above 2'.

VII. SUMMARY

We have demonstrated the importance of reaching
proper numerical convergence in calculating rocking
curves and the capability of the R-matrix method in pro-
ducing convergent calculations. With the 8-matnx
method, it is now possible to calculate accurately rocking
curves for any strong scattering material. The calculated
rocking curves are for elastically scattered electrons only,
therefore, the experimental measurements should
energy-filter out inelastic electrons for proper quantita-
tive comparison with the theory. The relation of the
peaks in rocking curves with interlayer diffraction and
beam-emergent monolayer scattering and the use of the
rocking curves for quantitative surface structure analysis
are presented elsewhere.
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